JKCI
Journal of
the Korea Concrete Institute
KCI
Contact
Open Access
Bi-monthly
ISSN : 1229-5515 (Print)
ISSN : 2234-2842 (Online)
http://www.jkci.or.kr/jkci
Mobile QR Code
Journal of the Korea Concrete Institute
ISO Journal Title
J Korea Concr Inst.
SCOPUS
KCI Accredited Journal
Main Menu
Main Menu
저널소개
About Journal
최근호
Current Issue
논문집
All Issues
목적 및 범위
Aims and Scope
편집위원회
Editorial Board
논문투고안내
Instructions to Authors
출판정책
Publishing Policies
연락처
Contact Info
논문투고
Online-Submission
Journal Search
Home
All Issues
2025-02
(Vol.37 No.1)
10.4334/JKCI.2025.37.1.037
Journal XML
Export citation
EndNote
XML
PDF
INFO
REF
References
1
Ahmad, A., Farooq, F., Niewiadomski, P., Ostrowski, K., Akbar, A., Aslam, F., and Alyousef, R. (2021a) Prediction of Compressive Strength of Fly Ash Based Concrete Using Individual and Ensemble Algorithm. Materials 14(4), 794.
2
Ahmad, A., Ostrowski, K. A., Maślak, M., Farooq, F., Mehmood, I., and Nafees, A. (2021b) Comparative Study of Supervised Machine Learning Algorithms for Predicting the Compressive Strength of Concrete at High Temperature. Materials 14(15), 4222.
3
Ahmad, M., Hu, J. L., Ahmad, F., Tang, X. W., Amjad, M., Iqbal, M. J., Asim, M., and Farooq, A. (2021c) Supervised Learning Methods for Modeling Concrete Compressive Strength Prediction at High Temperature. Materials 14(8), 1983.
4
Chun, Y., Kwon, J., Kim, J., Son, H., Heo, S., Cho, S., and Kim, H. (2023) Experimental Investigation of the Strength of Fire-Damaged Concrete Depending on Admixture Contents. Construction and Building Materials 378, 131143.
5
Farooq, F., Nasir Amin, M., Khan, K., Rehan Sadiq, M., Javed, M. F., Aslam, F., and Alyousef, R. (2020) A Comparative Study of Random Forest and Genetic Engineering Programming for the Prediction of Compressive Strength of High Strength Concrete (HSC). Applied Sciences 10(20), 7330.
6
Feng, D. C., Liu, Z. T., Wang, X. D., Chen, Y., Chang, J. Q., Wei, D. F., and Jiang, Z. M. (2020) Machine Learning-Based Compressive Strength Prediction for Concrete: An Adaptive Boosting Approach. Construction and Building Materials 230, 117000.
7
Khan, M. S., Prasad, J., and Abbas, H. (2013) Effect of High Temperature on High-Volume Fly Ash Concrete. Arabian Journal for Science and Engineering 38, 1369-1378.
8
Kim, J. B., Shin, K. S., and Park, K. B. (2012) Mechanical Properties of Ultra High Strength Concrete Using Ternary Blended Cement. Journal of the Korea Institute for Structural Maintenance and Inspection 16(6), 56-62. (In Korean)
9
Lee, B. S., Jun, M. H., and Lee, D. H. (2012) The Effect of Mixing Ratio of Blast Furnace Slag and Fly Ash on Material Properties of 80MPa High Strength Concrete with Ternary Cement. LHI Journal of Land, Housing, and Urban Affairs 3(3), 287-297. (In Korean)
10
Lee, D. H., Seo, D. H., Jun, P. H., Paik, M. S., Lim, N. G., and Jung, S. J. (2002) The Experimental Study on High Strength Concrete of High Volume Fly-Ash. KCI 2002 fall Conference. Korea Concrete Institute (KCI), 14(2), 275-280. (In Korean)
11
Li, Q. F., and Song, Z. M. (2022) High-Performance Concrete Strength Prediction Based on Ensemble Learning. Construction and Building Materials 324, 126694.
12
Ma, Q., Guo, R., Zhao, Z., Lin, Z., and He, K. (2015) Mechanical Properties of Concrete at High Temperature-A review. Construction and Building Materials 93, 371-383.
13
Ramzi, S., and Hajiloo, H. (2023) The Effects of Supplementary Cementitious Materials (SCMs) on the Residual Mechanical Properties of Concrete after Exposure to High Temperatures. Buildings 13(1), 103.
14
Rathakrishnan, V., Bt. Beddu, S., and Ahmed, A. N. (2022) Predicting Compressive Strength of High-Performance Concrete with High Volume Ground Granulated Blast-Furnace Slag Replacement Using Boosting Machine Learning Algorithms. Scientific Reports 12(1), 9539.
15
Sapkota, S. C., Saha, P., Das, S., and Meesaraganda, L. P. (2024) Prediction of the Compressive Strength of Normal Concrete Using Ensemble Machine Learning Approach. Asian Journal of Civil Engineering 25(1), 583-596.
16
Song, H., Ahmad, A., Farooq, F., Ostrowski, K. A., Maślak, M., Czarnecki, S., and Aslam, F. (2021) Predicting the Compressive Strength of Concrete with Fly Ash Admixture Using Machine Learning Algorithms. Construction and Building Materials 308, 125021.
17
Tam, C. T., Babu, D. S., and Li, W. (2017) EN 206 Conformity Testing for Concrete Strength in Compression. Procedia Engineering 171, 227-237.
18
Vo, T. C., Nguyen, T. Q., and Tran, V. L. (2024) Predicting and Optimizing the Concrete Compressive Strength Using An Explainable Boosting Machine Learning Model. Asian Journal of Civil Engineering 25(2), 1365-1383.
19
Yeh, I. C. (1998) Modeling of Strength of High-Performance Concrete Using Artificial Neural Networks. Cement and Concrete Research 28(12), 1797-1808.