Mobile QR Code QR CODE : Journal of the Korean Society of Civil Engineers

  1. κ³΅μ£ΌλŒ€ν•™κ΅ ν† λͺ©κ³΅ν•™κ³Ό μ •κ΅μˆ˜ (Kongju National University)
  2. ν•œκ΅­μ½˜ν¬λ¦¬νŠΈμ‹œν—˜μ› 연ꡬ원 (KCTL)


κ²½λŸ‰ν¬μž₯체, 말뚝기초, μ‹€λ‚΄λͺ¨ν˜•μ‹œν—˜, μ—°μ•½μ§€λ°˜
Lightweight pavement, Pile foundation, Laboratory Chamber test, Soft soil

  • 1. μ„œ λ‘ 

  • 2. μ‹€λ‚΄λͺ¨ν˜•μ‹œν—˜

  •   2.1 λͺ¨ν˜•ν† μ‘°

  •   2.2 κ²½λŸ‰ν¬μž₯체용 말뚝기초 λͺ¨λΈλ§

  •   2.3 κΈ°λ³Έλ¬Όμ„± μ‹œν—˜ 및 μ§€λ°˜μ‘°μ„±

  •   2.4 μΉ¨ν•˜λŸ‰ κΈ°μ€€

  • 3. μ‹€ν—˜κ²°κ³Ό 및 뢄석

  •   3.1 λͺ¨ν˜•포μž₯체 μΉ¨ν•˜ νŠΉμ„± 평가

  •   3.2 μ—°μ§ν•˜μ€‘ μž‘μš©μ‹œ κ°œλ³„ 말뚝기초의 λ³€ν˜• νŠΉμ„±

  • 4. κ²° λ‘ 

1. μ„œ λ‘ 

μš°λ¦¬λ‚˜λΌμ˜ 경우 μ—°μ•½μ§€λ°˜μ€ 주둜 λ‚¨ν•΄μ•ˆκ³Ό μ„œν•΄μ•ˆμ§€μ—­μ— λ„“κ²Œ λΆ„ν¬ν•œλ‹€. 이런 μ—°μ•½μ§€λ°˜μ— ꡬ쑰물을 μΆ•μ‘°ν•  경우 κΈ°μ΄ˆμ§€μ§€λ ₯이 λΆ€μ‘±ν•˜κ±°λ‚˜, μ§€λ°˜μ˜ 전단저항λ ₯이 μΆ©λΆ„ν•˜μ§€ λͺ»ν•΄μ„œ μ•ˆμ •κ³Ό κ΄€λ ¨λœ λ¬Έμ œκ°€ λ°œμƒν•  수 있으며 μ—°μ•½μ§€λ°˜μ˜ μ••λ°€μΉ¨ν•˜, μ—°μ•½μ§€λ°˜μ— μ‹œκ³΅λœ λ§λšμ— μž‘μš©ν•˜λŠ” λΆ€λ§ˆμ°°λ ₯ λ“± ν™μ˜ μ••μΆ•μ„±μœΌλ‘œ μΈν•œ μΉ¨ν•˜μ˜ λ¬Έμ œκ°€ λ°œμƒν•  수 μžˆλ‹€. λ˜ν•œ μ§€μ§„, 진동 λ“± μ—¬λŸ¬ κ°€μ§€ μ›μΈμœΌλ‘œ λ°œμƒν•˜λŠ” λ™μ ν•˜μ€‘μœΌλ‘œ 인해 앑상화와 κ΄€λ ¨λœ λ¬Έμ œκ°€ λ°œμƒν•  수 있고 μ—°μ•½μ§€λ°˜ ꡴착곡사에 μžˆμ–΄ λΆ„μ‚¬ν˜„μƒ, νŒŒμ΄ν•‘κ³Ό κ΄€λ ¨λœ νˆ¬μˆ˜μ„±μ˜ λ¬Έμ œκ°€ λ°œμƒν•  수 μžˆλ‹€. ν˜„μž¬ μ—°μ•½μ§€λ°˜μ²˜λ¦¬ ν›„ μž”λ₯˜μΉ¨ν•˜λ₯Ό κ³ λ €ν•˜μ—¬ λ‹¨κ³„λ³„λ‘œ λ„λ‘œμ‹œκ³΅μ„ ν•˜λŠ” 점진곡법(Stage Construction)을 μ‚¬μš©ν•˜κ³  μžˆμœΌλ‚˜ μ—°μ•½μ§€λ°˜μ²˜λ¦¬μ— 2λ…„ μ΄μƒμ˜ μ‹œκ³΅κΈ°κ°„ 및 μ—°μ•½μ§€λ°˜μ˜ μ²˜λ¦¬μ™€ μœ μ§€κ΄€λ¦¬μ— λ§Žμ€ λΉ„μš©μ΄ μ†Œμš”λœλ‹€(Jang et al., 1999; Jeong et al., 2005).

이에 말뚝기초λ₯Ό μ΄μš©ν•  경우 기쑴의 λ“œλ ˆμΈ, ν”„λ¦¬λ‘œλ”©, μΉ˜ν™˜ λ“±κ³Ό 같은 μ—°μ•½μ§€λ°˜μ²˜λ¦¬κ³Όμ •μ„ μƒλž΅ν•˜μ—¬ μ—°μ•½μ§€λ°˜μ— λ„λ‘œμ‹œκ³΅μ΄ κ°€λŠ₯ν•˜λ©° λ˜ν•œ 기쑴의 노상, 보쑰기측, κΈ°μΈ΅, ν‘œμΈ΅μœΌλ‘œ κ΅¬μ„±λœ 포μž₯단면을 κ²½λŸ‰μ½˜ν¬λ¦¬νŠΈκΈ°μΈ΅, ν‘œμΈ΅μœΌλ‘œ λ‹¨μˆœν™”ν•˜μ—¬ μ‹œκ³΅κ³Όμ •μ„ λ‹¨μˆœν™” 및 λ„λ‘œκ±΄μ„€μš© 재료절감효과λ₯Ό κΈ°λŒ€ν•  수 μžˆμ„ 것이닀. 말뚝기초의 경우 μΆ©κ²©ν•˜μ€‘, μ§€μ§„ν•˜μ€‘ μΈ‘λ°©μœ λ™λ“±μ— μ˜ν•˜μ—¬ μƒλ‹Ήν•œ 크기의 νš‘ν•˜μ€‘μ„ κ²¬λ”œ 수 있으며, λ”°λΌμ„œ μ΄λŸ¬ν•œ μ—°μ§ν•˜μ€‘μ„ λ°›λŠ” λ§λšμ— λŒ€ν•˜μ—¬μ„œλŠ” 일찍뢀터 μ—°κ΅¬λ˜μ–΄ 섀계에 μœ νš¨ν•˜κ²Œ ν™œμš©λ˜κ³  μžˆλ‹€. κ·ΈλŸ¬λ‚˜ λ§λšμ— μ˜ν•˜μ—¬ μ§€μ§€λ˜κ³  μžˆλŠ” ꡬ쑰물이 ν† μ••, 풍압, 파λ ₯ 등을 λ°›κ²Œ 되면 λ§λšμƒλΆ€μ—λŠ” μ—°μ§ν•˜μ€‘λΏλ§Œ μ•„λ‹ˆλΌ νš‘ν•˜μ€‘κ³Ό λͺ¨λ©˜νŠΈλ„ λ™μ‹œμ— μž‘μš©ν•˜κ²Œ λœλ‹€. μ΄λŸ¬ν•œ νš‘ν•˜μ€‘κ³Ό λͺ¨λ©˜νŠΈ ν•˜μ€‘μ„ λ°›λŠ” 말뚝의 κ³Όλ„ν•œ λ³€μœ„λ‚˜ νŒŒκ΄΄λŠ” 상뢀ꡬ쑰물에 μ‹¬κ°ν•œ 영ν–₯을 λ―ΈμΉ  수 μžˆμœΌλ―€λ‘œ 이에 λŒ€ν•œ κ²€ν† κ°€ μˆ˜λ°˜λ˜μ–΄μ•Ό ν•œλ‹€(Kim and Kim, 2013; Sanctis and Mandolini, 2006; Shin, 2014; Shin et al., 2013; Shin et al., 2014).

λ³Έ μ—°κ΅¬μ—μ„œλŠ” 말뚝기초의 μ‹€λ‚΄λͺ¨ν˜•μ‹œν—˜μ„ 톡해 κ²½λŸ‰ν¬μž₯체용 κΈ°μ΄ˆλ‘œμ„œμ˜ 적합성을 뢄석 및 평가λ₯Ό λͺ©μ μœΌλ‘œ ν•˜κ³  μžˆλ‹€. 이에 따라 μ—°μ•½μ§€λ°˜μ—μ„œμ˜ κ²½λŸ‰μ½˜ν¬λ¦¬νŠΈν¬μž₯을 μ μš©ν•  λ•Œμ˜ μ•ˆμ „μ„± 평가λ₯Ό μœ„ν•΄ μ‹€λ‚΄λͺ¨ν˜•μ‹œν—˜μš© κ²½λŸ‰ν¬μž₯체용 말뚝기초λͺ¨ν˜•을 μ‹€μ œ 포μž₯체 μ‚¬μ΄μ¦ˆμ˜ 1/30으둜 μΆ•μ†Œν•œ λͺ¨ν˜•을 μ΄μš©ν•˜μ—¬ μ‹œν—˜μ„ μ‹€μ‹œν•˜μ˜€λ‹€. μ‹€ν—˜μ— μ‚¬μš©λœ λͺ¨ν˜• ν† μ‘°λŠ” μ§μ‚¬κ°ν˜•μ΄κ³ , ν¬κΈ°λŠ” κ°€λ‘œ 60 cm, μ„Έλ‘œ 80 cm, 높이 90 cm이며 μ§€λ°˜μ‘°κ±΄μ€ μ—°μ•½μ§€λ°˜μ„ λͺ¨μ‚¬ν•˜μ—¬ λͺ¨λΈλ§ν•˜μ˜€λ‹€. λ§λšμ€ 선단지지가 μ•„λ‹Œ μ£Όλ³€λ§ˆμ°°λ§λšμœΌλ‘œ μ‹€ν—˜ν•˜μ˜€λ‹€. λͺ¨ν˜•μ‹€ν—˜μš© 토쑰에 μƒμ„±λœ ν† μ§ˆμ€ μ—°μ•½μ§€λ°˜λ₯Ό λͺ¨μ‚¬ν•œ ν›„, κ²½λŸ‰ν¬μž₯체용 λ§λšκΈ°μ΄ˆμ— λŒ€ν•œ ν•˜μ€‘μž¬ν•˜μ‹œν—˜μ„ μˆ˜ν–‰ν•˜μ˜€λ‹€.

2. μ‹€λ‚΄λͺ¨ν˜•μ‹œν—˜

2.1 λͺ¨ν˜•ν† μ‘°

연ꡬ에 μ‚¬μš©λœ λͺ¨ν˜• ν† μ‘°μ˜ ν¬κΈ°λŠ” κ°€λ‘œ 80 cm, μ„Έλ‘œ 60 cm, 높이 90 cm의 κ°•μž¬λ‘œ μ œμž‘ν•˜μ˜€λ‹€. μ œμž‘λœ ν† μ‘°λ‘œ κ°€λ‘œμ˜ κΈΈμ΄λŠ” 츑면판의 μœ„μΉ˜λ₯Ό μ΄λ™ν•˜μ—¬ 쑰절이 κ°€λŠ₯ν•˜κ²Œ μ œμž‘ν•˜μ—¬ μ‹€μ œ μ‹€ν—˜μ—μ„œ μ§€λ°˜μ΄ μ‘°μ„±λ˜λŠ” κ°€λ‘œ 길이λ₯Ό 80 cm둜 μ„€μ •ν•˜μ˜€λ‹€. λ˜ν•œ μ‹€ν—˜μ—μ„œ 쑰건을 λ‹¨μˆœν™”ν•˜κΈ° μœ„ν•΄ ν† μ‘° 내뢀벽에 비닐을 λΆ€μ°©ν•˜μ—¬ λ²½λ©΄κ³Ό λ§ˆμ°°μ„ μ΅œμ†Œν™”λ  수 μžˆλ„λ‘ ν•˜μ˜€λ‹€.

2.2 κ²½λŸ‰ν¬μž₯체용 말뚝기초 λͺ¨λΈλ§

λͺ¨ν˜•ν† μ‘°λ₯Ό μ΄μš©ν•œ μ‹€λ‚΄μ‹œν—˜μ— μ‚¬μš©ν•œ 포μž₯체 λͺ¨ν˜•은 μ•Œλ£¨λ―ΈλŠ„ ν•©κΈˆμ„ μ΄μš©ν•˜μ—¬, 슬래브 및 말뚝기초둜 각각 μ œμž‘ν•˜μ˜€λ‹€. λͺ¨ν˜•포μž₯μ²΄λŠ” μž₯λ°©ν–₯ 길이 480 mm, 단방ν–₯ 길이 120 mm 무게 1.2 kg의 μŠ¬λž˜λΈŒν˜•νƒœμ— 말뚝λͺ¨ν˜•을 μ—°κ²°ν•  수 μžˆλŠ” ꡬ멍을 λ§Œλ“€μ–΄ μ œμž‘ν•˜μ˜€λ‹€. μ‹€μ œ λ„λ‘œν­ 3.6 m, λ„λ‘œκΈΈμ΄ 14.4 m, 포μž₯λ‘κ»˜ 0.35 m (0.3 m κ²½λŸ‰μ½˜ν¬λ¦¬νŠΈ κΈ°μΈ΅ 및 0.05 m μ•„μŠ€νŒ”νŠΈν‘œμΈ΅), κ²½λŸ‰ν¬μž₯체 무게 25.7ν†€μ˜ 기포콘크리트λ₯Ό μ΄μš©ν•œ κ²½λŸ‰ν¬μž₯체 νŠΉμ„±μ„ μ‹€ν—˜μ— λ°˜μ˜ν•˜μ—¬ 1/30둜 μΆ•μ†Œ μ œμž‘ν•˜μ˜€λ‹€. μΆ•μ†Œλͺ¨ν˜•μ˜ ν¬κΈ°λŠ” μ™Έκ²½ 10 mm, λ‚΄κ²½ 8 mm, 길이 370 mm의 μ€‘κ³΅κ΄€μœΌλ‘œ μ œμž‘ν•˜μ˜€κ³  μ‹€ν—˜μ‘°κ±΄μ—μ„œ 길이 11.1 m, μ™Έκ²½ 300 mm의 PHC말뚝 νŠΉμ„±μ„ μ‹€ν—˜μ— λ°˜μ˜λ˜λ„λ‘ ν•˜μ˜€λ‹€(Horikoshi and Randolph, 1996; Park et al., 2012).

Figure_KSCE_36_3_20_F1.jpg

Fig. 1. Measuring the Displacement of the Pile Location

μ œμž‘μ΄ μ™„λ£Œλœ 두 λͺ¨ν˜•을 κ²°ν•©ν•˜μ—¬ ν•˜λ‚˜μ˜ 포μž₯체 ꡬ쑰물둜 μ œμž‘ν•˜μ˜€κ³ , 말뚝 간격은 40 mm둜 μ œμž‘ν•˜μ—¬ 30 g μ‘°κ±΄μ—μ„œ 말뚝기초 간격 1.2 m (4D; D=0.3 m) 12Γ—3 λ°°μ—΄μ˜ 36개 ꡰ말뚝기초의 거동이 λ°˜μ˜λ˜λ„λ‘ ν•˜μ˜€λ‹€. 말뚝기초의 경우 370 mm의 길이둜 μ œμž‘ν•˜μ—¬ μ‹€ν—˜ μˆ˜ν–‰ν•˜μ˜€λ‹€. μΈ‘μ •μš© 3개의 λ§λšκΈ°μ΄ˆμ— λ³€ν˜•μœ¨κ³„ (Strain gauge)λ₯Ό λΆ€μ°©ν•˜μ—¬ μž¬ν•˜ν•˜μ€‘ 단계에 λ”°λ₯Έ ν•˜μ€‘-전이 νŠΉμ„±μ„ 뢄석할 수 μžˆλ„λ‘ ν•˜μ˜€λ‹€. Fig. 1κ³Ό 같이 ꡰ말뚝기초 μ€‘μ—μ„œ μΈ‘μ •μœ„μΉ˜λŠ” κ°€μš΄λ° μ€„μ˜ ν•˜μ€‘μ„Όν„°(Case A), 포μž₯체의 μΈ‘λ©΄(Case C) λ“± 3개의 λ§λšμ„ μ΄μš©ν•˜μ˜€λ‹€.

2.3 κΈ°λ³Έλ¬Όμ„± μ‹œν—˜ 및 μ§€λ°˜μ‘°μ„±

μ‹€λ‚΄λͺ¨ν˜•μ‹€ν—˜μ—μ„œμ˜ μ§€λ°˜μ‘°μ„±μ€ 10 cm의 λͺ¨λž˜λ₯Ό λ°”λ‹₯에 νƒ€μ„€ν•˜μ—¬ λ°°μˆ˜μΈ΅μ„ ν˜•μ„±ν•˜μ˜€κ³ , λͺ¨λž˜μΈ΅ μœ„μ— μΉ΄μ˜¬λ¦¬λ‚˜μ΄νŠΈλ₯Ό μ΄μš©ν•˜μ—¬ μ•½ 70 cm λ‘κ»˜μ˜ μ—°μ•½μ§€λ°˜μ„ μ‘°μ„±ν•˜μ˜€λ‹€. 30 kPa의 μ„ ν–‰μ••λ°€ν•˜μ€‘μ„ μ•½ 1주일 λ™μ•ˆ μž¬ν•˜ν•˜μ—¬ μ—°μ•½μ§€λ°˜μ„ 인곡적으둜 μ‘°μ„±ν•˜μ˜€λ‹€. 인곡으둜 μ‘°μ„±λœ μ—°μ•½μ§€λ°˜ μ‹œλ£Œμ˜ 기본물성은 KS ν‘œμ€€μ‹œν—˜λ²•μ„ μ΄μš©ν•˜μ˜€κ³ , μ‹€ν—˜ κ²°κ³ΌλŠ” Table 1κ³Ό κ°™λ‹€.

800 mm Γ— 600 mm Γ— 900 mm 크기의 토쑰에 Fig. 2와 같이 λͺ¨ν˜•λ§λšκΈ°μ΄ˆμ™€ λͺ¨ν˜•κ²½λŸ‰ν¬μž₯을 μ‘°λ¦½ν•œ λͺ¨ν˜•μ„ΈνŠΈλ₯Ό κ΄€μž…ν•œ ν›„ μ‹€ν—˜μ„ μˆ˜ν–‰ν•˜μ˜€λ‹€. μ—°μ§ν•˜μ€‘μ€ μ€‘λŸ‰μΆ”λ₯Ό μ΄μš©ν•˜μ˜€κ³ , μˆ˜ν‰ν•˜μ€‘μ€ μ€‘λŸ‰μΆ”μ™€ 도λ₯΄λ ˆλ₯Ό μ΄μš©ν•˜μ—¬ κ°„μ ‘μ μœΌλ‘œ ν•˜μ€‘μ„ μž¬ν•˜ν•˜μ˜€λ‹€. λͺ¨ν˜•ν† μ‘°μ‹€ν—˜μ„ μ΄μš©ν•˜μ—¬ μˆ˜ν‰λ°©ν–₯의 μ •μ ν•˜μ€‘ μž¬ν•˜μ‹œ ꡰ말뚝의 κΉŠμ΄μ— λ”°λ₯Έ 각 μ§€μ μ—μ„œμ˜ λ³€ν˜•λŸ‰ 및 λ³€μœ„λ₯Ό μΈ‘μ •ν•˜μ˜€λ‹€. λ˜ν•œ, 수직방ν–₯의 μ •ν•˜μ€‘ μž¬ν•˜μ‹œ λ§λšλ‘λΆ€μ—μ„œμ˜ μˆ˜μ§λ³€μœ„μ™€ 말뚝의 각 μ§€μ μ—μ„œ λ°œμƒν•˜λŠ” λ³€ν˜•λŸ‰μ„ μΈ‘μ •ν•˜μ˜€λ‹€. μ‹€ν—˜μ— μ‚¬μš©λœ ν•˜μ€‘ μž¬ν•˜κ°’μ€ κ΅ν†΅λŸ‰μ˜ 정도에 따라 50 mm μ›ν˜• ν•˜μ€‘νŒμ— μž¬ν•˜λ˜λŠ” ν•˜μ€‘μ˜ 크기λ₯Ό κ²°μ •ν•˜μ˜€λ‹€. μ‹€ν—˜μ— 쓰인 ν•˜μ€‘ μž¬ν•˜κ°’μ€ Kaloush (2001)κ°€ μ‚¬μš©ν•œ 쀑간 κ΅ν†΅λŸ‰ λ„λ‘œμ˜ 689 kPa (100%)λ₯Ό λͺ¨μ‚¬ν•˜μ˜€λ‹€. μ‹€λ‚΄ λͺ¨ν˜•μ‹€ν—˜μ€ 총 μ‹œν—˜ ν•˜μ€‘μ„ 8단계 즉, μ„€κ³„ν•˜μ€‘μ˜ 25%, 50%, 75%, 100%, 125%, 150%, 175% 및 200%둜 λ‚˜λˆ„μ–΄ μž¬ν•˜ ν•˜μ˜€λ‹€. 각 ν•˜μ€‘λ‹¨κ³„μ—μ„œ 말뚝 머리의 μΉ¨ν•˜μœ¨(rate of settlement)이 μ‹œκ°„λ‹Ή 0.25 mm μ΄ν•˜κ°€ 될 λ•ŒκΉŒμ§€ 단 μ΅œλŒ€ 2μ‹œκ°„μ„ λ„˜μ§€ μ•Šλ„λ‘ ν•˜μ—¬ μž¬ν•˜ν•˜μ€‘μ„ μœ μ§€ν•˜μ˜€λ‹€. 섀계 ν•˜μ€‘μ˜ 200% 즉 총 μ‹œν—˜ν•˜μ€‘ μž¬ν•˜λ‹¨κ³„μ—μ„œ ν•˜μ€‘μ„ μœ μ§€ν•˜λ˜ μ‹œκ°„λ‹Ή μΉ¨ν•˜λŸ‰μ΄ 0.25 mm μ΄ν•˜μΌ 경우 12μ‹œκ°„, κ·Έλ ‡μ§€ μ•Šμ„ 경우 24μ‹œκ°„λ™μ•ˆ μœ μ§€μ‹œμΌœ μ‹œν—˜ν•˜μ˜€λ‹€(Conte et al., 2003). μˆ˜ν‰ν•˜μ€‘μ— λ”°λ₯Έ ν•˜μ€‘μ „λ‹¬ νŠΉμ„±ν‰κ°€λ₯Ό μœ„ν•œ μ‹€λ‚΄ λͺ¨ν˜•μ‹€ν—˜μ€ μˆ˜μ§ν•˜μ€‘μž¬ν•˜μ™€ λ™μΌν•œ λ°©λ²•μœΌλ‘œ μ§„ν–‰ν•˜μ˜€λ‹€. μˆ˜ν‰ν•˜μ€‘μ€ μ—°μ§ν•˜μ€‘μ˜ μ•½ 45% μˆ˜μ€€μ„ μ΅œλŒ€κ°’μœΌλ‘œ κ²°μ •ν•˜μ˜€κ³  이λ₯Ό 0.5 kgf, 1.5 kgf, 3.5 kgf, 및 5.5 kgf λ“± 총 4λ‹¨κ³„λ‘œ λ‚˜λˆ„μ–΄ μž¬ν•˜ν•˜μ˜€λ‹€.

Figure_KSCE_36_3_20_F2.jpg

Fig. 2. Setup of Small Scaled Model Testing

Table 1. Properties of Quartz Sand

Test

Liquid Limit

Plastic Limit

Plastic Index

Specific Gravity

Particle Size

Undrained Shear Strength

KS

F2303, 2304

F2308

F2306

F2343

Result

36.5%

21.0%

15.5%

2.75

0.004 mm

8.2 kPa

2.4 μΉ¨ν•˜λŸ‰ κΈ°μ€€

λ„λ‘œκ΅ 섀계기쀀(ν•˜λΆ€κ΅¬μ‘° 편, 2001)μ—μ„œλŠ” μ§μ ‘κΈ°μ΄ˆ 및 λ§λšκΈ°μ΄ˆμ— λŒ€ν•œ μΉ¨ν•˜λŸ‰μ€ 기초의 μ•ˆμ •μ„± κ²€ν†  ν•­λͺ©μ— ν¬ν•¨λ˜μ–΄ μžˆμ§€ μ•Šμ•„ μ„€κ³„μ‹œ 일반적으둜 κ²€ν† λ˜μ§€ μ•Šκ³  μžˆλ‹€. κ·ΈλŸ¬λ‚˜ κ³΅μ‚¬μ‹œλ°©μ„œμ—μ„œ 기초의 μΉ¨ν•˜λŸ‰μ΄ ν—ˆμš©μΉ¨ν•˜λŸ‰μ„ λ§Œμ‘±ν•˜λ„λ‘ ν•˜λŠ” κ·œμ •μœΌλ‘œ 인해 μ‹œκ³΅μ‹œ ν—ˆμš©μΉ¨ν•˜λŸ‰ κ·œμ •μ€ κΈ°μ΄ˆμ‹¬λ„ κ²°μ •μ‹œ 맀우 μ€‘μš”ν•œ λ³€μˆ˜κ°€ 되고 μžˆλ‹€. μ„€κ³„ν•˜μ€‘μ— λŒ€ν•œ 기초의 μΉ¨ν•˜λŸ‰μ„ κ³„μ‚°ν•˜λ©΄ λŒ€λΆ€λΆ„μ˜ 경우, μ˜ˆμΈ‘μΉ¨ν•˜λŸ‰μ΄ 1 cmλ₯Ό λ„˜μ–΄ μ„€κ³„λ‹¨κ³„μ—μ„œ μ μš©ν•  수 μ—†λŠ” 기쀀을 μ‹œκ³΅λ‹¨κ³„μ—μ„œλŠ” μ μš©ν•˜κ³  μžˆλ‹€. FHWA (1985)μ—μ„œλŠ” μˆ˜μΉ˜ν•΄μ„ 및 κΈ°μ‘΄κ΅λŸ‰μ˜μΉ¨ν•˜λŸ‰μ‘°μ‚¬λ₯Ό ν†΅ν•˜μ—¬κ΅λŸ‰μ˜ ν—ˆμš©μΉ¨ν•˜λŸ‰κΈ°μ€€μ— λŒ€ν•œ 연ꡬλ₯Ό μˆ˜ν–‰ν•œλ°” 있으며, Bozozuk (1978), Grover (1978) 및 Wahls (1990) 등은 Table 2와 같이 각 ꡐ각의 μΉ¨ν•˜λŸ‰ 기쀀을 μ œμ‹œν•˜μ˜€λ‹€. μƒλΆ€κ΅¬μ‘°λ¬Όμ˜ ν˜•μ‹ 및 κ²½κ°„μž₯에 따라 μΉ¨ν•˜λŸ‰μ΄ κ΅λŸ‰μ— λ―ΈμΉ˜λŠ” 영ν–₯이 λ‹€λ₯΄λ‚˜, 1990λ…„λŒ€ μ΄μ „μ˜ κ΅λŸ‰μ— λŒ€ν•œ μ‹€μΈ‘κ²°κ³Όλ₯Ό 근거둜 ν—ˆμš©μΉ˜λ₯Ό μ œμ‹œν•˜κ³  μžˆλ‹€.

Table 2. Specification of Allowable Settlement

Suggest

Allowable Settlement (mm)

Comment

Bozozuk (1978)

0-51

not harmful

Walkinshaw

(1978)

0-63

effect on riderbility

Walkinshaw

(1978)

over 63

structural problem

Grover

(1978)

0-102

riderbility and structural problem

Bozozuk

(1978)

0-102

harmful but allowable

Wahls

(1990)

over 102

over the general limitation

3. μ‹€ν—˜κ²°κ³Ό 및 뢄석

3.1 λͺ¨ν˜•포μž₯체 μΉ¨ν•˜ νŠΉμ„± 평가

Fig. 3은 μ ν† μ§€λ°˜μ—μ„œμ˜ 말뚝기초λͺ¨ν˜•μ˜ μ—°μ§μΉ¨ν•˜λŸ‰μ„ μΈ‘μ • λΉ„κ΅ν•œ κ·Έλž˜ν”„μ΄λ‹€. λͺ¨ν˜•μ‹œν—˜μœΌλ‘œλΆ€ν„° μΈ‘μ •λœ λͺ¨ν˜•포μž₯체의 μΉ¨ν•˜λŸ‰μ€ Case AλŠ” 0.86 mm, Case BλŠ” 0.70 mm, Case CλŠ” 0.50 mm둜 μΈ‘μ •λ˜μ—ˆλ‹€. μΈ‘μ •λœ 말뚝기초 λͺ¨ν˜•μ˜ μ‹€ν—˜κ°’μ„ μ‹€μ œ 크기둜 ν™˜μ‚°ν•˜μ˜€μ„ λ•Œμ˜ μ΅œλŒ€μΉ¨ν•˜λŸ‰κ³Ό λΆ€λ“±μΉ¨ν•˜λŸ‰μ€ 각각 25.8 mm와 10.8 mm둜 λ„λ‘œκ΅ 섀계기쀀(ν•˜λΆ€κ΅¬μ‘°νŽΈ, 2001)에 μ˜κ±°ν•˜μ—¬ μ΅œλŒ€λΆ€λ“±λ³€μœ„λŸ‰μΈ 50 mm와 λΆ€λ“±λ³€μœ„λŸ‰ 20 mmλ₯Ό λ„˜μ§€ μ•ŠλŠ” κ²ƒμœΌλ‘œ 보이며 μΉ¨ν•˜λŸ‰μ„ κΈ°μ€€μœΌλ‘œ μ•ˆμ „μ„±μ„ 평가 ν•  경우 μ•ˆμ „ν•˜λ‹€κ³  νŒλ‹¨λœλ‹€.

λͺ¨ν˜•κΈ°μ΄ˆμ— μˆ˜ν‰ν•˜μ€‘μ„ μž‘μš©μ‹œμΌ°μ„ λ•Œ μˆ˜ν‰ν•˜μ€‘μ΄ 증가함에 따라 λͺ¨ν˜•κΈ°μ΄ˆ μƒλΆ€μ—μ„œ λ°œμƒν•˜λŠ” λˆ„μ  μˆ˜ν‰λ³€μœ„λŠ” Fig. 4와 같이 μ¦κ°€ν•˜λŠ” κ²½ν–₯을 λ³΄μ˜€λ‹€. 포μž₯체 λͺ¨ν˜•μ˜ μˆ˜ν‰λ°©ν–₯ν•˜μ€‘μ€ μ΅œλŒ€ 5.5 kg μž‘μš©ν•˜μ˜€λ‹€. μˆ˜ν‰λ³€μœ„μ˜ μ΅œλŒ€κ°’μ€ 슬래브 쀑앙뢀(Case A)의 κ²½μš°λŠ” 1.06 mmκ°€ λ‚˜νƒ€λ‚¬μœΌλ©°, 슬래브 쒌츑(Case C)의 μ΅œλŒ€μˆ˜ν‰λ³€μœ„λŠ” 1.05 mm둜 μΈ‘μ •λ˜μ—ˆλ‹€. λͺ¨ν˜•μ‹€ν—˜μ˜ κ²°κ³Όλ₯Ό μ‹€μ œν¬κΈ°λ‘œ ν™˜μ‚°ν•˜μ—¬ 적용 ν•˜μ˜€μ„ λ•Œ μ΅œλŒ€ μˆ˜ν‰λ³€μœ„λŠ” 31.8 mm둜 λ‚˜νƒ€λ‚Ό 수 μžˆλ‹€. μ΄λŠ” κ΅­λ‚΄ λ„λ‘œκ΅μ„€κ³„κΈ°μ€€μ΄ 15~50 mm, NCHRP (1991)의 λ³΄κ³ μ„œμ—μ„œ Moulton의 기쀀인 38 mmλ₯Ό 기쀀을 ν•œ 것과 λΉ„κ΅ν–ˆμ„ λ•Œ 포μž₯체에 직접적인 영ν–₯을 μ€„λ§Œν•œ 거동이 μΌμ–΄λ‚˜μ§€ μ•Šμ„ κ²ƒμœΌλ‘œ μ˜ˆμƒλœλ‹€(Ghosn et al., 1991).

Figure_KSCE_36_3_20_F3.jpg

Fig. 3. Measured Vertical Settlement (mm)

Figure_KSCE_36_3_20_F4.jpg

Fig. 4. Measured Lateral Displacement (mm)

3.2 μ—°μ§ν•˜μ€‘ μž‘μš©μ‹œ κ°œλ³„ 말뚝기초의 λ³€ν˜• νŠΉμ„±

Fig. 5λŠ” ν•˜μ€‘λ‹¨κ³„λ³„ μ—°μ§ν•˜μ€‘ μž¬ν•˜μ‹œ Case A λͺ¨ν˜•λ§λšμ— μ„€μΉ˜λœ κΉŠμ΄λ³„ λ³€ν˜•λ₯ κ²Œμ΄μ§€ 츑정값을 보여주고 μžˆλ‹€. μŠ¬λž˜λΈŒμ€‘μ•™λΆ€μ— μ§‘μ€‘λœ ν•˜μ€‘μ—μ„œ 멀리 λ–¨μ–΄μ§„ 말뚝일수둝 말뚝의 λ³€ν˜•μ΄ μ••μΆ•λ ₯λ³΄λ‹€λŠ” 인μž₯λ ₯을 더 λ°›λŠ” κ²ƒμœΌλ‘œ λ‚˜νƒ€λ‚¬λ‹€. Case A의 경우 μ „μ²΄μ μœΌλ‘œ ν•˜μ€‘μ΄ 증가함에 따라 λ³€ν˜•λ₯ μ€ μ„ ν˜•μœΌλ‘œ μ¦κ°€ν•˜λŠ” κ²½ν–₯을 λ³΄μ˜€λ‹€. Case BλŠ” ν•˜μ€‘μ΄ 증가함에 따라 말뚝의 κ΄€μž…κΉŠμ΄ 7 mmμ—μ„œ 68 mmκΉŒμ§€ λ³€ν˜•λ₯ μ΄ μ„ ν˜•μœΌλ‘œ μ¦κ°€ν•˜λŠ” κ²ƒμœΌλ‘œ λ‚˜νƒ€λ‚¬λ‹€. 말뚝의 ν•˜λ‹¨λΆ€(깊이 257~364 mm)의 경우 λͺ¨ν˜•κΈ°μ΄ˆμ— 적용된 μˆ˜μ§ν•˜μ€‘μ΄ κ΅ν†΅ν•˜μ€‘μ˜ 100% 일 λ•ŒλΆ€ν„°λŠ” λ³€ν˜•λ₯ μ΄ κ°μ†Œν•˜λŠ” κ²ƒμœΌλ‘œ λ‚˜νƒ€λ‚¬λ‹€. Case C의 κ²½μš°λŠ” ν•˜μ€‘μ΄ 증가함에 λ³€ν˜•λ₯ μ΄ 인μž₯으둜 λ³€ν•˜λŠ” κ²½ν–₯을 λ‚˜νƒ€λƒˆλ‹€.

Figure_KSCE_36_3_20_F5.jpg

Fig. 5. Measured Strain at Loading Stage for Case A, B and C

Fig. 6은 μ μ„±ν† μ§€λ°˜μ—μ„œ 적용된 μˆ˜μ§ν•˜μ€‘λ‹¨κ³„λ³„ 말뚝의 λ³€ν˜•λ₯ μ„ λ‚˜νƒ€λ‚Έ 것이닀. Case AλŠ” ν•˜μ€‘λ‹¨κ³„κ°€ μ¦κ°€ν• μˆ˜λ‘ 말뚝의 λ³€ν˜•λ₯ μ΄ μ¦κ°€ν•˜λŠ” κ²ƒμœΌλ‘œ λ‚˜νƒ€λƒˆμœΌλ©° μ΄λŠ” 말뚝이 μ••μΆ•λ ₯을 λ°›κ³  μžˆλŠ” κ²ƒμœΌλ‘œ νŒλ‹¨λœλ‹€. 말뚝의 λ³€ν˜•λ₯ μ€ 상뢀뢀뢄인 κ΄€μž…κΉŠμ΄ 7 mm지점뢀터 말뚝의 1/3지점인 102 mm μ§€μ μ—μ„œ κ°€μž₯ λ§Žμ€ λ³€ν˜•λ₯ μ„ 보이고 μžˆλ‹€. 말뚝의 μ΅œλŒ€ λ³€ν˜•λ₯ λŠ” κ΄€μž…κΉŠμ΄ 7 mmμ—μ„œ μ••μΆ•λ°©ν–₯으둜 79.43의 λ³€ν˜•λ₯ (10-6)을 보인 반면 μ΅œμ†Œ λ³€ν˜•λ₯ μ€ κ΄€μž…κΉŠμ΄ 364 mmμ—μ„œ μ••μΆ•λ°©ν–₯으둜 1.47의 λ³€ν˜•λ₯ (10-6)을 보인닀. Case BλŠ” μˆ˜μ§ν•˜μ€‘μ΄ 증가함에 따라 λ§λšμ— μ••μΆ•λ ₯κ³Ό ν•¨κ»˜ 인μž₯λ ₯도 같이 λ°›λŠ” κ²ƒμœΌλ‘œ μΈ‘μ •λ˜μ˜€λ‹€. 말뚝의 μ΅œλŒ€λ³€ν˜•λ₯ μ€ 말뚝의 κ΄€μž…κΉŠμ΄ 7 mmμ—μ„œλŠ” μ••μΆ•λ°©ν–₯으둜 μ΅œλŒ€ 31.77의 λ³€ν˜•λ₯ (10-6)이 μΈ‘μ •λ˜μ—ˆκ³ , 말뚝의 κ΄€μž…κΉŠμ΄ 257 mmμ—μ„œλŠ” 인μž₯ λ°©ν–₯으둜 μ΅œλŒ€ -22.59의 λ³€ν˜•λ₯ (10-6)이 μΈ‘μ •λ˜μ—ˆλ‹€. Case CλŠ” ν•˜μ€‘λ‹¨κ³„κ°€ μ¦κ°€ν• μˆ˜λ‘ 말뚝의 전체적인 λ³€ν˜•λ₯ μ΄ 인μž₯λ°©ν–₯으둜 μ¦κ°€ν•˜λŠ” κ²½ν–₯을 보이고 μžˆλ‹€. 말뚝의 μƒλΆ€λ³΄λ‹€λŠ” 말뚝의 쀑앙뢀인 κ΄€μž…κΉŠμ΄ 136 mmμ—μ„œ λ§Žμ€ λ³€ν˜•λ₯ μ„ λ³΄μ˜€λ‹€. 말뚝의 λ³€μœ„λŠ” 쀑앙뢀 136 mmμ—μ„œ 인μž₯λ°©ν–₯으둜 μ΅œλŒ€ -16.40의 λ³€ν˜•λ₯ (10-6)이 μΈ‘μ •λ˜μ—ˆλ‹€. 이와 같은 κ²½ν–₯을 λ³΄μ΄λŠ” μ›μΈμœΌλ‘œλŠ” 말뚝λͺ¨ν˜•κΈ°μ΄ˆμ˜ μŠ¬λž˜λΈŒμ€‘μ•™λΆ€μ— μ§‘μ€‘λœ ν•˜μ€‘μœΌλ‘œ 인해 쀑앙뢀λ₯Ό μ€‘μ‹¬μœΌλ‘œ λ°œμƒν•œ λΆ€λ“±μΉ¨ν•˜μ— κ·Έ 원인이 μžˆλ‹€κ³  νŒλ‹¨λœλ‹€.

Figure_KSCE_36_3_20_F6.jpg

Fig. 6. Measured Strain at Pile Depth for Case A, B and C

4. κ²° λ‘ 

λ³Έ 논문은 말뚝기초의 μ‹€λ‚΄λͺ¨ν˜•μ‹œν—˜μ„ 톡해 말뚝기초λͺ¨ν˜•μ˜ μ§€λ°˜μ‘°κ±΄μ— λ”°λ₯Έ μΉ¨ν•˜λŸ‰κ³Ό λ§λšμœ„μΉ˜λ³„ μˆ˜μ§ν•˜μ€‘μ— μ˜ν•œ λ³€μœ„λ₯Ό μΈ‘μ •ν•˜μ˜€λ‹€. μ œν•œλœ μ‹€ν—˜μ‘°κ±΄μ—μ„œ μ‹€ν—˜μœΌλ‘œλΆ€ν„° λ‹€μŒκ³Ό 같은 결둠을 μ–»μ—ˆλ‹€.

(1)μ‹€λ‚΄λͺ¨ν˜•μ‹œν—˜μœΌλ‘œλΆ€ν„° μΈ‘μ •λœ λͺ¨ν˜•포μž₯체의 μΉ¨ν•˜λŸ‰μ€ Case AλŠ” 0.86 mm, Case BλŠ” 0.70 mm, Case CλŠ” 0.50 mm둜 μΈ‘μ •λ˜μ—ˆλ‹€. μΈ‘μ •λœ 말뚝기초 λͺ¨ν˜•μ˜ μ‹€ν—˜κ°’μ„ μ‹€μ œ 크기둜 ν™˜μ‚°ν•˜μ˜€μ„ λ•Œμ˜ μ΅œλŒ€μΉ¨ν•˜λŸ‰κ³Ό λΆ€λ“±μΉ¨ν•˜λŸ‰μ€ 각각 25.8 mm와 10.8 mm둜 λ„λ‘œκ΅ 섀계기쀀(ν•˜λΆ€κ΅¬μ‘°νŽΈ, 2001)에 μ˜κ±°ν•˜μ—¬ μ΅œλŒ€λΆ€λ“±λ³€μœ„λŸ‰μΈ 50 mm와 λΆ€λ“±λ³€μœ„λŸ‰ 20 mmλ₯Ό λ„˜μ§€ μ•ŠλŠ” κ²ƒμœΌλ‘œ 보이며 μΉ¨ν•˜λŸ‰μ„ κΈ°μ€€μœΌλ‘œ μ•ˆμ „μ„±μ„ 평가 ν•  경우 μ•ˆμ „ν•˜λ‹€κ³  νŒλ‹¨λœλ‹€.

(2)말뚝λͺ¨ν˜•κΈ°μ΄ˆμ— μˆ˜μ§ν•˜μ€‘ μ μš©μ‹œ 말뚝의 λ³€ν˜•μ€ Case A의 경우 μ••μΆ•λ ₯을 λ°›λŠ” κ²ƒμœΌλ‘œ λ‚˜νƒ€λ‚¬μœΌλ©°, Case BλŠ” μˆ˜μ§ν•˜μ€‘μ΄ 증가함에 따라 λ§λšμ— μ••μΆ•λ ₯κ³Ό ν•¨κ»˜ 인μž₯λ ₯도 같이 λ°›λŠ” κ²ƒμœΌλ‘œ 보이며, Case CλŠ” ν•˜μ€‘λ‹¨κ³„κ°€ μ¦κ°€ν• μˆ˜λ‘ 말뚝의 전체적인 λ³€ν˜•μ΄ 인μž₯λ°©ν–₯으둜 μ¦κ°€ν•˜λŠ” κ²½ν–₯을 보이고 μžˆλ‹€.

(3)말뚝의 λ³€ν˜•μ€ μˆ˜ν‰ν•˜μ€‘ μž¬ν•˜μ‹œ Case A의 경우 μ••μΆ•λ°©ν–₯으둜 κ΄€μž…κΉŠμ΄ 7 mmμ—μ„œ 20.28 Γ— 10-6으둜 μΈ‘μ •λ˜μ—ˆκ³ , 인μž₯λ°©ν–₯μœΌλ‘œλŠ” κ΄€μž…κΉŠμ΄ 186 mmμ—μ„œ –8.37 Γ— 10-6κ°€ μΈ‘μ •λ˜μ—ˆλ‹€. Case BλŠ” μ••μΆ•λ°©ν–₯으둜 κ΄€μž…κΉŠμ΄ 7 mmμ—μ„œ 15.55 Γ— 10-6 μΈ‘μ •λ˜μ—ˆκ³ , 인μž₯λ°©ν–₯μœΌλ‘œλŠ” κ΄€μž…κΉŠμ΄ 186 mmμ—μ„œ –3.79 Γ— 10-6으둜 μΈ‘μ •λ˜μ—ˆλ‹€. Case C의 경우 μ••μΆ•λ°©ν–₯으둜 κ΄€μž…κΉŠμ΄ 7 mmμ—μ„œ 17.92 Γ— 10-6 μΈ‘μ •λ˜μ—ˆκ³ , 인μž₯λ°©ν–₯μœΌλ‘œλŠ” κ΄€μž…κΉŠμ΄ –257 mmμ—μ„œ –5.12 Γ— 10-6 μΈ‘μ •λ˜μ—ˆλ‹€.

Acknowledgements

λ³Έ 논문은 2013λ…„ κ΅­ν† κ΅ν†΅κ³Όν•™κΈ°μˆ μ§„ν₯원 μ§€μ—­κΈ°μˆ ν˜μ‹ μ‚¬μ—… β€œκΈ°ν¬μ½˜ν¬λ¦¬νŠΈ 및 μš°λ“œμΉ©μ„ μ΄μš©ν•œ μ—°μ•ˆμ—­ κ²½λŸ‰ν¬μž₯κΈ°μˆ β€ μ—°κ΅¬κ³Όμ œμ§€μ›μœΌλ‘œ μˆ˜ν–‰λ˜μ—ˆμŠ΅λ‹ˆλ‹€.

References

1 
Conte, G., Mandolini, A. and Randolph, M. F. (2003). β€œCentrifuge modelingto investigate the performance of piled rafts.” Proc., Geotech. Int. Seminar on Deep Foundations on Bored and Auger Piles., Van Impe and Haegeman, eds., pp. 379-386.Conte, G., Mandolini, A. and Randolph, M. F. (2003). β€œCentrifuge modelingto investigate the performance of piled rafts.” Proc., Geotech. Int. Seminar on Deep Foundations on Bored and Auger Piles., Van Impe and Haegeman, eds., pp. 379-386.Google Search
2 
Ghosn, M., MOdes, F. and Wang, J. (1991). β€œDesign of highway bridges for extreme events.” NCHRP Report 489, Transportation Research Board, p. 183.Ghosn, M., MOdes, F. and Wang, J. (1991). β€œDesign of highway bridges for extreme events.” NCHRP Report 489, Transportation Research Board, p. 183.Google Search
3 
Horikoshi, K. and Randolph, M. F. (1996). β€œCentrifuge modelling of piled raft foundation on clay.” Getechnique, Vol. 46, No. 4, pp. 741-752. 10.1680/geot.1996.46.4.741Horikoshi, K. and Randolph, M. F. (1996). β€œCentrifuge modelling of piled raft foundation on clay.” Getechnique, Vol. 46, No. 4, pp. 741-752.DOI
4 
Jang, S. Y., Won, J. O. and Jeong, S. S. (1999). β€œAnalysis of passive pile groups subjected to lateral soil movements - A Study on the Model Test.” Korean Geotechnical Society, pp. 239-248.Jang, S. Y., Won, J. O. and Jeong, S. S. (1999). β€œAnalysis of passive pile groups subjected to lateral soil movements - A Study on the Model Test.” Korean Geotechnical Society, pp. 239-248.Google Search
5 
Jeong, J. H., Jeong, K. J., King, H. J., Cho, S. M., Park, J. K. and Kim, D. S. (2005). β€œThe evaluation and management of long-term settlement for the highway on the soft grounds.” Korean Expressway Corporation, Research Report, pp. 5-8. Jeong, J. H., Jeong, K. J., King, H. J., Cho, S. M., Park, J. K. and Kim, D. S. (2005). β€œThe evaluation and management of long-term settlement for the highway on the soft grounds.” Korean Expressway Corporation, Research Report, pp. 5-8.Google Search
6 
Kaloush, K. E. (2001). β€œSimple performance test for permanent deformation of asphalt mixtures.” Ph.D. Thesis, Arizona State University, p. 413.Kaloush, K. E. (2001). β€œSimple performance test for permanent deformation of asphalt mixtures.” Ph.D. Thesis, Arizona State University, p. 413.Google Search
7 
Kim, D. S. and Kim, N. (2013). β€œA newly developed state-of-the-art geotechnical centrifuge in Korea.” KSCE Journal of Civil Engineering, Vol. 17, No. 1, pp. 77-84.10.1007/s12205-013-1350-5Kim, D. S. and Kim, N. (2013). β€œA newly developed state-of-the-art geotechnical centrifuge in Korea.” KSCE Journal of Civil Engineering, Vol. 17, No. 1, pp. 77-84.DOI
8 
Park, D. G., Choi, K. J. and Lee, J. H. (2012). β€œAnalysis of piled raft interaction on sand with centrifuge test.” Korea Geotechnical Society, Vol. 28, No. 10, pp. 27-40.10.7843/kgs.2012.28.10.27Park, D. G., Choi, K. J. and Lee, J. H. (2012). β€œAnalysis of piled raft interaction on sand with centrifuge test.” Korea Geotechnical Society, Vol. 28, No. 10, pp. 27-40.DOI
9 
Sanctis, L. and Mandolini, A. (2006). β€œBearing capacity of piled rafts on soft clay soils.” Journal of Geotechnical Engineering, ASCE, Vol. 132, No. 12, pp. 1600-1610.10.1061/(asce)1090-0241(2006)132:12(1600)Sanctis, L. and Mandolini, A. (2006). β€œBearing capacity of piled rafts on soft clay soils.” Journal of Geotechnical Engineering, ASCE, Vol. 132, No. 12, pp. 1600-1610.DOI
10 
Shin, K. H., Hwang, C. B., Kim, S. K. and Lee, K. H. (2013). β€œLaboratory test of pile foundation for lightweight pavement.” Korean Society of Road Engineers, 2013 Annual Conference, p. 105. Shin, K. H., Hwang, C. B., Kim, S. K. and Lee, K. H. (2013). β€œLaboratory test of pile foundation for lightweight pavement.” Korean Society of Road Engineers, 2013 Annual Conference, p. 105.Google Search
11 
Shin, K. H. (2014). β€œIndoor model experience for subsidence characterization of lightweight packing body with pile foundation.” Master Thesis, Dept. of Civil Engineering, Kongju National University, p. 69.Shin, K. H. (2014). β€œIndoor model experience for subsidence characterization of lightweight packing body with pile foundation.” Master Thesis, Dept. of Civil Engineering, Kongju National University, p. 69.Google Search
12 
Shin, K. H., Hwang, C. B., Jeon, S. R. and Lee, K. H. (2014). β€œLoad transfer characteristics of pile foundation for lightweight pavement in sand soil using laboratory chamber test.” Journal of the Korea Academic-Industrial Cooperation Society, Vol. 15, No. 7, pp. 4588-4594. 10.5762/KAIS.2014.15.7.4588Shin, K. H., Hwang, C. B., Jeon, S. R. and Lee, K. H. (2014). β€œLoad transfer characteristics of pile foundation for lightweight pavement in sand soil using laboratory chamber test.” Journal of the Korea Academic-Industrial Cooperation Society, Vol. 15, No. 7, pp. 4588-4594.DOI