Mobile QR Code QR CODE
Export citation EndNote

References

1 
ACI Committee 318 (2019) Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318 R-19). Farmington Hills, MI; American Concrete Institute (ACI). 624.URL
2 
ACI Committee 544 (2018) Guide to Design with Fiber-Reinforced Concrete (ACI 544.4R-18). Farmington Hills, MI; American Concrete Institute (ACI).URL
3 
Beglarigale, A., and Yazıcı, H. (2015) Pull-Out Behavior of Steel Fiber Embedded in Flowable RPC and Ordinary Mortar. Construction and Building Materials 75, 255-265.DOI
4 
Carrillo, J., Vargas, J. D., and Alcocer, S. M. (2021) Model for Estimating the Flexural Performance of Concrete Reinforced with Hooked End Steel Fibers Using Three-Point Bending Tests. Structural Concrete 22(3), 1760-1783.DOI
5 
CEB (2010) CEP-FIP Model Code 2010. Lausanne, Switzerland; International Federation for Structural Concrete (fib), Comite Euro-International du Beton (CEB).URL
6 
CEN (2005) Test Method for Metallic Fibered Concrete - Measuring the Flexural Tensile Strength (Limit of Proportionality (LOP), Residual) (SIST EN 14651: 2005). Slovenski Standard. European Committee for Standardization (CEN), Slovenski inštitut za Standardizacijo (SIST).URL
7 
Chen, G., Gao, D., Zhu, H., Yuan, J. S., Xiao, X., and Wang, W. (2021) Effects of Novel Multiple Hooked-End Steel Fibres on Flexural Tensile Behaviour of Notched Concrete Beams with Various Strength Grades. Structures 33, 3644-3654.DOI
8 
Choi, W. C., Jung, K. Y., Jang, S. J., and Yun, H. D (2019) The Influence of Steel Fiber Tensile Strengths and Aspect Ratios on the Fracture Properties of High-Strength Concrete. Materials 12(13), 2105.DOI
9 
Galeote, E., Picazo, Á., Alberti, M. G., de la Fuente, A., Enfedaque, A., Gálvez, J. C., and Aguado, A. (2022) Statistical Analysis of an Experimental Database on Residual Flexural Strengths of Fiber Reinforced Concretes: Performance-Based Equations. Structural Concrete 23(5), 3140-3153.DOI
10 
Holschemacher, K., Mueller, T., and Ribakov, Y. (2010) Effect of Steel Fibres on Mechanical Properties of High-Strength Concrete. Materials and Design (1980-2015) 31(5), 2604- 2615.DOI
11 
Johnston, C. D. (1974) Steel Fiber Reinforced Mortar and Concrete: A Review of Mechanical Properties. Special Publication 44, 127-142.URL
12 
Kang, S. T., Kim, S. W., Park, J. J., and Koh, G. T. (2008) The Effect of Steel Fiber on the Compressive Strength of the High Strength Steel Fiber Reinforced Cementitious Composites. Journal of The Korea Institute for Structural Maintenance and Inspection 12(3), 101-109.URL
13 
KATS (2010) Standard Test Method for Compressive Strength of Concrete (KS F 2405). Seoul, Korea: Korea Agency for Technology and Standards (KATS), Korea Standard Association (KSA). (In Korean)URL
14 
KATS (2019) Standard Test Method for Making and Curing Concrete Specimens (KS F 2403). Seoul, Korea: Korea Agency for Technology and Standards (KATS), Korea Standard Association (KSA). (In Korean)URL
15 
KDS 14 00 00. (2021) Structural Design Standards (KDS 14 00 00). Korea Construction Standards Center, Ministry of Land, Infrastructure and Transport. (In Korean).URL
16 
Kim, Y. L, Lee, Y. K., and Kim, M. S. (2008) Influence of Steel Fiber Volume Ratios on Workability and Strength Characteristics of Steel Fiber Reinforced High-Strength Concrete. Journal of the Korea Institute of Building Construction 8(3), 75-83. (In Korean)DOI
17 
Lee, J. H. (2017) Influence of Concrete Strength Combined with Fiber Content in the Residual Flexural Strengths of Fiber Reinforced Concrete. Composite Structures 168, 216-225.DOI
18 
Lim, D. G., Jang, S. J., Jeong, G. Y., Youn, D. A., and Yun. H. D. (2019) Effects of Steel Fiber Properties on Compressive and Flexural Toughness of Steel Fiber-Reinforced Concrete. Journal of The Korea Institute for Structural Maintenance and Inspection 23(3), 43-50. (In Korean)URL
19 
MOLIT (2021) Structural Design Standards (KDS 14 00 00). Sejong, Korea: Ministry of Land, Infrastructure and Transport (MOLIT). (In Korean)URL
20 
Rilem (1985) Determination of the Fracture Energy of Mortar and Concrete by Means of Three-Point Bend Tests on Notched Beams. Materials and Structures 18(106), 287-290.URL
21 
Tiberti, G., Trabucchi, I., AlHamaydeh, M., Minelli, F., and Plizzari, G. (2017) Crack Control in Concrete Members Reinforced by Conventional Rebars and Steel Fibers. In IOP Conference Series: Materials Science and Engineering 246(1), 012008.DOI
22 
Vandewalle, L., Nemegeer, D., and Balázs, G. L. (2001) RILEM TC 162-TDF: Test and Design Methods for Steel Fibre Reinforced Concrete - Uni-Axial Tension Test for Steel Fibre Reinforced Concrete. Materials and Structures 34(235), 3-6.DOI
23 
Wang, Q., Kim, D. H., Yun, H. D., Jang, S. J., and Kim, S. W. (2021) Compressive and Flexural Properties of Concrete Reinforced with High-Strength Hooked-End Steel Fibers. Journal of the Korea Institute for Structural Maintenance and Inspection 25(6), 209-217. (In Korean)DOI
24 
Yazıcı, Ş., İnan, G., and Tabak, V. (2007) Effect of Aspect Ratio and Volume Fraction of Steel Fiber on the Mechanical Properties of SFRC. Construction and Building Materials 21(6), 1250-1253.DOI
25 
Yoo, D. Y., and Banthia, N. (2016). Mechanical Properties of Ultra-High-Performance Fiber-Reinforced Concrete: A Review. Cement and Concrete Composites 73, 267-280.DOI