Mobile QR Code QR CODE
Export citation EndNote

References

1 
ASTM C 1753 (2021) Standard Practice for Evaluation Early Hydration of Hydraulic Cementitious Mixtures Using Thermal Measurements. West Conshohocken, PA: ASTM International.URL
2 
Choi, S. J., Bae, S. H., Lee, J. I., Bang, E. J., Choi, H. Y., and Ko, H. M. (2022) Effect of Bio-Inspired Polymer Types on Engineering Characteristics of Cement Composites. Polymers 14(9), 1808.DOI
3 
Choi, S. J., Hong, B. T., Lee, S. J., and Won, J. P. (2014) Shrinkage and Corrosion Resistance of Amorphous Metallic-Fiber-Reinforced Cement Composites. Composite Structures 107, 537-543.DOI
4 
Eisa, M. S., Mohamad, A., Basiouny, M. E., Abdulhamid, A., and Kim, J. R. (2022) Mechanical Properties of Asphalt Concrete Modified with Carbon Nanotubes (CNTs). Case Studies in Construction Materials 16, e00930.DOI
5 
Feng, J., Tao, J., Liu, Y., Bao, R., Li, F., Fang, D., Li, C., and Yi, J. (2022) Optimization of the Mechanical Properties of CNTs/Cu Composite by Regulating the Size of Interfacial Tic. Ceramics International 48(18), 26716-26724.DOI
6 
García-Macías, E., D’Alessandro, A., Castro-Triguero, R., Pérez- Mira, D., and Ubertini, F. (2017) Micromechanics Modeling of the Electrical Conductivity of Carbon Nanotube Cement- Matrix Composites. Composites Part B: Engineering 108(1), 451-469.DOI
7 
Han, B., Yu, X., and Ou, J. (2011) Effects of CNT Concentration Level and Water/Cement Ratio on the Piezoresistivity of CNT/Cement Composites. Journal of Composite Material 46(1).DOI
8 
Hassan, A., Galal, S., Hassan, A., and Salman, A. (2022) Utilization of Carbon Nanotubes and Steel Fibers to Improve the Mechanical Properties of Concrete Pavement. Beni-Suef University Journal of Basic and Applied Sciences 11(121).DOI
9 
Hossain, M. S., Han, S. Y., Kim, S. K., and Yun, K. K. (2021) Long-term Effect of Accelerator Content on Flexural Toughness of Steel Fiber Reinforced Shotcrete for Tunnel Construction. Case Studies in Construction Materials 15(1), e00706.DOI
10 
Irshidat, M. R., Al-Nuaimi, N., and Rabie, M. (2021) Influence of Carbon Nanotubes on Phase Composition, Thermal and Post-Heating Behavior of Cementitious Composites. Molecules 26(4), 850.DOI
11 
Isfahari, F. T., Li, W., and Redaelli, E. (2016) Dispersion of Multi-Walled Carbon Nanotubes and Its Effects on the Properties of Cement Composites. Cement and Concrete Composites 74, 154-163.DOI
12 
Jiang, C., Wang, Y., Guo, W., Jin, C., and Wei, M. (2018) Experimental Study on the Mechanical Properties of Amorphous Alloy Fiber-Reinforced Concrete. Advances in Materials Science and Engineering. 2395083.DOI
13 
Jiang, H., Yang, Y., Liu, X., Jiang, S., and Ren, Y. (2023) High- efficient Improvement in Flexural Properties of Carbon/ Kevalar-Fiber Hybrid Composites by CNT-toughening only between Xenogeneic Fiber-Layers. Thin-Walled Structures 190(3), 110984.DOI
14 
Jun, M. H., Seo, D. J., Lim, D. Y., Park, J. G., and Heo, G. H. (2023) Effect of Carbon and Steel Fibers on the Strength Properties and Elctrical Conductivity of Fiber-Reinforced Cement Mortar. Applied Sciences 13(6), 3522.DOI
15 
Jung, M., Park, J., Hong, S., and Moon, J. (2022) The Critical Incorporation Concentration (CIC) of Dispersed Carbon Nanotubes for Tailoring Multifunctional Properties of Ultra- High Performance Concrete (UHPC). Journal of Materials Research and Technology 17(7).DOI
16 
Jung, S. H., Oh, S., Kim, S. W., and Moon, J. H. (2019) Effects of CNT Dosages in Cement Composites on the Mechanical Properties and Hydration Reaction with Low Water-to-Binder Ratio. Applied Sciences 9(21), 4630.DOI
17 
KATS (2010) Standard Test Method for Accelerated Carbonation of Concrete (KS F 2584). Seoul, Korea: Korea Agency for Technology and Standards (KATS), Korea Standard Association (KSA). (In Korean)URL
18 
KATS (2011) Standard Test Method for Tensile Splitting Strength of Concrete (KS F 2423). Seoul, Korea: Korea Agency for Technology and Standards (KATS), Korea Standard Association (KSA). (In Korean)URL
19 
KATS (2016) Standard Test Method for Flexural Strength of Concrete (KS F 2408). Seoul, Korea: Korea Agency for Technology and Standards (KATS), Korea Standard Association (KSA). (In Korean)URL
20 
KATS (2017) Testing Method for Compressive Strength of Hydraulic Cement Mortars (KS L 5105). Seoul, Korea: Korea Agency for Technology and Standards (KATS), Korea Standard Association (KSA). (In Korean)URL
21 
KATS (2023) Testing Method for Velocity of Ultrasonic Pulses to Conclude Compressive Strength of Concrete (KS F 2731). Seoul, Korea: Korea Agency for Technology and Standards (KATS), Korea Standard Association (KSA). (In Korean)URL
22 
Kim, G. M., Yang, B. J., Ryu, G. U., and Lee, H. K. (2016) The Electrically Conductive Carbon Nanotube (CNT)/Cement Composites for Accelerated Curing and Thermal Cracking Reduction. Composite Structures 158(15), 20-29.DOI
23 
Kim, H. S., Kim, G. Y., Lee, S. K., Choe, G. C., Nam, J. S., Noguchi, T., and Mechtcherine, V. (2020) Effects of Strain Rate on the Tensile Behavior of Cementitious Composites Made with Amorphous Metallic Fiber. Cement and Concrete Composites 108, 103519.DOI
24 
Kim, H., Kim, G., Nam, J., Kim, J., Han, S., and Lee, S. (2015) Static Mechanical Properties and Impact Resistance of Amorphous Metallic Fiber-Reinforced Concrete. Composite Structures 134(15). 831-844.DOI
25 
Kim, J. H., Bae, S. H., and Choi, S. J. (2021) Effect of Amorphous Metallic Fibers on Strength and Drying Shrinkage of Mortars with Steel Slag Aggregate. Materials 14(18). 5403.DOI
26 
Koo, H. C., Kim, W. H., and Oh, H. S. (2022) Fundamental Study on the Strength and Heat Transferring Characteristics of Cement Composite with Waste CNT. Journal of the Korean Recycled Construction Resources Institute 10(1), 66-73.DOI
27 
Lee, H. Y., Yu, W. J., Loh, K., and Chung, W. S. (2020) Self- heating and Electrical Performance of Carbon Nanotube- Enhanced Cement Composites. Construction and Building Materials 250, 118838.DOI
28 
Lee, H., Seong, J., and Chung, W. (2021) Correlation Analysis of Heat Curing and Compressive Strength of Carbon Nanotube- Cement Mortar Composites at Sub-Zero Temperatures. Crystals 11(10), 1182.DOI
29 
Lee, J. I., and Choi, S. J. (2023) Mechanics and Durability Characteristics of Cement Mortar Using Cementitious Materials- Based Capsule and Amorphous Metallic Fibers. Journal of the Architectural Institute of Korea 39(5), 207-214.URL
30 
Lee, N. K., Kim, S. W., and Park, G. J. (2019) The Effects of Multi-Walled Carbon Nanotubes and Steel Fibers on the AC Impedance and Electromagnetic Shielding Effectiveness of High-Performance, Fiber-Reinforced Cementitious Composites. Materials 12(21), 3591.DOI
31 
Liang, N., Ren, L., Tian, S., Liu, X., Zhong, Z., Deng, Z., and Yan, R. (2021) Study on the Fracture Toughness of Polypropylene-Basalt Fiber-Reinforced Concrete. International Journal of Concrete Structures and Materials 15(1).DOI
32 
Lim, K. M., and Lee, J. H. (2022) Electircal Conductivity and Compressive Strength of Cement Paste with Multiwalled Carbon Nanotubes and Graphene Nanoplatelets. Applied Sciences 12(3), 1160.DOI
33 
Liu, Z., Heede, P. V. D., and Bellie, N. D. (2021) Effect of the Mechnical Load on the Carbonation of Concrete: A Review of the Underlying Mechanism, Test Method, and Results. Materials 14(16), 4407.DOI
34 
Luo, T., Yuan, H., and Wang, Q. (2023) Comparison the Properties of Carbon Fiber-Based Portland Cement and Alkali- Activated Fly Ash/Slag Conductive Cementitious Composites. Journal of Building Engineering 76, 107134.DOI
35 
Maho, B., Sukontosukkul, P., Iam, G. S., Sappakittipakorn, M., Intarabut, D., Suksiripattanapong, C., Chindaprasirt, P., and Limkatanyu, S. (2021) Mechanical Properties and Electrical Resistivity of Multiwall Carbon Nanotubes Incorporated into High Calcium Fly Ash Geopolymer. Case Studies in Construction Materials 15(11), e00785.DOI
36 
Miah, M. J., Pei, J., Kim, H., and Jang, J. G. (2023) Flexural Behavior, Porosity, and Water Absorption of CO2-cured Amorphous Metallic-Fiber-Reinforced Belite-Rich Cement Composites. Construction and Building Materials 387, 131668.DOI
37 
Murali, G., Abid, S. R., Amran, M., Fediuk, R., Vatin, N., and Karelina, M. (2021) Combined Effect of Multi-walled Carbon Nanotubes, Steel Fibre and Glass Fibre Mesh on Novel Two-Stage Expanded Clay Aggregate Concrete against Impact Loading. Crystals 11(720), 1-16.DOI
38 
Pan, X., Genturk, B., Alnaggat, M., Sohail, M. G., Kahraman, R., Nuaimi, N. A., Rodrigues, D. F., and Yildrim, Y. (2022) Numerical Simulation of the Fracture and Compression Response of Self-Healing Concrete Containing Engineered Aggregates. Cement and Concrete Composites 136, 104858.DOI
39 
Park, J. H., Kim, Y. U., Jeon, J. S., Wi, S. H., Chang, S. J., and Kim, S. M. (2021) Effects of Eco-Friendly Pervious Concrete with Amorphous Metallic Fiber on Evaporative Cooling Performance. Journal of Environmental Management 297, 113269.DOI
40 
Ramezani, M., Kim, Y. H., Sun, Z., and Sherif, M. M. (2022) Influence of Carbon Nanotubes on Properties of Cement Mortars Subjected to Alkali-Silica Reaction. Cement and Concrete Composites 131, 104596.DOI
41 
Sassani, A., Arabazdeh, A., Ceylan, H., Kim, S., Sadati, S. M. S., Gopalakrishnan, K., Taylor, P. C., and Abdualla, H. (2018) Carbon Fiber-Based Electrically Conductive Concrete for Salt-Free Deicing of Pavements. Journal of Cleaner Production 203, 799-809.DOI
42 
Taheri, S., and Clark, S. M. (2021) Preparation of Self-healing Additives for Concrete via Miniemulsion Polymerization: Formulation and Production Challenges. International Journal of Concrete Structures and Materials 15(8).DOI
43 
Wang, J., Chia, K. S., Liew, J. Y. R., and Zhang, M. H. (2013) Flexural Performance of Fiber-Reinforced Ultra-Light Weight Cement Composites with Low Fiber Content. Cement and Concrete Composites 43, 39-47.DOI
44 
Wang, X., Jacobsen, S., He, J. Y., Zhang, Z. L., Lee, S. F., and Lein, H. L. (2009) Application of Nanoindentation Testing to Study of the Interfacial Transition Zone in Steel Fiber Reinforced Mortar. Cement and Concrete Research 39(8), 701-715.DOI
45 
Wang, X., Shi, Y., Pei, X., Cui, L., and Zhu, H. (2022) Effect of CNT-COOH Addition on the Compressive Strength, Chloride Resistance, and Microstructure of Cement Mortar. Advances in Materials Science and Engineering 2022, 3345279.DOI
46 
Wang, Y. F., Hu, H., and Rong, C. Q. (2017) The Effect of the Dimaeter of Carbon Nanotube on the Mechanical and Electrical Properties of Cement Mortar. Key Engineering Materials 730, 479-485.URL
47 
Won, J. P., Hong, B. T., Lee, S. J., and Choi, S. J. (2013) Bonding Properties of Amorphous Micro-Steel Fibre-Reinforced Cementitous Composites. Composite Structures 102, 101-109.DOI
48 
Yang, D., Xu, P., Zaman, A., Alomayri, T., Houda, M., Alaskar, A., and Javer, M. F. (2023) Compressive Strength Prediction of Concrete Blended with Carbon Nanotubes Using Gene Expression Programming and Random Forest: Hyper- Tuning and Optimization. Journal of Materials Research and Technology 24, 7198-7218.DOI
49 
Yang, D., Zhang, B., and Liu, G. (2021) Experimental Study on Spall Resistance of Steel-Fiber Reinforced Concrete Slab Subjected to Explosion. International Journal of Concrete Structures and Materials 15(23).DOI
50 
Yang, J. M., Kim, J. K., and Yoo, D. Y. (2016) Effects of Amorphous Metallic Fibers on the Properties of Asphalt Concrete. Construction and Building Materials 128, 176-184.DOI
51 
Yang, K. H., Kim, H. Y., and Lee, H. J. (2022) Mechanical Properties of Lightweight Aggregate Concrete Reinforced with Various Steel Fibers. International Journal of Concrete Structures and Materials 16(48).DOI
52 
Yasouj, S. E. M., and Ghaderi, A. (2020) Experimental Investigation of Waste Glass Powder, Basalt Fibre, and Carbon Nanotube on the Mechanical Properties of Concrete. Construction and Building Materials 252, 119115.DOI
53 
Ye, H., Huang, A., Jiang, C., and Wang, W. (2023) Experimental Investigation on Fatigue Improvement of Orthotropic Steel Bridge Deck Using Steel Fiber Reinforced Concrete. International Journal of Concrete Structures and Materials 17(41).DOI
54 
Yoo, D. Y., You, I., and Lee, S. J. (2017) Electrical Properties of Cement-Based Composites with Carbon Nanotubes, Graphene and Graphite Nano Fibers. Sensors 17(5), 1064.DOI
55 
Zhang, D., Wang, X., Kang, S., Cheng, G., and Wu, W. (2023) The Effect of Slag and Fly Ash Content on the Properties of Electic Furnace Nickel Slag-Based Geopolymer Used for Repair Materials. Case Studies in Construction Materials 19, e02284.DOI
56 
Zhang, J., Ke, Y., Zhang, J., Han, Q., and Dong, B. (2020) Cement Paste with Well-Dispersed Multi-Walled Carbon Nanotubes: Mechanism and Performance. Construction and Building Materials 262, 120746.DOI
57 
Zhao, S., Liu, R., and Liu, J. (2023) Experimental Study of the Durability of High-Performance Cementitious Composites with Amorphous Metallic Fibers. Construction and Building Materials 367, 130295.DOI
58 
Zhong, A., Sofi, M., Lumantarna, E., Zhou, Z., and Mendis, P. (2021) Flexural Capacity Prediction Model for Steel Fibre- Reinforced Concrete Beams. International Journal of Concrete Structures and Materials 15(28).DOI
59 
Zhou, Y., Yang, Y., Gyawali, Bigya., and Zhang, W. (2021) Simulation of Permeation of Saturated Cement Paste Based on a New Meso-scale Pore Network Model. International Journal of Concrete Structures and Materials 15(36).DOI