Mobile QR Code QR CODE
Export citation EndNote

References

1 
Cemara L. A., Wons M., Esteves I. C. A., Medeiros R. A., 2019, Monitoring Self-Healing of Concrete from Ultrasonic Pulse Velocity, Journal of Composites Science, Vol. 3, No. 1, pp. 16DOI
2 
Choi S. H., Oh S. E., Chung S. Y., 2024, Effects of Cockle Shells Cleaned with Ultrasonic and Different Cleaning Media on Cement Mortar, Journal of the Korea Concrete Institute, Vol. 36, No. 3, pp. 217-224, (In Korean)DOI
3 
Choi Y. W., Park J. H., Kim Y. J., Oh S. R., 2022, An Experimental Study on Healing Performance of Cement Composites according to Mixing Ratio of Self-Healing Hybrid Capsules, Journal of Korean Recycled Construction Resources Institute, Vol. 10, No. 4, pp. 531-538, (In Korean)DOI
4 
Espinosa A. B., Revilla V., Skaf M., Faleschini F., Ortega-Lopez V., 2023, Utility of Ultrasonic Pulse Velocity for Estimating Overall Mechanical Behavior of Recycled Aggregate Self-Compacting Concrete, Applied Sciences, Vol. 13, No. 2, pp. 874DOI
5 
Giannaros P., Kanellopoulos A., Al-Tabbaa A., 2016, Sealing of Cracks in Cement Using Microencapsulated Sodium Silicate, Smart Materials and Structures, Vol. 25, No. 8, pp. 084005DOI
6 
Hilloulin B., Tittelboom K. V., Gruyaert E., Belye N. D., Loukili A., 2015, Design of Polymeric Capsules for Self-Healing Concrete, Cement and Concrete Composites, Vol. 55, pp. 298-307DOI
7 
Jiang J., Zhang D., Gong F., Zhi D., 2022, Prediction of Ultrasonic Pulse Velocity for Cement, Mortar, and Concrete through Multiscale Homogenization Approach, Materials, Vol. 15, No. 9, pp. 3241DOI
8 
Kanellopoulos A., Qureshi T. S., Al-Tabbaa A., 2015, Glass Encapsulated Minerals for Self-Healing in Cement Based Composites, Construction and Building Materials, Vol. 98, pp. 780-791DOI
9 
2021, Methods of Testing Cements-Determination of Strength (KS L ISO 679)KATS, , Korea Agency for Technology and Standards (KATS), Korea Standard Association (KSA), Seoul, Korea, (In Korean)Google Search
10 
2021, Constant Water Head Permeability Test Method for Evaluation of Self-Healing Performance of Mortar (KCI-CT114)KCI, , Korea Concrete Institute (KCI), Seoul, Korea, (In Korean)Google Search
11 
2022a, Quasi-Steady-State Chloride Ion Migration-Diffusion Test Method for Evaluation of Self-Healing Performance of Mortar (KCI-CT116)KCI, , Korea Concrete Institute (KCI), Seoul, Korea, (In Korean)Google Search
12 
2022b, Gas Diffusion Test Method for Evaluation of Self-Healing Performance of Mortar (KCI-CT119)KCI, , Korea Concrete Institute (KCI), Seoul, Korea, (In Korean)Google Search
13 
Kim C. G., Choi Y. W., Choi S., Oh S. R., 2022, A Study on Healing Performance of Mortar with Microcapsules Using Silicate-Based Inorganic Materials, Materials, Vol. 15, No. 24, pp. 8907DOI
14 
Kim M. S., Baek D. I., Kim K. M., 2007, A Study on Compressive Strength Prediction of Crushed Sand Concrete by Non-Destructive Method, Journal of the Korea Concrete Institute, Vol. 19, No. 1, pp. 75-81, (In Korean)DOI
15 
Kim Y. G., Jeong P., Kim Y. H., 1994, Development of Ultrasonic Pulse Compression Using Golay Codes, Journal of the Korean Society for Nondestructive Testing, Vol. 14, No. 3, pp. 185-193, (In Korean)Google Search
16 
Ko M. S., Kim Y. M., Kim C. H., 2023, A Basic Study to Develop Structural Deformation Measurement and Visualization System Using Ultrasonic Sensors, Journal of the Korea Concrete Institute, Vol. 35, No. 5, pp. 533-541, (In Korean)DOI
17 
Lee J. H., Choi Y. W., 2024, An Experimental Study on Non-Destructive Evaluation Method for Healing Performance of Self-Healing Cement Composites Using Ultrasonic Pulse Velocity, Journal of the Korean Recycled Construction Resources Institute, Vol. 12, No. 4, pp. 466-474, (In Korean)DOI
18 
Lee J. H., Jeong B. L., 2024, Self-Healing Performance of Concrete Cracks Using Pozzolanic Materials, Journal of the Korea Concrete Institute, Vol. 36, No. 6, pp. 583-589, (In Korean)DOI
19 
Lencis U., Lencis A., Maeijer P. K., Korjakins A., 2024, Methodology for Determining Correct Ultrasonic Pulse Velocity in Concrete, Buildings, Vol. 14, No. 3, pp. 720DOI
20 
Mehar K., Panda S. K., 2019, Multiscale Modeling Approach for Thermal Buckling Analysis of Nanocomposite Curved Structure, Advances in Nano Research, Vol. 7, No. 3, pp. 181-190DOI
21 
Meraz M. M., Mim N. J., Mehedi M. T., Bhattacharya B., Aftab M. R., Billah M. M., Meraz M. M., 2023, Self-Healing Concrete: Fabrication, Advancement, and Effectiveness for Long-Term Integrity of Concrete Infrastructures, Alexandria Engineering Journal, Vol. 73, pp. 665-694DOI
22 
Mohammed T. A., Kasie Y. M., Assefa E., Getu Y. M., Tufa D. H., 2024, Enhancing Structural Resilience: Microbial-Based Self-Healing in High-Strength Concrete, International Journal of Concrete Structures and Materials, Vol. 18, No. 22DOI
23 
2023, Final Report of Second Phase of Technology Development for Eco-Friendly Self-Healing Concrete (RS-2020-KA158975)MOLIT, , Ministry of Land, Infrastructure and Transport (MOLIT), Seoul, Korea, (In Korean)Google Search
24 
Qian S. Z., Zhou J., Schlangen E., 2010, Influence of Curing Condition and Precracking Time on Self-Healing Behavior of Engineered Cementitious Composites, Cement and Concrete Composites, Vol. 32, No. 9, pp. 686-693DOI
25 
Shen J., Xu Q., Shouguang W., 2023, Characterization of Thermal Damage and Compressive Strength during Drying at Elevated Temperatures Using Ultrasonic Pulse Velocity, Journal of Building Engineering, Vol. 75, pp. 107029DOI
26 
Taheri M. N., Sabet S. A., Kolahchi R., 2020, Experimental Investigation of Self-Healing Concrete after Crack Using Nano-Capsules Including Polymeric Shell and Nanoparticles Core, Smart Structures and Systems, Vol. 25, No. 3, pp. 337-343DOI
27 
Zhou S., Li Z., Li K., Jia Y., Wang C., Zhuang X., 2023, Microcapsule-Enabled Self-Healing Concrete: A Bibliometric Analysis, Frontiers of Structural and Civil Engineering, Vol. 17, No. 11, pp. 1611-1629DOI