Mobile QR Code QR CODE
Export citation EndNote

References

1 
Ahmad, S., Assaggaf, R. A., Maslehuddin, M., Al-Amoudi, O. S. B., Adekunle, S. K., and Ali, S. I. (2017) Effects of Carbonation Pressure and Duration on Strength Evolution of Concrete Subjected to Accelerated Carbonation Curing. Construction and Building Materials 136, 565-573.DOI
2 
Baek, S., Kim, H. K., Oelze, M. L., and Kim, G. (2024) Can Carbonation Depth Be Measured in a Nondestructive Way? High-Frequency Quantitative Ultrasound Imaging for Cement Paste. Cement and Concrete Research 180, 107519.DOI
3 
Bary, B., and Sellier, A. (2004) Coupled Moisture—Carbon Dioxide-Calcium Transfer Model for Carbonation of Concrete. Cement and Concrete Research 34(10), 1859-1872.DOI
4 
Belayneh, G. B., Seifu, M. N., Kim, H. K., Son, H. M., and Park, S. (2024) Exploring the Role of Slag in Hydration of Carbonation-Cured Slag Cements. Construction and Building Materials 415, 134911.DOI
5 
Chang, C. F., and Chen, J. W. (2006) The Experimental Investigation of Concrete Carbonation Depth. Cement and Concrete Research 36(9), 1760-1767.DOI
6 
Chen, T., and Gao, X. (2020) Use of Carbonation Curing to Improve Mechanical Strength and Durability of Pervious Concrete. ACS Sustainable Chemistry & Engineering 8(9), 3872-3884.DOI
7 
Ishida, T., Maekawa, K., and Soltani, M. (2004) Theoretically Identified Strong Coupling of Carbonation Rate and Thermodynamic Moisture States in Micropores of Concrete. Journal of Advanced Concrete Technology 2(2), 213-222.DOI
8 
Jeong, J., Alemu, A. S., Park, S., Lee, H. K., Liyew, G., Ramézani, H., Papadakis, V. G., and Kim, H.-K. K. (2022) Phase Profiling of Carbonated Cement Paste: Quantitative X-Ray Diffraction Analysis and Numerical Modeling. Case Studies in Construction Materials 16, e00890.DOI
9 
Jiang, L., Wu, Q., Huo, Z., Zhu, Z., Wu, F., and Lu, B. (2023) An Approach to Improve Compressive Strength of Cement Paste at Low Temperature by Carbonation Curing. Construction and Building Materials 365, 130128.DOI
10 
Junior, A. N., Toledo Filho, R. D., Fairbairn, E. D. M. R., and Dweck, J. (2015) The Effects of the Early Carbonation Curing on the Mechanical and Porosity Properties of High Initial Strength Portland Cement Pastes. Construction and Building Materials 77, 448-454.DOI
11 
KATS (2010) Standard Test Method for Accelerated Carbonation of Concrete (KS F 2584). Seoul, Korea: Korea Agency for Technology and Standards (KATS), Korean Standards Association (KSA). (In Korean)URL
12 
KATS (2017) Testing Method for Comrpessive Strength of Hydraulic Cement Mortars (KS L 5105). Seoul, Korea: Korea Agency for Technology and Standards (KATS), Korea Standard Association (KSA). (In Korean)URL
13 
Ke, X., Bernal, S. A., Provis, J. L., and Lothenbach, B. (2020) Thermodynamic Modelling of Phase Evolution in Alkali- Activated Slag Cements Exposed to Carbon Dioxide. Cement and Concrete Research 136, 106158.DOI
14 
Kim, G., Kim, J. Y., Kurtis, K. E., Jacobs, L. J., Le Pape, Y., and Guimaraes, M. (2016) Quantitative Evaluation of Carbonation in Concrete Using Nonlinear Ultrasound. Materials and Structures 49, 399-409.DOI
15 
Kim, J. K., Kim, C. Y., Yi, S. T., and Lee, Y. (2009) Effect of Carbonation on the Rebound Number and Compressive Strength of Concrete. Cement and Concrete Composites 31(2), 139-144.DOI
16 
Kumar, R., and Bhattacharjee, B. (2003) Porosity, Pore Size Distribution and In Situ Strength of Concrete. Cement and Concrete Research 33(1), 155-164.DOI
17 
Kwon, S. H., Lee, J. S., and Kim, H. K. (2024a) On Determination Protocols of Characteristic In-Situ Compressive Strength of Concrete for Existing Structure: Case Study with Core Samples from Actual Bridges. Case Studies in Construction Materials 20, e03031.DOI
18 
Kwon, S. H., Lee, J. S., Kwon, S. J., and Kim, H. K. (2024b) On Determination of Characteristic In-Situ Carbonation Depth from Existing Concrete Structures. Construction and Building Materials 442, 137522.DOI
19 
Leemann, A., and Moro, F. (2017) Carbonation of Concrete: The Role of CO2 Concentration, Relative Humidity and CO2 Buffer Capacity. Materials and Structures 50, 1-14.DOI
20 
Liu, L., Liu, Y., Tian, X., and Chen, X. (2022) Superior CO2 Uptake and Enhanced Compressive Strength for Carbonation Curing of Cement-Based Materials via Flue Gas. Construction and Building Materials 346, 128364.DOI
21 
Liu, Z., Van den Heede, P., Zhang, C., Shi, X., Wang, L., Li, J., Yao, Y., Lothenbach, B., and De Belie, N. (2023) Carbonation of Blast Furnace Slag Concrete at Different CO2 Concentrations: Carbonation Rate, Phase Assemblage, Microstructure and Thermodynamic Modelling. Cement and Concrete Research 169, 107161.DOI
22 
Liyew, G., Lee, N., Park, S., Lee, H. K., Park, J. J., and Kim, H. K. (2024) Understanding Mechanism on Carbonation Curing for Portland Cement Through Phase Profiling via QXRD Analysis and Thermodynamic Modeling. Journal of CO2 Utilization 87, 102919.DOI
23 
Liyew, G., Pyo, S., Park, S., Jeon, S. M., Lee, H. K., Jang, J. G., and Kim, H. K. (2025) Exploring the Role of Accelerated Carbonation Curing on Chloride-Induced Reinforcing Steel Corrosion in OPC and Blended Cement Matrix. Journal of Building Engineering 111965.DOI
24 
Metalssi, O. O., Aït-Mokhtar, A., and Turcry, P. (2020) A Proposed Modelling of Coupling Carbonation-Porosity- Moisture Transfer in Concrete Based on Mass Balance Equilibrium. Construction and Building Materials 230, 116997.DOI
25 
Papadakis, V. G., Vayenas, C. G., and Fardis, M. N. (1991) Fundamental Modeling and Experimental Investigation of Concrete Carbonation. ACI Materials Journal 88(4), 363-373.DOI
26 
Parrott, L. J. (1992) Carbonation, Moisture and Empty Pores. Advances in Cement Research 4(15), 111-118.DOI
27 
Qin, L., Gao, X., and Chen, T. (2019) Influence of Mineral Admixtures on Carbonation Curing of Cement Paste. Construction and Building Materials 212, 653-662.DOI
28 
Sanjuán, M. A., Andrade, C., and Cheyrezy, M. (2003) Concrete Carbonation Tests in Natural and Accelerated Conditions. Advances in Cement Research 15(4), 171-180.DOI
29 
Shah, V., Scrivener, K., Bhattacharjee, B., and Bishnoi, S. (2018) Changes in Microstructure Characteristics of Cement Paste on Carbonation. Cement and Concrete Research 109, 184-197.DOI
30 
Shi, Z., Lothenbach, B., Geiker, M. R., Kaufmann, J., Leemann, A., Ferreiro, S., and Skibsted, J. (2016) Experimental Studies and Thermodynamic Modeling of the Carbonation of Portland Cement, Metakaolin and Limestone Mortars. Cement and Concrete Research 88, 60-72.DOI
31 
Stefanoni, M., Angst, U., and Elsener, B. (2018) Corrosion Rate of Carbon Steel in Carbonated Concrete-A Critical Review. Cement and Concrete Research 103, 35-48.DOI
32 
Steffens, A., Dinkler, D., and Ahrens, H. (2002) Modeling Carbonation for Corrosion Risk Prediction of Concrete Structures. Cement and Concrete Research 32(6), 935-941.DOI
33 
Sun, B., Xiao, R. C., Ruan, W. D., and Wang, P. B. (2020) Corrosion-Induced Cracking Fragility of RC Bridge with Improved Concrete Carbonation and Steel Reinforcement Corrosion Models. Engineering Structures 208, 110313.DOI
34 
Ye, H., Radlińska, A., and Neves, J. (2017) Drying and Carbonation Shrinkage of Cement Paste Containing Alkalis. Materials and Structures 50, 1-13.DOI
35 
Yoo, J. H., Kwon, S. J., and Kim, H. K. (2024a) Carbonation- Based Service Life Assessment for Regional Mixtures of Concrete: 1) Carbonation Rate of Concrete from Various Regions. Journal of the Korea Concrete Institute 36(3), 197-203. (In Korean)DOI
36 
Yoo, J. H., Kwon, S. J., and Kim, H. K. (2024b) Carbonation-Based Service Life Assessment for Regional Mixtures of Concrete: 2) Analysis with Various Durability- Based Design Codes. Journal of the Korea Concrete Institute 36(3), 205-216. (In Korean)DOI
37 
Zhang, D., Ghouleh, Z., and Shao, Y. (2017) Review on Carbonation Curing of Cement-Based Materials. Journal of CO2 Utilization 21, 119-131.DOI
38 
Zhou, Y., Gencturk, B., Willam, K., and Attar, A. (2015) Carbonation-Induced and Chloride-Induced Corrosion in Reinforced Concrete Structures. Journal of Materials in Civil Engineering 27(9), 04014245.DOI