Mobile QR Code QR CODE
Export citation EndNote

References

1 
ACI Committee 318. , 2019, Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary, Farmington Hills, MI; American Concrete Institute (ACI)Google Search
2 
Ankur N., Singh N., 2021, Performance of Cement Mortars and Concretes Containing Coal Bottom Ash: A Comprehensive Review, Renewable and Sustainable Energy Reviews, Vol. 149, pp. 111361DOI
3 
ASTM C1609 , 2020, Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam with Third- Point Loading), West Conshohocken. PA; ASTM International.Google Search
4 
ASTM C567 , 2020, Standard Test Method for Determining Density of Structural Lightweight Concrete, West Conshohocken. PA; ASTM International.Google Search
5 
Baeza F. J., Galao O., Vegas I. J., Cano M., Garcés P., 2018, Influence of Recycled Slag Aggregates on the Conductivity and Strain Sensing Capacity of Carbon Fiber Reinforced Cement Mortars, Construction and Building Materials, Vol. 184, pp. 311-319DOI
6 
Baoyi L., Yuping D., Yuefang Z., Shunhua L., 2011, Electromagnetic Wave Absorption Properties of Cement- Based Composites Filled with Porous Materials, Materials and Design, Vol. 32, No. 5, pp. 3017-3020DOI
7 
Choi J., Yuan T., Hong S., Yoon Y., 2020, Evaluating of Electromagnetic Shielding Characteristics of Reinforced Concrete Using Reinforcing Details, Journal of the Korean Society of Hazard Mitigation, Vol. 20, No. 5, pp. 245-254Google Search
8 
Chung D. D. L., 2020, Materials for Electromagnetic Interference Shielding, Materials Chemistry and Physics, Vol. 255DOI
9 
Fan Y., Zhang L., Volski V., Vandenbosch G. A. E., Blanpain B., Guo M., 2019, Utilization of Stainless-Steel Furnace Dust as an Admixture for Synthesis of Cement-Based Electromagnetic Interference Shielding Composites, Scientific Reports, Vol. 7, No. 1, pp. 1-8DOI
10 
Hong S. H., Choi J. S., Lee J., Yoon Y. S., 2020a, Optimal Mix Design and Quality Properties of 50 MPa Self-Consolidating Lightweight Concrete, Journal of the Korean Society of Hazard Mitigation, Vol. 20, No. 6, pp. 135-142Google Search
11 
Hong S. H., Yuan T. F., Choi J. S., Yoon Y. S., 2020b, Effects of Steelmaking Slag and Moisture on Electrical Properties of Concrete, Materials, Vol. 13, No. 12, pp. 2675DOI
12 
Hong S. H., Yuan T. F., Choi J. S., Yoon Y. S., 2021, Assessing the Effects of Steelmaking Slag Powder on the Pore Structure and Durability of Concrete, Journal of the Korean Society of Hazard Mitigation, Vol. 21, No. 1, pp. 1-11Google Search
13 
Hong S., Yuan T., Choi J., Yoon Y., 2019, Evaluating Microstructure and Self-Sensing Properties of High-Strength Concrete with Electric-Arc-Furnace Oxidizing Slag, Journal of the Korean Society of Hazard Mitigation, Vol. 19, No. 5, pp. 189-197Google Search
14 
Hyun S. Y., Du J. K., Lee H. J., Lee K. W., Lee J. H., Jung C., Kim E. J., Kim W., Yook J. G., 2014, Analysis of Shielding Effectiveness of Reinforced Concrete Against High-Altitude Electromagnetic Pulse, IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 6, pp. 1488-1496DOI
15 
Hyun S. Y., Lee K. W., Kim M. S., Yook J. G., 2012, Electromagnetic Modeling of Shielding Effectiveness of Reinforced Concrete Walls, The Journal of Korean Institute of Electromagnetic Engineering and Science, Vol. 23, No. 3, pp. 384-391DOI
16 
KATS , 2017, Standard Test Method for Compressive Strength of Concrete (KS F 2405). Seoul, Korea, Korea Agency for Technology and Standards (KATS), Korea Standard Association (KSA). (In Korean)Google Search
17 
Kim H. K., Lee H. K., 2011, Use of Power Plant Bottom Ash as Fine and Coarse Aggregates in High-Strength Concrete, Construction and Building Materials, Vol. 25, No. 2, pp. 1115-1122DOI
18 
Kim Y. H., Kim H. Y., Yang K. H., Ha J. S., 2020, Evaluation of Workability and Mechanical Properties of Bottom Ash Aggregate Concrete, Applied Sciences, Vol. 10, No. 22, pp. 8016DOI
19 
Lee J. Y., Choi J. S., Yuan T. F., Yoon Y. S., Mitchell D., 2019, Comparing Properties of Concrete Containing Electric Arc Furnace Slag and Granulated Blast Furnace Slag, Materials, Vol. 12, No. 9, pp. 1371DOI
20 
MOLIT , 2021a, Korean Construction Specification: General Concrete (KCS 14 20 10). Sejong, Korea, Ministry of Land, Infrastructure and Transport (MOLIT). (In Korean)Google Search
21 
MOLIT , 2021b, Korean Construction Specification: Light Weight Aggregate Concrete (KCS 14 20 20). Sejong, Korea, Ministry of Land, Infrastructure and Transport (MOLIT). (In Korean)Google Search
22 
Ozturk M., Akgol O., Sevim U. K., Karaaslan M., Demirci M., Unal E., 2018, Experimental Work on Mechanical, Electromagnetic and Microwave Shielding Effectiveness Properties of Mortar Containing Electric Arc Furnace Slag, Construction and Building Materials, Vol. 165, pp. 58-63DOI
23 
Roslan N. H., Ismail M., Abdul-Majid Z., Ghoreishiamiri S., Muhammad B., 2016, Performance of Steel Slag and Steel Sludge in Concrete, Construction and Building Materials, Vol. 104, pp. 16-24DOI
24 
Wanasinghe D., Aslani F., Ma G., 2020, Effect of Water to Cement Ratio, Fly Ash, and Slag on the Elctromagnetic Shielding Effectiveness of Mortar, Construction and Building Materials, Vol. 256, pp. 119409DOI
25 
Wang Z., Zhang T., Zhou L., 2016, Investigation on Electromagnetic and Microwave Absorption Properties of Copper Slag-Filled Cement Mortar, Cement and Concrete Composites, Vol. 74, pp. 174-181DOI
26 
Wongsa A., Zaetang Y., Sata V., Chindaprasirt P., 2016, Properties of Lightweight Fly Ash Geopolymer Concrete Containing Bottom Ash as Aggregates, Construction and Building Materials, Vol. 111, pp. 637-643DOI
27 
Xue J., Wang X., Wang Z., Xu S., Liu H., 2021, Investigations on Influencing Factors of Resistivity Measurement for Graphite Tailings Concrete, Cement and Concrete Composites, Vol. 123, pp. 104206DOI
28 
Yehia S., Qaddoumi N., Hassan M., Swaked B., 2014, Conductive Concrete for Electromagnetic Shielding Applications, Advances in Civil Engineering Materials, Vol. 3, No. 1, pp. 270-290URL
29 
Yoo D. Y., Kang M. C., Choi H. J., Shin W., Kim S., 2020, Electromagnetic Interference Shielding of Multi-Cracked High-Performance Fiber-Reinforced Cement Composites - Effects of Matrix Strength and Carbon Fiber, Construction and Building Materials, Vol. 261, pp. 119949DOI
30 
You I., Yoo D. Y., Kim S., Kim M. J., Zi G., 2017, Electrical and Self-Sensing Properties of Ultra-High-Performance Fiber-Reinforced Concrete with Carbon Nanotubes, Sensors, Vol. 17, No. 11, pp. 2481DOI
31 
Zhang X., Sun W., 2012, Electromagnetic Shielding and Absorption Properties of Fiber Reinforced Cementitious Composites, Journal of Wuhan University of Technology- Mater. Sci. Ed., Vol. 27, pp. 172-176DOI