JKCI
Journal of
the Korea Concrete Institute
KCI
Contact
Open Access
Bi-monthly
ISSN : 1229-5515 (Print)
ISSN : 2234-2842 (Online)
http://www.jkci.or.kr/jkci
Mobile QR Code
Journal of the Korea Concrete Institute
ISO Journal Title
J Korea Concr Inst.
SCOPUS
KCI Accredited Journal
Main Menu
Main Menu
저널소개
About Journal
최근호
Current Issue
논문집
All Issues
목적 및 범위
Aims and Scope
편집위원회
Editorial Board
논문투고안내
Instructions to Authors
출판정책
Publishing Policies
연락처
Contact Info
논문투고
Online-Submission
Journal Search
Home
All Issues
2025-08
(Vol.37 No.4)
10.4334/JKCI.2025.37.4.481
Journal XML
Export citation
EndNote
XML
PDF
INFO
REF
References
1
Gu, J. M. (2024) Prediction of Concrete Compression Strength Using Machine Learning. Master’s thesis, Gyeongsang National University.
2
Jang, H. J. (2023) Concrete Quality Control According to Unit Water Content Measurement and Present Improvement Plan. Master’s thesis, Kyungpook National University.
3
KATS (2022) Cement–Test methods–Determination of Strength (KS L ISO679 4009). Seoul, Korea: Korea Agency for Technology and Standards (KATS), Korea Standard Association (KSA). 1-32. (In Korean)
4
KCI (2022) Ready-mixed Concrete Unit Quantity Rapid Measurement Method (KCI-RM101). Seoul Korea; Korea Concrete Institute (KCI). 2-8. (In Korean)
5
KCI (2024) General Concrete (KCS 14 20 10). Seoul, Korea, Korea Concrete Institute (KCI), Ministry of Land, Infrastructure and Transport (MOLIT). (In Korean)
6
Lee, S. J. (2019) A Fundamental Study on Development of the Predictive System for Compressive Strength of Concrete Based on Deep Learning Algorithms. Master’s thesis, Hanyang University.
7
Park, M. Y. (2022) Evaluation of the Field Applicability and Suggestion of Test Method for Unit Water Content of Concrete. Ph.D. thesis, Cheongju University.
8
Rita Angelou (2025) Top 10 Common ML Algorithms Every Data Scientist Should Know: Part 2. Available at: https://python.plainenglish.io/top-10-common-ml-algorithms-every-data-scientist-should-know-part-2-fce7e588e8e1 (Accessed: 19 June 2025).