Mobile QR Code QR CODE
Export citation EndNote

References

1 
Chen, L., Yang, M., Chen, Z., Xie, Z., Huang, L., Osman, A. I., Farghali, M., Sandanayake, M., Liu, E., Ahn, Y. H., Al-Muhtaseb, A. H., Rooney, D. W., and Yap, P. S. (2024) Conversion of Waste into Sustainable Construction Materials: A Review of Recent Developments and Prospects. Materials Today Sustainability 27, 100930.DOI
2 
Chen, L., Zhang, Y., Wang, L., Ruan, S., Chen, J., Li, H., Yang, J., Mechtcherine, V., and Tsang, D. C. W. (2022) Biochar- Augmented Carbon-Negative Concrete. Chemical Engineering Journal 431(Part 1), 133946.DOI
3 
Chen, L., Zhu, X., Zheng, Y., Wang, L., Poon, C. S., and Tsang, D. C. (2024) Development of High-Strength Lightweight Concrete by Utilizing Food Waste Digestate-Based Biochar Aggregate. Construction and Building Materials 411, 134142.DOI
4 
Han, S., and Choi, W. (2023) Evaluation of the Mechanical Properties of Cement Mortar Containing Wood-Based Bio-Char. Journal of the Korea Concrete Institute 35(3), 285-292. (In Korean)DOI
5 
Hu, J., Cavalline, T., Mamirov, M., and Dey, A. (2022) ACI CRC 2019 P0027: Effective Characterization of Recycled Concrete Aggregate (RCA) for Concrete Applications. Farmington Hills, MI: ACI Foundation. Final Report.URL
6 
Kim, K. C., Lim, K. M., Son, M. S., Kim, Y. S., and Koh, K. T. (2023) Strength and Thermal Properties of Concrete for Replacement Fine Aggregate with Biochar. Journal of the Korean Recycled Construction Resources Institute 11(4), 425-432. (In Korean)DOI
7 
Kim, K. C., Lim, K. M., Son, M. S., Ryu, G. S., and Koh, K. T. (2022) Effect of Concrete Containing the Biochar on Properties and Thermal Insulation Performance. Journal of the Korean Recycled Construction Resources Institute 10(4), 428-434. (In Korean)DOI
8 
Kumar, P., Barrett, D. M., Delwiche, M. J., and Stroeve, P. (2009) Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Industrial & Engineering Chemistry Research 48(8), 3713- 3729.DOI
9 
Ling Chuan Hao, D., Abd Razak, R., Kheimi, M., Yahya, Z., Abdullah, M. M. A. B., Burduhos Nergis, D. D., Fansuri, H., Eliati, R., Mohamed, R., and Abdullah, A. (2022) Artificial Lightweight Aggregates Made from Pozzolanic Material: A Review on the Method, Physical and Mechanical Properties, Thermal and Microstructure Materials 15(11), 3929.DOI
10 
Liu, H., and Li, Q. (2025b) Preparation of Green Concrete from Bamboo Biochar (BB) and Concrete Slurry Waste (CSW): Preparation Method and Performance Evaluation. Construction and Building Materials 462, 139964.DOI
11 
Liu, J., Li, M., Jin, H., Cheng, L., and Xing, F. (2024b) The Role of Different Ratios of Biochar in the Artificial Lightweight Cold-Bonded Aggregates (ALCBAs) Containing High Volume of Red Mud (RM). Construction and Building Materials 422, 135815.DOI
12 
Liu, J., Liu, G., Zhang, W., Li, Z., Jin, H., and Xing, F. (2023b) A New Approach to CO2 Capture and Sequestration: A Novel Carbon Capture Artificial Aggregates Made from Biochar and Municipal Waste Incineration Bottom Ash. Construction and Building Materials 398, 132472.DOI
13 
Liu, J., Liu, J., Cheng, L., Jin, H., and Xing, F. (2024a) Sustainable Upcycling of Artificial Lightweight Cold-Bonded Aggregates (ALCBAs) Designed by Biochar and Concrete Slurry Waste (CSW) into Porous Carbon Materials for CO2 Sequestration. Construction and Building Materials 412, 134736.DOI
14 
Liu, J., Zeng, C., Li, Z., Liu, G., Zhang, W., Xie, G., and Xing, F. (2023c) Carbonation of Steel Slag at Low CO2 Concentrations: Novel Biochar Cold-Bonded Steel Slag Artificial Aggregates. Science of the Total Environment 902, 166065.DOI
15 
Liu, J., Zhang, W., Jin, H., Li, Z., Liu, G., Xing, F., and Tang, L. (2023a) Exploring the Carbon Capture and Sequestration Performance of Biochar-Artificial Aggregate Using a New Method. Science of the Total Environment 859(Part 2), 160423.DOI
16 
Liu, S., Chen, Z., Shao, J., Luo, S., and Yu, D. (2025a) Novel Soybean Dregs Biochar Concrete: Characterization and Evaluation of the Mechanical Properties and Microstructure. Construction and Building Materials 458, 139512.DOI
17 
Mensah, R. A., Wang, D., Shanmugam, V., Sas, G., Försth, M., and Das, O. (2024) Fire Behaviour of Biochar-Based Cementitious Composites. Composites Part C: Open Access 14, 100471.DOI
18 
Mohamad, N., Muthusamy, K., Embong, R., Kusbiantoro, A., and Hashim, M. H. (2021) Environmental Impact of Cement Production and Solutions: A Review. Materials Today: Proceedings 48, 741-746.DOI
19 
Praneeth, S., Saavedra, L., Zeng, M., Dubey, B. K., and Sarmah, A. K. (2021) Biochar Admixtured Lightweight, Porous and Tougher Cement Mortars: Mechanical, Durability and Micro Computed Tomography Analysis. Science of the Total Environment 750, 142327.DOI
20 
Ren, Z., and Li, D. (2023) Application of Steel Slag as an Aggregate in Concrete Production: A Review. Materials 16(17), 5841.DOI
21 
Roychand, R., Kilmartin-Lynch, S., Saberian, M., Li, J., and Li, C. Q. (2025) Translating Lab Success to the Field: Evaluating Coffee Biochar-Enhanced Concrete in Real-World Construction. Case Studies in Construction Materials 22, e04233.DOI
22 
Roychand, R., Kilmartin-Lynch, S., Saberian, M., Li, J., Zhang, G., and Li, C. Q. (2023b) Transforming Spent Coffee Grounds into a Valuable Resource for the Enhancement of Concrete Strength. Journal of Cleaner Production 419, 138205.DOI
23 
Roychand, R., Li, J., Kilmartin-Lynch, S., Saberian, M., Zhu, J., Youssf, O., and Ngo, T. (2023a) Carbon Sequestration from Waste and Carbon Dioxide Mineralisation in Concrete – A Stronger, Sustainable and Eco-Friendly Solution to Support Circular Economy. Construction and Building Materials 379, 131221.DOI
24 
Wyrzykowski, M., Toropovs, N., Winnefeld, F., and Lura, P. (2024) Cold-Bonded Biochar-Rich Lightweight Aggregates for Net-Zero Concrete. Journal of Cleaner Production 434, 140008.DOI
25 
Xu, M., Zhang, Y., Yang, S., Mo, L., and Liu, P. (2023) Effects of Internal CO2 Curing Provided by Biochar on the Carbonation and Properties of Steel Slag-Based Artificial Lightweight Aggregates (SALAs). Cement and Concrete Composites 142, 105197.DOI
26 
Zhang, Q., Dong, S., Wu, F., Cai, Y., Xie, L., Huang, C., Zhao, J., Yang, S., Xu, F., Zhu, Z., and Luo, P. (2024) Investigation of the Macro Performance and Mechanism of Biochar- Modified Ultra-High Performance Concrete. Case Studies in Construction Materials 21, e03595.DOI
27 
Zou, S., Chen, X., Sham, M. L., Lu, J.-X., and Poon, C. S. (2025) Carbon Sequestration in Aggregate and Concrete by Encapsulated Biochar and Carbonation: Experiment and Simulation. Cement and Concrete Composites 159, 105990.DOI
28 
Zou, S., Sham, M. L., Xiao, J., Leung, L. M., Lu, J. X., and Poon, C. S. (2024) Biochar-Enabled Carbon-Negative Aggregate Designed by Core-Shell Structure: A Novel Biochar Utilizing Method in Concrete. Construction and Building Materials 449, 138507.DOI