Mobile QR Code QR CODE
Export citation EndNote

References

1 
Achillides, Z., and Pilakoutas, K. (2004) Bond Behavior of Fiber Reinforced Polymer Bars under Direct Pullout Conditions. Journal of Composites for Construction 8(2), 173-181.DOI
2 
ACI Committee 440 (2015) Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer (FRP) Bars (ACI 440.1-15). Farmington Hills, MI; American Concrete Institute (ACI).URL
3 
ASTM C 234 (1991) Standard Test Method for Comparing Concretes on the Basis of the Bond Developed with Reinforcing Steel. West Conshohocken, PA; ASTM International.URL
4 
ASTM C 39 (2007) Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. West Conshohocken, PA; ASTM International.URL
5 
ASTM C1609/C1609M-07 (2007) Standard Test Method for Flexural Performance of Fiber Reinforced Concrete (Using Beam with Third-Point Loading). West Conshohocken, PA; ASTM International.URL
6 
ASTM D7205/D7205M (2016) Standard Test Method for Tensile Properties of Fiber Reinforced Polymer Matrix Composite Bars. West Conshohocken, PA; ASTM International.URL
7 
Baena, M., Torres, L., Turon, A., and Barris, C. (2009) Experimental Study of Bond Behaviour between Concrete and FRP Bars Using a Pull-Out Test. Composites Part B: Engineering 40(8), 784-797.DOI
8 
Banthia, N., and Gupta, R. (2004) Hybrid Fiber Reinforced Concrete (HyFRC): Fiber Synergy in High Strength Matrices. Materials and Structures 37(10), 707-716.DOI
9 
Benmokrane, B., Wang, P., Ton-That, T. M., Rahman, H., and Robert, J.-F. (2002) Durability of Glass Fiber Reinforced Polymer Reinforcing Bars in Concrete Environment. Journal of Composites for Construction 6(3), 143-155.DOI
10 
Bompa, D. V., and Elghazouli, A. Y. (2017) Bond-Slip Response of Deformed Bars in Rubberised Concrete. Construction and Building Materials 154, 884-898.DOI
11 
CEB (2010) CEP-FIP Model Code 2010. Lausanne, Switzerland; International Federation for Structural Concrete (fib), Comite Euro-International du Beton (CEB).URL
12 
Cho, J. S., La, S. J., Kim, M. S., Lee, Y. H., and Kim, H. C. (2011) Experimental Study on Bond Strength of Deformed Bars in Artificial Lightweight Aggregate Concrete. Journal of the Computational Structural Engineering Institute of Korea 24(1), 43-53. (In Korean)URL
13 
Choi, Y. C. (2011) Bond Properties of GFRP Rebar with Cover Thickness and Volume Fraction of Steel Fiber. Journal of the Korea Concrete Institute 24(6), 761-768. (In Korean)DOI
14 
Choi, Y. C. (2012) Bond Properties of GFRP Rebar with Cover Thickness and Volume Fraction of Steel Fiber. Journal of the Korea Concrete Institute 24(6), 761-768. (In Korean)DOI
15 
CSA-S806-12 (2017) Design and Construction of Building Components with Fibre-Reinforced Polymers. Ontario, Canada; Canadian Standards Association (CSA).URL
16 
Dai, J. G., Huang, B. T., and Shah, S. P. (2021) Recent Advances in Strain-Hardening UHPC with Synthetic Fibers. Journal of Composites Science 5(10), 283.DOI
17 
KATS (2017) Fibre-Reinforced Polymer (Frp) Reinforcement of Concrete-Test Methods-Part 1: Frp Bars and GRIDS (KS F ISO 10406-1). Seoul, Korea: Korea Agency for Technology and Standards (KATS), Korea Standard Association (KSA). (In Korean)URL
18 
Lee, J. Y., Kim, T. Y., Kim, T. J., Yi, C. K., Park, J. S., You, Y. C., and Park, Y. H. (2008) Interfacial Bond Strength of Glass Fiber Reinforced Polymer Bars in High-Strength Concrete. Composites Part B: Engineering 39(2), 258-270.DOI
19 
Moon, D. Y., Sim, J., and Oh, H. (2006) A Study on Methodology for Improvement of Bond of FRP Reinforcement to Concrete. Journal of the Korean Society of Civil Engineers 26(4A), 775-785. (In Korean).URL
20 
Okelo, R. (2007) Realistic Bond Strength of FRP Rebars in NSC from Beam Specimens. Journal of Aerospace Engineering 20(3), 133-140.DOI
21 
Okelo, R., and Yuan, R. L. (2005) Bond Strength of Fiber Reinforced Polymer Rebars in Normal Strength Concrete. Journal of Composites for Construction 9(3), 203-213.DOI
22 
Tekle, B. H., Khennane, A., and Kayali, O. (2017) Bond Behaviour of GFRP Reinforcement in Alkali Activated Cement Concrete. Construction and Building Materials 154, 972-982.DOI
23 
Wang, L., Mao, Y., Lv, H., Chen, S., and Li, W. (2018) Bond Properties between FRP Bars and Coral Concrete under Seawater Conditions at 30, 60, and 80 C. Construction and Building Materials 162, 442-449.DOI
24 
Wang, Q., Zhu, H., Tong, Y., Su, W., and Zhang, P. (2021) Bond-Slip Behaviour of the CFRP Ribbed Bars Anchored with the Innovative Additional Ribs in Concrete. Composite Structures 262, 113595.DOI
25 
Yoo, D. Y., and Shin, W. (2021) Improvement of Fiber Corrosion Resistance of Ultra-High-Performance Concrete by Means of Crack Width Control and Repair. Cement and Concrete Composites 121, 104073.DOI
26 
Yoo, D. Y., Park, J. J., Kim, S. W., and Yoon, Y. S. (2014) Influence of Reinfocing Bar Type on Autogenous Shrinkage Stress and Bond Behavior of Ulta High Peformance Concrete. Journal of the Cement Concrete Composite 48, 150-161.DOI
27 
Yoo, S. J., Kim, Y. W., Yuan, T. F., and Yoon, Y. S. (2022) Evaluation of Residual Bond Behavior of CFRP and Steel Bars Embedded in UHPC after Exposure to Elevated Temperature. Journal of the Building Engineering 48, 150-161.DOI
28 
Yuan, T. F., Lee, J. Y., and Yoon, Y. S. (2020) Enhancing the Tensile Capacity of No-Slump High-Strength High-Ductility Concrete. Cement and Concrete Composites 106. 103458.DOI
29 
Yuan, T. F., Lee, J. Y., Min, K. H., and Yoon, Y. S. (2019) Experimental Investigation on Mechanical Properties of Hybrid Steel and Polyethylene Fiber-Reinforced No Slump High-Strength Concrete. International Journal of Polymer Science 2019(3), 1-11.DOI
30 
Zhang, B., Zhu, H., Dong, Z., and Wang, Q. (2022) Enhancement of Bond Performance of FRP Bars with Seawater Coral Aggregate Concrete by Utilizing Ecoefficient Slag-Based Alkali-Activated Materials. Journal of Composites for Construction 26(1), 04021059.DOI