Mobile QR Code QR CODE : Journal of the Korean Society of Civil Engineers

  1. ์„œ์šธ๋Œ€ํ•™๊ต ๊ณต๊ณผ๋Œ€ํ•™ ๊ฑด์„คํ™˜๊ฒฝ๊ณตํ•™๋ถ€ ๋ฐ•์‚ฌ๊ณผ์ • (Seoul National University)
  2. ์„œ์šธ๋Œ€ํ•™๊ต ๊ณต๊ณผ๋Œ€ํ•™ ๊ฑด์„คํ™˜๊ฒฝ๊ณตํ•™๋ถ€ ์„์‚ฌ๊ณผ์ • (Seoul National University)
  3. ์„œ์šธ๋Œ€ํ•™๊ต ๊ณต๊ณผ๋Œ€ํ•™ ๊ฑด์„คํ™˜๊ฒฝ๊ณตํ•™๋ถ€ ํ•™์‚ฌ๊ณผ์ • (Seoul National University)
  4. ์„œ์šธ๋Œ€ํ•™๊ต ๊ณต๊ณผ๋Œ€ํ•™ ๊ฑด์„คํ™˜๊ฒฝ๊ณตํ•™๋ถ€ ๋ถ€๊ต์ˆ˜ (Seoul National University)


์ž์œจ์ฃผํ–‰์ฐจ, ๊ณต์‚ฌ๊ตฌ๊ฐ„, ๊ตํ†ต๊ด€๋ฆฌ, ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด, ๋ฏธ์‹œ๊ตํ†ต์‹œ๋ฎฌ๋ ˆ์ด์…˜
Automated vehicle, Work zone, Traffic management, Dynamic merge control, Microscopic traffic simulation

  • 1. ์„œ ๋ก 

  • 2. ๋ฌธํ—Œ๊ณ ์ฐฐ

  • 3. ์—ฐ๊ตฌ๋ฐฉ๋ฒ•

  •   3.1 ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด(DMC)

  •   3.2 ์ž์œจ์ฃผํ–‰ ์ฐจ๋Ÿ‰ ํ‘œํ˜„

  • 4. ์‹œ๋ฎฌ๋ ˆ์ด์…˜

  •   4.1 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์‹œ๋‚˜๋ฆฌ์˜ค

  •   4.2 ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด ์šด์˜ ๋น„์œจ

  •   4.3 ๋„คํŠธ์›Œํฌ ํ‰๊ท  ํ†ตํ–‰์‹œ๊ฐ„

  •   4.4 ๊ณต์‚ฌ๊ตฌ๊ฐ„ ๋ˆ„์ ํ†ต๊ณผ๊ตํ†ต๋Ÿ‰

  • 5. ๊ฒฐ ๋ก 

1. ์„œ ๋ก 

์ตœ๊ทผ ์ž์œจ์ฃผํ–‰์ฐจ(Automated Vehicle, AV)์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ๋†’์•„์ง€๋ฉด์„œ ๊ด€๋ จ ์—ฐ๊ตฌ์™€ ๊ฐœ๋ฐœ์ด ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ์ž๋™์ฐจ ์ œ์กฐ์‚ฌ๋Š” ์กฐํ–ฅ๋ณด์กฐ์žฅ์น˜, ์ •๋ณด์ œ๊ณต์žฅ์น˜ ๋“ฑ์˜ ์ฒจ๋‹จ ์šด์ „์ž ๋ณด์กฐ์‹œ์Šคํ…œ(Advanced Driver Assistance System)์„ ์˜ค๋žœ ๊ธฐ๊ฐ„์— ๊ฑธ์ณ ๊ฐœ๋ฐœํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์—ฌ๋Ÿฌ ์„ ์ง„๊ตญ๋“ค์€ ์ด ์ƒˆ๋กœ์šด ๊ฐœ๋…์˜ ์ž๋™์ฐจ์— ๋Œ€์‘ ๋ฐ ํ˜‘๋ ฅํ•˜๊ธฐ ์œ„ํ•œ ๋„๋กœยท๊ตํ†ต์‹œ์Šคํ…œ์„ ์ค€๋น„ํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ ์ž์œจ์ฃผํ–‰์ฐจ๋Ÿ‰์€ ์„ผ์„œ, ๋ ˆ์ด๋”์™€ ๊ฐ™์€ ์ „์ž์žฅ๋น„๋“ค์„ ํ†ตํ•ด ๊ตํ†ต๋ฅ˜ ์ƒํ™ฉ์„ ์ธ์‹ํ•˜์—ฌ ๋Šฅ๋™์ ์œผ๋กœ ๋Œ€์ฒ˜ํ•  ์ˆ˜ ์žˆ์œผ๋‚˜, ์‚ฌ๊ณ  ๋ฐ ๊ณต์‚ฌ ๋“ฑ์˜ ๋Œ๋ฐœ์ƒํ™ฉ์—์„œ๋Š” ์ž์œจ์ฃผํ–‰์ฐจ์˜ ์žฅ๋น„๋กœ ๋Œ€์ฒ˜ํ•˜๋Š”๋ฐ ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ž์œจ์ฃผํ–‰์ฐจ์— ๋Œ€ํ•œ ๊ตํ†ต ์ธํ”„๋ผ ๋ฐ ๊ตํ†ต๊ด€๋ฆฌ์˜ ์ค€๋น„๊ฐ€ ํ•„์š”ํ•œ ์ƒํ™ฉ์ด๋‹ค.

์ด์— ๋”ฐ๋ผ ๊ตํ†ต ์ƒํ™ฉ๊ณผ ๋Œ๋ฐœ ์ƒํ™ฉ์— ๋Œ€ํ•œ ์ •๋ณด๋ฅผ Vehicle-to- Infra (V2I)์™€ Infra-to-Vehicle (I2V) ํ†ต์‹ ์„ ํ†ตํ•ด ์‹ค์‹œ๊ฐ„ ์ „๋‹ฌํ•ด์ค„ ์ˆ˜ ์žˆ๋Š” ๊ตํ†ต ์ธํ”„๋ผ์™€ ๋น ๋ฅด๊ณ  ๊ทœ์น™์ ์ธ ๋ฐ˜์‘์ด ๊ฐ€๋Šฅํ•œ ์ž์œจ์ฃผํ–‰์ฐจ ๊ฐ„ ํ˜‘๋ ฅ ์ฒด๊ณ„์— ๋Œ€ํ•ด ๋งŽ์€ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ๋ฏธ๊ตญ ๊ตํ†ต๋ถ€๋Š” Vehicle-to-Everything (V2X) ํ†ต์‹ ์ด ๊ฐ€๋Šฅํ•œ ์ปค๋„ฅํ‹ฐ๋“œ์นด(Connected Vehicle, CV)์—์„œ ์ž์œจ์ฃผํ–‰์ฐจ๋กœ ๋ฐœ์ „ํ•˜๋Š” ๋ชจ์Šต์„ ๊ฐœ๋…์ ์œผ๋กœ ์ •์˜ํ•˜๋ฉฐ, 2030๋…„์„ ๋ชฉํ‘œ๋กœ Safety Pilot ํ”„๋กœ์ ํŠธ๋ฅผ ์ˆ˜ํ–‰์ค‘์ด๋‹ค. ์œ ๋Ÿฝ์—ฐํ•ฉ์˜ Drive C2X ํ”„๋กœ์ ํŠธ๋Š” ๋„ค๋œ๋ž€๋“œ์˜ A270 ๋„๋กœ ํ…Œ์ŠคํŠธ๋ฒ ๋“œ๋ฅผ ์šด์˜ํ•˜๋ฉด์„œ GPS, ITS, ํ†ตํ•ฉ์ œ์–ด์„ผํ„ฐ๋ฅผ ํ†ตํ•œ ์ž์œจ์ฃผํ–‰์ฐจ์™€์˜ ํ˜‘๋ ฅ ์ฒด๊ณ„์— ๋Œ€ํ•œ ํšจ๊ณผ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜๊ณ  ์žˆ๋‹ค.

๋Œ€๋ถ€๋ถ„์˜ ๊ณ ์†๋„๋กœ ๊ณต์‚ฌ๋Š” ๋„๋กœ ๊ด€๋ฆฌ ๋ฐ ๊ฐœ์„ ์„ ๋ชฉ์ ์œผ๋กœ ์ฐจ๋กœ ํ์‡„์ƒํƒœ์—์„œ ์ง„ํ–‰๋˜๋ฉฐ, 1๊ฐœ ์ฐจ์„  ํ˜น์€ ๋ณต์ˆ˜ ์ฐจ๋กœ์˜ ์‚ฌ์šฉ์ด ๋ถˆ๊ฐ€ํ•˜๊ฒŒ ๋จ์— ๋”ฐ๋ผ ๊ณต์‚ฌ ์ค‘ ๋„๋กœ ์šฉ๋Ÿ‰์€ ์ค„์–ด๋“ค๊ฒŒ ๋œ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ์šด์ „์ž๋Š” ์ฐจ๋กœ๋ณ€๊ฒฝ ๋ฐ ํ•ฉ๋ฅ˜ ์กฐ์ž‘์„ ํ•ด์•ผ ํ•˜๊ณ , ์ด๋กœ ์ธํ•˜์—ฌ ์‚ฌ๊ณ  ๊ฐ€๋Šฅ์„ฑ์ด ์ฆ๊ฐ€ํ•˜๊ณ  ๊ตํ†ต๋ฅ˜ ํšจ์œจ์ด ์•…ํ™”๋œ๋‹ค. ๋ฏธ๊ตญ Federal Highway Administration (FHWA)๋Š” Smarter Work Zones๋ฅผ ์šด์˜ํ•˜๋ฉฐ Work Zone Intelligent Transportation Systems Implementation Guide๋ฅผ ์ œ์‹œํ•˜๊ณ  ์žˆ๋‹ค. ํ•ด๋‹น ๊ฐ€์ด๋“œ๋Š” ๊ณต์‚ฌ๊ตฌ๊ฐ„์—์„œ ์‹ค์‹œ๊ฐ„ ์šด์ „์ž ์ •๋ณด ์ œ๊ณต, ๋Œ€๊ธฐ์—ด ๊ฒฝ๊ณ , ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด, ์‚ฌ๊ณ ๊ด€๋ฆฌ, ๊ฐ€๋ณ€์†๋„์ œํ•œ ๋“ฑ ๋‹ค์–‘ํ•œ ๊ณ ์†๋„๋กœ ๋‚ด ๊ตํ†ต๊ด€๋ฆฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค(Mirshahi et al., 2014). Utah DOT (Department of Transportation)์™€ Minnesota DOT๋Š” ๊ฐ€๋ณ€์†๋„์ œํ•œ(Variable Speed Limit, VSL)์„ ๊ฒ€์ง€๊ธฐ(Vehicle Detector System, VDS)์™€ ๊ฐ€๋ณ€์ •๋ณดํ‘œ์ง€ํŒ(Variable Message Sign, VMS)์œผ๋กœ ๊ตฌ์„ฑํ•˜์—ฌ ๊ณต์‚ฌ๊ตฌ๊ฐ„์„ ํ†ต๊ณผํ•˜๋Š” ์ฐจ๋Ÿ‰์— ์ œํ•œ์†๋„์ •๋ณด๋ฅผ ์ „๋‹ฌํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋Œ€๊ธฐ์—ด ๋„๋‹ฌ ์ „์— ๊ฐ์†์„ ์œ ๋„ํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋Œ€๊ธฐ์—ด ๋ถ€๊ทผ์˜ ํ›„๋ฏธ์ถฉ๋Œ์‚ฌ๊ณ  ๊ฐ€๋Šฅ์„ฑ์„ ์ค„์ผ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์†๋„์˜ ๊ท ์ผํ™”๋ฅผ ํ†ตํ•ด ์ •์ฒด, ํ†ตํ–‰์‹œ๊ฐ„ ์ธก๋ฉด ๊ฐœ์„ ์ด ๊ฐ€๋Šฅํ•˜๋‹ค.

๊ธฐ์กด ๊ตํ†ต๊ด€๋ฆฌ๋Š” ๊ณต์‚ฌ๊ตฌ๊ฐ„ ์ƒ๋ฅ˜๋ถ€์—์„œ ์†๋„์ œ์–ด์™€ ํ•ฉ๋ฅ˜์ œ์–ด๋ฅผ ํ•จ๊ป˜ ์‚ฌ์šฉํ•ด์™”์œผ๋ฉฐ, ์†๋„์ œ์–ด ๊ธฐ๋ฒ•์œผ๋กœ ๊ฐ€๋ณ€์†๋„์ œํ•œ์„, ํ•ฉ๋ฅ˜์ œ์–ด ๊ธฐ๋ฒ•์€ ์ •์ (static) ํ˜น์€ ๋™์ (dynamic)์ธ ๋ฐฉ์‹์œผ๋กœ ๊ตํ†ต์ƒํ™ฉ์— ๋”ฐ๋ผ ์šด์ „์ž์—๊ฒŒ ์กฐ๊ธฐํ•ฉ๋ฅ˜(Early Merge, EM) ๋˜๋Š” ์ง€์—ฐํ•ฉ๋ฅ˜(Late Merge, LM) ๋“ฑ์ด ์ฃผ๋กœ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ์กฐ๊ธฐํ•ฉ๋ฅ˜๋Š” ์ตœ๋Œ€ํ•œ ๋ฏธ๋ฆฌ ํ•ฉ๋ฅ˜ํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ณต์‚ฌ๊ตฌ๊ฐ„์— ๋Œ€ํ•œ ์ •๋ณด ๋ฐ ์ฐจ๋กœ๋ณ€๊ฒฝ ์œ ๋„ ์ •๋ณด๋ฅผ ์šด์ „์ž์—๊ฒŒ ์ œ๊ณตํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ง€์—ฐํ•ฉ๋ฅ˜๋Š” ์กฐ๊ธฐํ•ฉ๋ฅ˜์™€ ์ƒ๋ฐ˜๋˜๋Š” ๊ฐœ๋…์œผ๋กœ ์šด์ „์ž๋“ค์—๊ฒŒ ํ•ฉ๋ฅ˜์ง€์ ๊นŒ์ง€ ๊ฐ์ž์˜ ์ฐจ์„ ์„ ์œ ์ง€์‹œํ‚ค๊ณ , ์ตœ๋Œ€ํ•œ ๊ณต์‚ฌ๊ตฌ๊ฐ„ ์ง์ „์—์„œ ํ•ฉ๋ฅ˜์‹œํ‚ค๋Š” ๊ฒƒ์ด๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋„๋กœ์˜ ์šฉ๋Ÿ‰์„ ์ตœ๋Œ€ํ•œ ํ™œ์šฉํ•˜๊ฒŒ ๋˜๋Š”๋ฐ ์—ฌ๋Ÿฌ ์šด์˜์‚ฌ๋ก€๋ฅผ ํ†ตํ•ด ๋Œ€๊ธฐ์—ด ๊ฐ์†Œ์™€ ํ†ตํ–‰์‹œ๊ฐ„ ์ ˆ๊ฐ, ๊ณต์‚ฌ๊ตฌ๊ฐ„ ๋‚ด ํ†ต๊ณผ๊ตํ†ต๋Ÿ‰ ์ฆ๊ฐ€์˜ ํšจ๊ณผ๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค.

๋™์ ํ•ฉ๋ฅ˜์ œ์–ด(Dynamic Merge Control, DMC)๋Š” ๋™์ ์กฐ๊ธฐํ•ฉ๋ฅ˜(Dynamic Early Merge, DEM)์™€ ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜(Dynamic Late Merge, DLM)๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ๊ธฐ์กด์˜ ์ •์ ์ธ ํ•ฉ๋ฅ˜์ œ์–ด์ฒ˜๋Ÿผ ๊ณ ์ •์ ์œผ๋กœ ์šด์˜๋˜๋Š” ๊ฒƒ์ด ์•„๋‹Œ ๊ตํ†ต์ƒํ™ฉ์— ๋”ฐ๋ผ ๋Šฅ๋™์ ์œผ๋กœ ์šด์˜๋˜์–ด ๊ตํ†ต ๋ณ€ํ™”์— ์‹ค์‹œ๊ฐ„ ๋Œ€์‘์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๋™์ ์กฐ๊ธฐํ•ฉ๋ฅ˜๋Š” ๋ฏธ๋ฆฌ ํ•ฉ๋ฅ˜๋ฅผ ์œ ๋„ํ•˜๋Š” ํ•ฉ๋ฅ˜์ง€์ ์„ ๊ตํ†ต์ƒํ™ฉ์ด ๋ฐ˜์˜๋˜์–ด ๋™์ ์œผ๋กœ ์šด์˜๋˜๋Š” ๊ฒƒ์ด๋‹ค. ์ด๋•Œ ๋Œ€๊ธฐ์—ด ๊ฒ€์ง€๊ธฐ๋‚˜ ๊ณต์‚ฌ๊ตฌ๊ฐ„ ๊ฒ€์ง€๊ธฐ๋ฅผ ํ†ตํ•ด ์‹œ๊ฐ„์ ์œ ์œจ ํ˜น์€ ์†๋„๋‚˜ ๊ตํ†ต๋Ÿ‰์„ ์‚ฐ์ถœํ•˜์—ฌ ์šด์˜ ๊ธฐ์ค€์— ๋”ฐ๋ผ ์ฐจ๋กœ๋ณ€๊ฒฝ ์•ˆ๋‚ดํ‘œ์‹œํŒ์ด ์šด์˜๋œ๋‹ค. ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜๋Š” ๊ณต์‚ฌ๊ตฌ๊ฐ„ ์ง์ „์˜ ํ•ฉ๋ฅ˜์ง€์ ๊นŒ์ง€ ๋ชจ๋“  ์ฐจ๋Ÿ‰๋“ค์—๊ฒŒ ๋น„๊ณต์‚ฌ ์ฐจ๋กœ์™€ ๊ณต์‚ฌ๊ตฌ๊ฐ„ ์ฐจ๋กœ์˜ ํ†ตํ–‰์„ ํ—ˆ์šฉํ•˜์—ฌ ๋„๋กœ ํ™œ์šฉ์„ ์ตœ๋Œ€ํ™”ํ•˜๊ณ , ๊ณต์‚ฌ๊ตฌ๊ฐ„์˜ ์ƒ๋ฅ˜๋ถ€์—์„œ ํ•ฉ๋ฅ˜๋ฅผ ์ตœ์†Œํ™”ํ•จ์— ๋”ฐ๋ผ ์ฐจ๋Ÿ‰ ๊ฐ„ ๊ฐ„์„ญ์„ ์ค„์—ฌ์ค€๋‹ค. ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜ ๋˜ํ•œ ๊ณต์‚ฌ๊ตฌ๊ฐ„ ์ƒ๋ฅ˜๋ถ€์˜ ๊ฒ€์ง€๊ธฐ๋ฅผ ํ†ตํ•ด ์‹œ๊ฐ„์ ์œ ์œจ, ์†๋„, ๊ตํ†ต๋Ÿ‰๋“ฑ์˜ ์šด์˜ ๊ธฐ์ค€์„ ๋งŒ์กฑํ•  ๋•Œ ์ฐจ์„  ์œ ์ง€์˜ ์ •๋ณด๋ฅผ ์ด๋™์‹ ์ •๋ณดํ‘œ์‹œํŒ์œผ๋กœ ์ „๋‹ฌํ•œ๋‹ค.

๋ณธ ์—ฐ๊ตฌ๋Š” ๋งŽ์€ ์ง€์—ญ์—์„œ ์šด์˜๋˜๋Š” ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜์™€ ๋™์ ์กฐ๊ธฐํ•ฉ๋ฅ˜์— ๋Œ€ํ•˜์—ฌ ์ผ๋ฐ˜์ฐจ ๋Œ€๋น„ ๋น ๋ฅธ ๋ฐ˜์‘์†๋„์™€ ํ†ต์‹ ์ด ๊ฐ€๋Šฅํ•œ ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ์—์„œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํšจ๊ณผ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๊ธฐ์กด ๊ณ ์†๋„๋กœ ๊ณต์‚ฌ๊ตฌ๊ฐ„์˜ ๊ตํ†ต๊ด€๋ฆฌ์— ๋Œ€ํ•œ ๋ฌธํ—Œ์กฐ์‚ฌ๋ฅผ ํ†ตํ•ด ํ•ฉ๋ฅ˜์ œ์–ด์ „๋žต์ด ์–ด๋–ป๊ฒŒ ์šด์˜๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ์–ด๋–ค ํšจ๊ณผ ๋ถ„์„ ์‚ฌ๋ก€๊ฐ€ ์žˆ๋Š”์ง€ ์ •๋ฆฌํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์‹ค์ œ ์šด์˜ ๊ธฐ์ค€์— ๋งž์ถฐ ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด๋ฅผ ๊ตฌ์„ฑํ•˜๊ณ , ์ด๋ฅผ ๋ฏธ์‹œ๊ตํ†ต์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์ค‘ ํ•˜๋‚˜์ธ VISSIM์— ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ์ž์œจ์ฃผํ–‰์ฐจ์™€ ์ผ๋ฐ˜์ฐจ์— ๋Œ€ํ•œ ํ‘œํ˜„์€ ๊ธฐ์กด VISSIM ๋‚ด ๊ธฐ๋ณธ ๋ชจํ˜•์„ ๋”ฐ๋ฅธ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜์˜€์œผ๋ฉฐ ํŒŒ๋ผ๋ฏธํ„ฐ์— ์ฐจ์ด๋ฅผ ๋‘์–ด ์ด ๋‘˜์„ ํ‘œํ˜„ํ•˜๊ณ , ์ฐจ์ข…๊ณผ ํ•ฉ๋ฅ˜์ œ์–ด์ „๋žต์ด ๋ฐ˜์˜๋œ 6๊ฐœ์˜ ์‹œ๋‚˜๋ฆฌ์˜ค์— ๋Œ€ํ•ด ํˆฌ์ž…๊ตํ†ต๋Ÿ‰๋ณ„๋กœ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ํšจ๊ณผ ๋ถ„์„์œผ๋กœ ๋„คํŠธ์›Œํฌ ํ†ตํ–‰์‹œ๊ฐ„๊ณผ ๊ณต์‚ฌ๊ตฌ๊ฐ„ ํ†ต๊ณผ๊ตํ†ต๋Ÿ‰์„ ์‚ฐ์ถœํ•˜์—ฌ ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด์˜ ์ผ๋ฐ˜์ฐจ ํ™˜๊ฒฝ๊ณผ ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ์—์„œ์˜ ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ๋น„๊ตํ•˜์˜€๋‹ค.

2. ๋ฌธํ—Œ๊ณ ์ฐฐ

๊ธฐ์กด ์ž์œจ์ฃผํ–‰์ฐจ ์—ฐ๊ตฌ๋“ค์ด ์ฃผ๋กœ ์ž์œจ์ฃผํ–‰์ฐจ๋Ÿ‰์œผ๋กœ ์ธํ•œ ์šด์˜์„ฑ, ์•ˆ์ •์„ฑ, ์•ˆ์ „์„ฑ, ํ™˜๊ฒฝ์„ฑ ํšจ๊ณผ๋ฅผ ๋ถ„์„ํ•˜์˜€๊ณ (Mahmassani, 2016; Shladover, 2017; Talebpour and Mahmassani, 2016), ๊ตํ†ต๋ฅ˜ ๋ชจํ˜• ์ค‘ ํ•˜๋‚˜์ธ ์ฐจ๋Ÿ‰์ถ”์ข…๋ชจํ˜•์„ ์‘์šฉํ•˜์—ฌ ์ž์œจ์ฃผํ–‰์ฐจ๋ฅผ ํ‘œํ˜„ํ•œ ์—ฐ๊ตฌ๋“ค์ด ๋งŽ๋‹ค(Khondaker and Kattan, 2015; Mahmassani, 2016; Talebpour and Mahmassani, 2016). ์ž์œจ์ฃผํ–‰์ฐจ์— ๋Œ€ํ•œ ๊ธฐ์กด ๊ตํ†ต๊ด€๋ฆฌ์˜ ํšจ๊ณผ์—ฐ๊ตฌ๋‚˜ ์ž์œจ์ฃผํ–‰์ฐจ๋ฅผ ๋„์ž… ๋ฐ ํ™œ์šฉํ•œ ์—ฐ๊ตฌ๋Š” ์•„์ง ์ดˆ๊ธฐ ๋‹จ๊ณ„์ด๋‹ค. ์ „์šฉ์ฐจ๋กœ, ๊ฐ€๋ณ€์†๋„์ œํ•œ์„ ์ž์œจ์ฃผํ–‰์ฐจ์— ํ™œ์šฉํ•˜์—ฌ ์ž์œจ์ฃผํ–‰์ฐจ ๋„์ž…์„ ํ†ตํ•ด ๊ตํ†ต๋ฅ˜ ์ธก๋ฉด ์šฉ๋Ÿ‰ ๊ฐœ์„ , ํ†ตํ–‰์†๋„ ์ฆ๊ฐ€, ์‚ฌ๊ณ  ๊ฐ์†Œ์˜ ํšจ๊ณผ๊ฐ€ ์žˆ๋‹ค๊ณ  ๋ถ„์„ํ•˜์˜€๋‹ค(Ghiasi et al., 2017; Han et al., 2017; Khondaker and Kattan, 2015; Grumert et al., 2015; Qom et al., 2016; Sun et al., 2014; Talebpour et al., 2017; Talebpour et al., 2013).

๊ณต์‚ฌ๊ตฌ๊ฐ„์—์„œ ์šด์ „์ž์˜ ํ•ฉ๋ฅ˜ํ–‰ํƒœ๋Š” ๊ณต์‚ฌ๊ตฌ๊ฐ„ ์•ˆ๋‚ดํŒ์ด ์žˆ๋Š” ๊ณณ๋ถ€ํ„ฐ ๊ณต์‚ฌ๊ตฌ๊ฐ„๊นŒ์ง€ ๋‹ค์–‘ํ•œ ์ง€์ ์—์„œ ์ด๋ค„์ง€๋ฉฐ, ์ด๋กœ ์ธํ•œ ์ฐจ๋Ÿ‰ ๊ฐ„ ๊ฐ„์„ญ์œผ๋กœ ์ผ์‹œ์ ์ธ ๋ณต์ˆ˜์˜ ๋ณ‘๋ชฉ์ง€์ ์ด ๋ฐœ์ƒํ•˜์—ฌ ๊ตํ†ต๋ฅ˜ ํšจ์œจ์ด ์•…ํ™”๋˜๊ณ  ์‚ฌ๊ณ  ๊ฐ€๋Šฅ์„ฑ๋„ ์ปค์ง„๋‹ค. ๊ณต์‚ฌ๊ตฌ๊ฐ„์—์„œ์˜ ๊ตํ†ต๊ด€๋ฆฌ ์—ฐ๊ตฌ๋Š” ๊ตํ†ต๋ฅ˜ ์šด์˜์„ฑ๊ณผ ์•ˆ์ „์„ฑ์„ ๋ชฉ์ ์œผ๋กœ ๋งŽ์€ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜์–ด์™”๋‹ค. ํŠนํžˆ ๊ณต์‚ฌ๊ตฌ๊ฐ„ ์ฐจ๋กœ์— ๋Œ€ํ•œ ํ•ฉ๋ฅ˜์ œ์–ด ์—ฐ๊ตฌ์™€ ๊ณต์‚ฌ๊ตฌ๊ฐ„์—์„œ์˜ ๋Œ€๊ธฐ์—ด ์˜ˆ๋ฐฉ ๋ฐ ์ „ํŒŒ ๋ฐฉ์ง€๋ฅผ ์œ„ํ•œ ๊ฐ€๋ณ€์†๋„์ œํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ฃผ๋กœ ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ์กฐ๊ธฐํ•ฉ๋ฅ˜(Early Merge;์กฐ๊ธฐํ•ฉ๋ฅ˜)๋Š” ๋ฏธ๋ฆฌ ํ•ฉ๋ฅ˜์‹œํ‚ด์œผ๋กœ์จ ๋งค๋„๋Ÿฌ์šด ํ•ฉ๋ฅ˜๊ฐ€ ๊ฐ€๋Šฅํ•˜์—ฌ ์•ˆ์ „์„ฑ ์ธก๋ฉด ํšจ๊ณผ๊ฐ€ ์žˆ์œผ๋ฉฐ, ์—ฌ๋Ÿฌ ์šด์˜์‚ฌ๋ก€๋ฅผ ํ†ตํ•ด ์‚ฌ๊ณ  ๊ฐ€๋Šฅ์„ฑ์„ ๊ฐ์†Œ์‹œํ‚ค๋Š” ํšจ๊ณผ๊ฐ€ ํ™•์ธ๋˜์—ˆ๋‹ค(Ge et al., 2013; McCoy et al., 2001; Yang et al., 2009). Yang et al.(2009)๋Š” ๊ฒฐ๊ณผ์ ์œผ๋กœ ์ฐจ๊ฐ„ ๊ฑฐ๋ฆฌ๊ฐ€ ์ž‘์„์ˆ˜๋ก ์šด์˜ ํšจ๊ณผ๊ฐ€ ๊ฐ์†Œํ•œ๋‹ค๊ณ  ์ œ์‹œํ•˜์˜€๋‹ค. Indiana DOT๋Š” Indiana Lane Merge System์„ ์šด์˜ํ•˜์—ฌ ๋น„๊ณต์‚ฌ ์ฐจ๋กœ์˜ ๊ตํ†ต๋ฅ˜ ๊ท ์ผํ™”, ์‚ฌ๊ณ ์œจ ๊ฐ์†Œ์˜ ํšจ๊ณผ๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. Michigan DOT๋Š” 2004๋…„์— Kalamazoo์˜ US-131์—์„œ 2์ฃผ๊ฐ„ ๋™์ ์กฐ๊ธฐํ•ฉ๋ฅ˜๋ฅผ ์šด์˜ํ•˜์—ฌ ๋ฌด๋ฆฌํ•œ ํ•ฉ๋ฅ˜์˜ ๊ฐ์†Œ, ์ง€์ฒด ๊ฐ์†Œ์˜ ํšจ๊ณผ๋ฅผ ์ œ์‹œํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ์กฐ๊ธฐํ•ฉ๋ฅ˜๋Š” ์ ๊ฑฐ๋‚˜ ์›ํ™œํ•œ ์ˆ˜์ค€์˜ ๊ตํ†ต์ˆ˜์ค€์—์„œ ํšจ๊ณผ๊ฐ€ ์žˆ์œผ๋ฉฐ, ์šด์ „์ž๊ฐ€ ์–ผ๋งˆ๋‚˜ ์กฐ๊ธฐํ•ฉ๋ฅ˜์— ์ต์ˆ™ํ•œ์ง€, ์–ผ๋งˆ๋‚˜ ์ค€์ˆ˜ํ•˜๋Š”์ง€์— ๋”ฐ๋ผ ํšจ๊ณผ ์ •๋„๊ฐ€ ๋‹ฌ๋ผ์ง„๋‹ค.

์ง€์—ฐํ•ฉ๋ฅ˜๋Š” ๋„๋กœ์˜ ์šฉ๋Ÿ‰์„ ์ตœ๋Œ€ํ•œ ํ™œ์šฉํ•˜์—ฌ ๋†’์€ ๊ตํ†ต ์ˆ˜์ค€์—์„œ ๋Œ€๊ธฐ์—ด ๊ธธ์ด๋ฅผ ์ตœ์†Œํ™”ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋งŽ์€ ์—ฐ๊ตฌ ์‚ฌ๋ก€์—์„œ ๊ณต์‚ฌ๊ตฌ๊ฐ„์—์„œ์˜ ์ง€์—ฐํ•ฉ๋ฅ˜ ์šด์˜ ์‹œ ํ†ต๊ณผ๊ตํ†ต๋Ÿ‰๊ณผ ๋Œ€๊ธฐ์—ด ์ธก๋ฉด ํšจ๊ณผ๋ฅผ ์ œ์‹œํ•˜์˜€๋‹ค(Taavola et al., 2003; Walters et al., 2001). ๋ฏธ๊ตญ ๋ฒ„์ง€๋‹ˆ์•„์ฃผ์— ์‹ค์ œ ์ ์šฉํ•œ ์—ฐ๊ตฌ์—์„œ๋Š” ์ค‘์ฐจ๋Ÿ‰ ๋น„์œจ์— ๋”ฐ๋ผ ์šด์˜ ํšจ๊ณผ๊ฐ€ ๋‹ฌ๋ผ์ง„๋‹ค๊ณ  ๋ถ„์„ํ•˜์˜€๋‹ค(Beacher et al., 2004).

๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜์˜ ๊ฒฝ์šฐ, ์—ฌ๋Ÿฌ ์—ฐ๊ตฌ์—์„œ ํ˜ผ์žก๊ณผ ์ง€์ฒด ๊ฐ์†Œ๊ฐ€ ์ฃผ๋œ ํšจ๊ณผ๋กœ ์ œ์‹œ๋˜์—ˆ๋‹ค(McCoy and Pesti, 2001; Meyer, 2004). Minnesota DOT๋Š” ๊ณต์‚ฌ๊ตฌ๊ฐ„ ์ ‘๊ทผ ์ฐจ๋Ÿ‰์˜ ์†๋„์™€ ๊ตํ†ต๋Ÿ‰์„ ์šด์˜ ๊ธฐ์ค€์œผ๋กœ ์‚ฌ์šฉํ•˜์—ฌ Dynamic Late Lane Merge system์ด๋ผ๋Š” ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜๋ฅผ ์šด์˜ํ•˜์˜€์œผ๋ฉฐ, ๋Œ€๊ธฐ์—ด ๊ธธ์ด, ์ฐจ์„  ๊ฐ„ ๊ตํ†ต๋Ÿ‰ ๋น„์œจ์„ ๊ฐœ์„  ํšจ๊ณผ๋กœ ์ œ์‹œํ•˜์˜€๋‹ค. FHWA๋Š” ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด๋ฅผ ํ†ตํ•ด ํ†ต๊ณผ๊ตํ†ต๋Ÿ‰ ์ฆ๊ฐ€, ์šฉ๋Ÿ‰ ์ฆ๋Œ€, ์‚ฌ๊ณ  ๊ฐ์†Œ, ์šด์ „ํ–‰ํƒœ์™€ ์†๋„์˜ ๊ท ์ผํ™”, ๊ตํ†ต ํ๋ฆ„์˜ ์†Œ์Œ(noise) ๊ฐ์†Œ, ๊ทธ๋ฆฌ๊ณ  ํ™˜๊ฒฝ ์ธก๋ฉด ๊ฐœ์„ ์˜ ํšจ๊ณผ๊ฐ€ ์žˆ๋‹ค๊ณ  ์ œ์‹œํ•œ ๋ฐ” ์žˆ๋‹ค(Mirshahi et al., 2007). ํŠนํžˆ ๊ตํ†ต์ˆ˜์š”๊ฐ€ ๋ณ€ํ•˜๋Š” ๊ตํ†ต์ƒํ™ฉ์—์„œ๋Š” ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด๊ฐ€ ์ง€์ฒด, ์œ„ํ—˜์šด์ „ํ–‰ํƒœ, ์•ˆ์ •์„ฑ, ๋Œ€๊ธฐ์—ด ์ธก๋ฉด์˜ ๊ฐœ์„ ์ด ๊ฐ€๋Šฅํ•˜๋‹ค๊ณ  ์•Œ๋ ค์ ธ ์žˆ๋‹ค(Gerald Ullman et al., 2014). Kansas DOT๋Š” Construction Area Late Merge๋ผ๋Š” ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜๋ฅผ ์šด์˜ํ•˜์˜€๋Š”๋ฐ ๊ณต์‚ฌ๊ตฌ๊ฐ„ ์ƒ๋ฅ˜์ง€์ ์˜ ์†๋„์™€ ๊ตํ†ต๋Ÿ‰์„ ์šด์˜ ๊ธฐ์ค€์œผ๋กœ ํ™œ์šฉํ•˜์˜€๋‹ค. Michigan DOT๋Š” Zipper Merge๋ผ๋Š” ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜๋ฅผ ์šด์˜ํ•˜์—ฌ ๊ณต์‚ฌ๊ตฌ๊ฐ„ ๋‚ด ํ†ต๊ณผ๊ตํ†ต๋Ÿ‰ ๊ฐœ์„  ๋ฐ ๋Œ€๊ธฐ์—ด ๊ฐ์†Œ๋ฅผ ๊ฒฐ๊ณผ๋กœ ์ œ์‹œํ•˜์˜€์œผ๋ฉฐ, ์ƒ๋ฅ˜๋ถ€์˜ ๊ตํ†ต๋Ÿ‰๊ณผ ํ†ตํ–‰์†๋„๋ฅผ ์šด์˜ ๊ธฐ์ค€์œผ๋กœ ์‚ฌ์šฉํ•˜์˜€๋‹ค. Maryland DOT๋Š” โ€œAll on-All offโ€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•œ ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜๋ฅผ ์šด์˜ํ•˜์—ฌ ๊ณต์‚ฌ๊ตฌ๊ฐ„ ๋‚ด ํ†ต๊ณผ๊ตํ†ต๋Ÿ‰ ๊ฐœ์„  ๋ฐ ๋Œ€๊ธฐ์—ด ๊ฐ์†Œ์™€ ์ฐจ๋กœ๋ณ„ ๊ตํ†ต๋Ÿ‰ ๋ถ„ํฌ์˜ ๊ท ์ผํ™”๋ฅผ ๊ฒฐ๊ณผ๋กœ ์ œ์‹œํ•˜์˜€์œผ๋ฉฐ, ์ƒ๋ฅ˜๋ถ€์˜ ์‹œ๊ฐ„์ ์œ ์œจ์„ ์šด์˜ ๊ธฐ์ค€์œผ๋กœ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๋˜ํ•œ, Kang et al.(2006)์—์„œ๋Š” Maryland DOT์˜ ์šด์˜๊ธฐ์ค€์„ ํ™œ์šฉํ•˜์—ฌ US I-83์—์„œ ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜๋ฅผ ์‹ค์ œ๋กœ ์šด์˜ํ•˜์˜€๊ณ , ํ†ต๊ณผ๊ตํ†ต๋Ÿ‰๊ณผ ๋Œ€๊ธฐ์—ด ๊ธธ์ด ๊ฐœ์„  ํšจ๊ณผ๋ฅผ ์ œ์‹œํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•˜๋“ฏ์ด ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋ฏธ๊ตญ FHWA, America Traffic Safety Services Association (ATSSA), ๋งŽ์€ ์ฃผ์˜ ๋ฏธ๊ตญ DOT๋Š” ๊ณต์‚ฌ๊ตฌ๊ฐ„์—์„œ ๋งค๋„๋Ÿฌ์šด ํ•ฉ๋ฅ˜๋ฅผ ์œ ๋„ํ•จ์— ๋”ฐ๋ผ ์•ˆ์ „์„ฑ ๊ฐœ์„ , ๊ณต์‚ฌ๊ตฌ๊ฐ„ ๋‚ด ํ†ต๊ณผ๊ตํ†ต๋Ÿ‰ ์ฆ๊ฐ€, ๊ตฌ๊ฐ„ํ†ตํ–‰์‹œ๊ฐ„ ์ ˆ๊ฐ์˜ ํšจ๊ณผ๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค(Kang et al., 2006; Meyer, 2004; Radwan et al., 2009).

์šด์ „์ž์˜ ์ค€์ˆ˜์œจ(compliance rate)์— ๋”ฐ๋ผ ์ผ๋ฐ˜์ฐจ ํ™˜๊ฒฝ์—์„œ ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด์˜ ํšจ๊ณผ๋Š” ์ฐจ์ด๊ฐ€ ํฌ๋‹ค. ๋ฐ˜๋ฉด ์ž์œจ์ฃผํ–‰์ฐจ๋Š” ์ผ๋ฐ˜์ฐจ ๋Œ€๋น„ ๋ฐ˜์‘์†๋„๊ฐ€ ๋น ๋ฅด๋ฉฐ ๊ทœ์น™์ ์ธ ๋ฐ˜์‘์ด ๊ฐ€๋Šฅํ•˜๊ณ , ์ฃผ๋ณ€ ์ž์œจ์ฃผํ–‰์ฐจ ๋ฐ ๊ตํ†ต ์ธํ”„๋ผ์™€์˜ ํ†ต์‹ ์ด ๊ฐ€๋Šฅํ•˜๋ฏ€๋กœ ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด์˜ ํšจ๊ณผ๋ฅผ ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ๋‹ค. Nanicha(2018)์—์„œ ๊ณต์‚ฌ๊ตฌ๊ฐ„ ํ•ฉ๋ฅ˜์ œ์–ด์˜ ์ž์œจ์ฃผํ–‰์ฐจ์— ๋Œ€ํ•œ ํšจ๊ณผ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ–ˆ์œผ๋‚˜, ์ •์ ์ธ ๋ฐฉ์‹์œผ๋กœ ํ•ฉ๋ฅ˜์ œ์–ด๋ฅผ ์šด์˜ํ•˜์—ฌ ๊ตํ†ต์ƒํ™ฉ์— ๋”ฐ๋ฅธ ์‹ค์‹œ๊ฐ„ ๋Œ€์‘์„ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ ํ•œ๊ณ„๊ฐ€ ์กด์žฌํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๋Œ€๋ถ€๋ถ„์˜ ๋ฏธ๊ตญ DOT์—์„œ ์‚ฌ์šฉ๋˜๋Š” ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด๋ฅผ ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ์—์„œ ๋ถ„์„ํ•˜์—ฌ ๊ธฐ์กด ์—ฐ๊ตฌ์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ , ๊ณ ์ •๋œ ๊ตํ†ต์ˆ˜์š”์™€ ๋ณ€๋™ํ•˜๋Š” ๊ตํ†ต์ˆ˜์š”์— ๋Œ€ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜์—ฌ ๊ณต์‚ฌ๊ตฌ๊ฐ„์—์„œ์˜ ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด ๊ฐœ์„  ํšจ๊ณผ๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค.

3. ์—ฐ๊ตฌ๋ฐฉ๋ฒ•

3.1 ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด(DMC)

๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์‹œํ•˜๋Š” ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜์™€ ๋™์ ์กฐ๊ธฐํ•ฉ๋ฅ˜๋Š” ๊ณต์‚ฌ๊ตฌ๊ฐ„์˜ ์ƒ๋ฅ˜๋ถ€ ๊ฒ€์ง€๊ธฐ ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•ด ๊ตํ†ต์ƒํ™ฉ์„ ํŒ๋‹จํ•˜๊ณ  ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด๋ฅผ ๊ฒฐ์ •ํ•œ๋‹ค. ๊ฒฐ์ •๋œ ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด ์ •๋ณด๋ฅผ ์ž์œจ์ฃผํ–‰์ฐจ์—๋Š” V2I๋กœ, ์ผ๋ฐ˜์ฐจ์—๋Š” VMS๋กœ ์ „๋‹ฌํ•œ๋‹ค(Fig. 1 ์ฐธ๊ณ ).

Figure_KSCE_38_6_10_F1.jpg
Fig. 1.

Concepts of DMC

๋ณธ ์—ฐ๊ตฌ๋Š” ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜์™€ ๋™์ ์กฐ๊ธฐํ•ฉ๋ฅ˜์˜ ์šด์˜ ๋ฐฉ์‹์œผ๋กœ Marlyland DOT ๋ฐฉ์‹์„ ์ฑ„ํƒํ•˜์˜€๊ณ , 75๋ถ„์˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์ค‘ Warm-up ์‹œ๊ฐ„(15๋ถ„)์„ ์ œ์™ธํ•œ 60๋ถ„์„ ๋ถ„์„ ์ž๋ฃŒ๋กœ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด์˜ ์šด์˜ ๊ธฐ์ค€์€ ๊ฒ€์ง€๊ธฐ์˜ ์‹œ๊ฐ„์ ์œ ์œจ์ด๋ฉฐ, ์šด์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ Fig. 2์— ์ œ์‹œ๋œ ๋ฐ”์™€ ๊ฐ™์ด ์šด์˜๊ธฐ์ค€ ๊ฐ’์— ๋”ฐ๋ผ ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด ์šด์˜์ด ๊ฒฐ์ •๋œ๋‹ค. xn(t)๋Š” n๋ฒˆ์งธ ๊ฒ€์ง€๊ธฐ(n=1,2,3)์˜ 5๋ถ„(๐›ฅt)๋งˆ๋‹ค ์ธก์ •๋œ ์‹œ๊ฐ t์˜ ํ‰๊ท  ์‹œ๊ฐ„์ ์œ ์œจ์„ ์˜๋ฏธํ•œ๋‹ค. Fig. 2(a)๋Š” ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ ๊ณต์‚ฌ๊ตฌ๊ฐ„ ์ƒ๋ฅ˜๋ถ€์— ์œ„์น˜ํ•œ ์„ธ ๊ฐœ์˜ ๊ฒ€์ง€๊ธฐ์˜ ์‹œ๊ฐ„์ ์œ ์œจ์ด ํ•˜๋‚˜์˜ ๊ฒ€์ง€๊ธฐ๋ผ๋„ 15% ์ด์ƒ์ผ ๋•Œ ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜๋ฅผ ์šด์˜ํ•˜๊ณ , ์„ธ ๊ฐœ์˜ ๊ฒ€์ง€๊ธฐ ๋ชจ๋‘ 5% ๋ฏธ๋งŒ์œผ๋กœ ๋–จ์–ด์ง€๋ฉด ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜๋Š” ์ข…๋ฃŒ๋œ๋‹ค. Fig. 2(b)๋Š” ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜์— ๋™์ ์กฐ๊ธฐํ•ฉ๋ฅ˜๋ฅผ ์ถ”๊ฐ€ ์šด์˜ํ•˜๋Š” ๊ฒฝ์šฐ์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜๊ฐ€ ์ข…๋ฃŒ๋˜๋Š” ์‹œ์ ์— ๋™์ ์กฐ๊ธฐํ•ฉ๋ฅ˜๊ฐ€ ์šด์˜๋˜๋Š” ๊ฒƒ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜๋งŒ ์šด์˜ํ•˜๋Š” ๊ฒฝ์šฐ์™€ ๋™์ ์กฐ๊ธฐํ•ฉ๋ฅ˜๊นŒ์ง€ ์ถ”๊ฐ€๋กœ ์šด์˜ํ•˜๋Š” ๊ฒฝ์šฐ, ๊ทธ๋ฆฌ๊ณ  ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด๊ฐ€ ์—†๋Š” ๊ฒฝ์šฐ๋ฅผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ๋น„๊ตํ•˜์˜€๋‹ค.

Figure_KSCE_38_6_10_F2.jpg
Fig. 2.

DMC Algorithm

3.2 ์ž์œจ์ฃผํ–‰ ์ฐจ๋Ÿ‰ ํ‘œํ˜„

๋ณธ ์—ฐ๊ตฌ๋Š” ์Šน์šฉ์ฐจ ํ˜•ํƒœ์˜ ์ผ๋ฐ˜์ฐจ์™€ ์ž์œจ์ฃผํ–‰์ฐจ๋งŒ์„ ํˆฌ์ž… ์ฐจ์ข…์œผ๋กœ ์„ค์ •ํ•˜๊ณ , ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด์— ๋Œ€ํ•œ ์ค€์ˆ˜์œจ์„ 100%๋กœ ๊ฐ€์ •ํ•˜๋ฉฐ, ์ž์œจ์ฃผํ–‰์ฐจ๋Š” ๋„๋กœ ์ธํ”„๋ผ์™€์˜ V2I, I2V ํ†ต์‹ ์ด ๊ฐ€๋Šฅํ•˜๋‹ค๊ณ  ๊ฐ€์ •ํ•˜์˜€๋‹ค.

์ผ๋ฐ˜์ฐจ์™€ ์ž์œจ์ฃผํ–‰์ฐจ์˜ ๊ตฌํ˜„์€ ๋ฏธ์‹œ๊ตํ†ต์‹œ๋ฎฌ๋ ˆ์ด์…˜ VISSIM์˜ ์ฐจ๋Ÿ‰์ถ”์ข…๋ชจํ˜•๊ณผ ์ฐจ๋กœ๋ณ€๊ฒฝ๋ชจํ˜•์„ ํ™œ์šฉํ•˜์˜€๋‹ค. ์ผ๋ฐ˜์ฐจ์— ๋Œ€ํ•œ ๋ชจํ˜• ํŒŒ๋ผ๋ฏธํ„ฐ๋Š” VISSIM ๊ธฐ๋ณธ๊ฐ’์„ ์‚ฌ์šฉํ•˜๊ณ , ์ž์œจ์ฃผํ–‰์ฐจ๋Š” ATKINS (2016) ์—ฐ๊ตฌ์—์„œ ์ œ์‹œํ•œ ๋ ˆ๋ฒจ4 ์ˆ˜์ค€์˜ ์ž์œจ์ฃผํ–‰์ฐจ ๋ชจํ˜• ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๋‹ค์Œ Table 1๊ณผ ๊ฐ™์ด ์‚ฌ์šฉํ•˜์˜€๋‹ค.

Table 1. Driving Parameter for Manual Vehicle and Level 4 Automated Vehicle

Driving Parameter Manual Vehicle Automated Vehicle
Longitudinal Standstill distance (m) 1.5 0.5
Headway time (sec) 0.9 0.6
Oscillation acceleration (m/s2) 0.25 0.40
Standstill acceleration (m/s2) 3.5 3.8
Acceleration at 80Kph (m/s2) 1.5 1.8
Lateral Minimum headway (m) 0.5 0.2
Safety distance reduction (%) 60 30
[Priority rule] Minimum time gap (sec) 3.8 2.4
[Priority rule] Minimum headway (m) 70 3.5

4. ์‹œ๋ฎฌ๋ ˆ์ด์…˜

4.1 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์‹œ๋‚˜๋ฆฌ์˜ค

๋ณธ ์—ฐ๊ตฌ๋Š” VISSIM์ƒ์— 2์ฐจ๋กœ์˜ 10km ๋ณธ์„ ๋ถ€๋ฅผ ๊ตฌ์„ฑํ•˜๊ณ , 2์ฐจ์„ ์— ์œ„์น˜ํ•œ ๊ณต์‚ฌ๊ตฌ๊ฐ„์œผ๋กœ ์ธํ•˜์—ฌ ์ฐจ๋กœ ํ์‡„๊ฐ€ ๋ฐœ์ƒํ•˜๋Š” ๋„คํŠธ์›Œํฌ์—์„œ ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด์˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค(Fig. 3 ์ฐธ๊ณ ). Marlyland DOT ๋ฐฉ์‹์— ๋”ฐ๋ผ ๊ฒ€์ง€๊ธฐ ๋ฐ VMS์˜ ์œ„์น˜๋ฅผ ์„ค์ •ํ•˜์˜€๊ณ , ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜๋Š” ๊ณต์‚ฌ๊ตฌ๊ฐ„์˜ 2.3km ์ƒ๋ฅ˜์ง€์ ๋ถ€ํ„ฐ ์ฐจ์„ ์œ ์ง€ ์œ ๋„ ์ •๋ณด๋ฅผ ์ „๋‹ฌํ•˜๊ณ , ๊ณต์‚ฌ๊ตฌ๊ฐ„ ์ง์ „ ํ•ฉ๋ฅ˜์ง€์ ์—์„œ 2์ฐจ์„ ์˜ ์ฐจ๋Ÿ‰์„ ๋Œ€์ƒ์œผ๋กœ 1์ฐจ์„ ์œผ๋กœ์˜ ์ฐจ๋กœ๋ณ€๊ฒฝ ์œ ๋„ ์ •๋ณด๋ฅผ ์ „๋‹ฌํ•œ๋‹ค. ๋™์ ์กฐ๊ธฐํ•ฉ๋ฅ˜๋Š” ๊ณต์‚ฌ๊ตฌ๊ฐ„์œผ๋กœ๋ถ€ํ„ฐ 2.3km ์ƒ๋ฅ˜์ง€์ ๋ถ€ํ„ฐ 1km์ง€์  ์ „๊นŒ์ง€ ๋ชจ๋“  ์ฐจ๋Ÿ‰์— 1์ฐจ์„ ์œผ๋กœ์˜ ์ฐจ๋กœ๋ณ€๊ฒฝ ์œ ๋„ ์ •๋ณด๋ฅผ ์ „๋‹ฌํ•œ๋‹ค.

Figure_KSCE_38_6_10_F3.jpg
Fig. 3.

DMC on Hypothetical Network

Table 2์— ์ œ์‹œ๋œ ๊ฒƒ๊ณผ ๊ฐ™์ด ํ•ฉ๋ฅ˜์ œ์–ด๋ฅผ ์šด์˜ํ•˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ์™€ ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜๋งŒ ์šด์˜ํ•˜๋Š” ๊ฒฝ์šฐ ๊ทธ๋ฆฌ๊ณ  ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜์™€ ๋™์ ์กฐ๊ธฐํ•ฉ๋ฅ˜๋ฅผ ์šด์˜ํ•˜๋Š” ๊ฒฝ์šฐ๋ฅผ 6๊ฐœ์˜ ์‹œ๋‚˜๋ฆฌ์˜ค๋กœ ๊ตฌ์„ฑํ•˜์—ฌ ์ผ๋ฐ˜์ฐจ์™€ ์ž์œจ์ฃผํ–‰์ฐจ๊ฐ€ ๊ฐ๊ฐ ์‹œ์žฅ๋ณด๊ธ‰๋ฅ (Market Penetration Rate, MPR) 100%์ธ ํ™˜๊ฒฝ์—์„œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์‹œ๋‚˜๋ฆฌ์˜ค 1๊ณผ 4์˜ ๋น„๊ต๋ฅผ ํ†ตํ•ด ์ผ๋ฐ˜์ฐจ์™€ ์ž์œจ์ฃผํ–‰์ฐจ์˜ ๋น„๊ต๊ฐ€ ๊ฐ€๋Šฅํ•˜๊ณ , ์‹œ๋‚˜๋ฆฌ์˜ค 1๊ณผ 2, ์‹œ๋‚˜๋ฆฌ์˜ค 4์™€ 5๋ฅผ ํ†ตํ•ด ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜ ํšจ๊ณผ ๋ถ„์„์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์—์„œ ํšจ๊ณผ๊ฐ€ ํ™•์ธ๋œ ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜์— ๋™์ ์กฐ๊ธฐํ•ฉ๋ฅ˜๊นŒ์ง€ ์ถ”๊ฐ€๋กœ ์šด์˜ํ•  ๊ฒฝ์šฐ์˜ ํšจ๊ณผ๊ฐœ์„ ์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด ์‹œ๋‚˜๋ฆฌ์˜ค 2์™€ 3, ์‹œ๋‚˜๋ฆฌ์˜ค 5์™€ 6์„ ์ถ”๊ฐ€๋กœ ๋น„๊ตํ•˜์˜€๋‹ค. ์ฐจ์ข…๋ณ„, ํ•ฉ๋ฅ˜์ œ์–ด ์ „๋žต๋ณ„๋กœ ๊ตฌ์„ฑํ•œ 6๊ฐœ์˜ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์œผ๋กœ ๊ตฌํ˜„ํ•˜์˜€์œผ๋ฉฐ, ํˆฌ์ž… ๊ตํ†ต๋Ÿ‰์€ ๋„๋กœ์šฉ๋Ÿ‰ํŽธ๋žŒ(๊ตญํ† ๊ตํ†ต๋ถ€, 2013)์— ์ œ์‹œ๋œ LOS ์ˆ˜์ค€๋ณ„๋กœ ๊ณ ์ •๋œ ๊ตํ†ต ์ˆ˜์š”์™€ ์‹œ๊ฐ„์— ๋”ฐ๋ผ LOS A-C-E-C-A ์ˆœ์„œ๋กœ ๋ณ€๋™๋˜๋Š” ๊ตํ†ต ์ˆ˜์š”๋กœ ๊ตฌ์„ฑํ•˜์˜€๋‹ค(Fig. 4 ์ฐธ๊ณ ).

Table 2. Scenario Composition of Vehicle Types and DMC

Vehicle No Control Dynamic Late Merge Dynamic Late Merge & Dynamic Early Merge
MV Scenario 1 Scenario 2 Scenario 3
AV Scenario 4 Scenario 5 Scenario 6

Figure_KSCE_38_6_10_F4.jpg
Fig. 4.

Traffic Demands for Each Scenario

4.2 ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด ์šด์˜ ๋น„์œจ

์‹œ๋‚˜๋ฆฌ์˜ค 1~6์— ๋Œ€ํ•ด ์•ž์„œ ์ œ์‹œ๋œ ๊ตํ†ต ์ˆ˜์š”๋ณ„๋กœ 10ํšŒ์”ฉ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ˆ˜ํ–‰ํ•˜์—ฌ ๋ถ„์„์‹œ๊ฐ„ ๋™์•ˆ์˜ ๋„คํŠธ์›Œํฌ ํ†ตํ–‰์‹œ๊ฐ„์— ๋Œ€ํ•œ ๊ธฐ์ดˆ ํ†ต๊ณ„๋Ÿ‰ ๊ฒฐ๊ณผ๋ฅผ ๋‹ค์Œ Table 3๊ณผ ๊ฐ™์ด ์–ป์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ถ„์„์€ ์ง„์ถœ์ž…๋กœ๊ฐ€ ์—†๋Š” 2์ฐจ์„  ๋ณธ์„ ๋ถ€์ด๊ณ , ๋ถ„์„์‹œ๊ฐ„ ๋˜ํ•œ 60๋ถ„์œผ๋กœ VISSIM์˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋‚œ์ˆ˜๋ฒˆํ˜ธ(random seed) ๋ณ„ ๊ฑฐ์‹œ์ ์ธ ๊ฒฐ๊ณผ ์ฐจ์ด๋Š” ํฌ์ง€ ์•Š์•˜๋‹ค.

Table 3. Descriptive Statistics of Travel Time through the Network

Traffic demand Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6
๐œ‡ ๐œŽ ๐œ‡ ๐œŽ ๐œ‡ ๐œŽ ๐œ‡ ๐œŽ ๐œ‡ ๐œŽ ๐œ‡ ๐œŽ
LOS A 400.5 0.9 406.1 0.8 407 1 391.5 0.8 392.2 0.9 393.2 1.6
LOS B 952 0.8 906.4 0.8 888 1.7 881.1 0.9 804.6 0.7 714.3 1
LOS C 1354 0.9 1257 0.4 1271 1.3 1204 0.3 1172 1 1131 1.3
LOS D 1632 0.7 1562 1 1562 1.3 1575 1.2 1470 0.8 1470 0.6
LOS E 1715 0.7 1643 0.8 1642 0 1705 0.7 1651 0.5 1650 0.7
Variable 922.3 0.5 897.8 1 891.8 0.4 876 0.7 871.7 0.5 841.5 0.7

๐œ‡ : Average value of all simulation results (sec), ๐œŽ : Standard deviation of all simulation results

๋‹ค์Œ์œผ๋กœ ๊ฐ ์‹œ๋‚˜๋ฆฌ์˜ค์— ๋Œ€ํ•ด ๊ตํ†ต ์ˆ˜์š”๋ณ„๋กœ ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด์˜ ์šด์˜ ๋น„์œจ์— ๋Œ€ํ•˜์—ฌ Table 4์—์„œ ๋น„๊ตํ•˜์˜€๋‹ค. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ถ„์„ ์‹œ๊ฐ„(60๋ถ„) ์ค‘ ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด๊ฐ€ ์šด์˜๋œ ์‹œ๊ฐ„์„ ๋น„์œจ๋กœ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์œผ๋กœ ์ •์ ์œผ๋กœ ์šด์˜๋˜๋Š” ํ•ฉ๋ฅ˜์ œ์–ด๋Š” ์šด์˜์‹œ๊ฐ„ ๋น„์œจ์ด 100%์ผ ๊ฒƒ์ด๋‚˜, ๋ณธ ์—ฐ๊ตฌ์—์„œ ๋ถ„์„ํ•œ ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด๋Š” ๊ตํ†ต์ƒํ™ฉ์— ๋”ฐ๋ผ ์‹ค์‹œ๊ฐ„ ์šด์˜๋˜๋ฏ€๋กœ ์ •์ ํ•ฉ๋ฅ˜์ œ์–ด์™€ ์šด์˜ ์‹œ๊ฐ„๋น„์œจ์—์„œ ํฐ ์ฐจ์ด๋ฅผ ๋ณด์˜€๋‹ค. LOS B ์ˆ˜์ค€์˜ ํˆฌ์ž…๊ตํ†ต๋Ÿ‰์—์„œ ์‹œ๋‚˜๋ฆฌ์˜ค ๋ณ„ ์šด์˜์‹œ๊ฐ„ ๋น„์œจ์ด 67~75%๋กœ ๊ฐ€์žฅ ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, LOS A์™€ D ์ˆ˜์ค€์—์„œ๋Š” ๋™์ผํ•œ ํ•ฉ๋ฅ˜์ œ์–ด์ „๋žต์—์„œ ์ฐจ์ข… ๋ณ„ ์šด์˜์‹œ๊ฐ„ ๋น„์œจ์ด LOS A์˜ ์‹œ๋‚˜๋ฆฌ์˜ค 2์™€ 5๋Š” 33%, ์‹œ๋‚˜๋ฆฌ์˜ค 3๊ณผ 6์€ 42%, LOS D์˜ ์‹œ๋‚˜๋ฆฌ์˜ค 2์™€ 5๋Š” 25%, ์‹œ๋‚˜๋ฆฌ์˜ค 3๊ณผ 6์€ 33%๋กœ ์ฐจ์ด๊ฐ€ ์—†์—ˆ๋‹ค. ๋ชจ๋“  ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ ์ฐจ์ข…๋ณ„ ์šด์˜์‹œ๊ฐ„ ๋น„์œจ์€ ํฐ ์ฐจ์ด๋ฅผ ๋ณด์ด์ง€ ์•Š์•˜๋Š”๋ฐ ์ด๋Š” ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด์˜ ์šด์˜ ๊ธฐ์ค€์ด ์ฐจ์ข…๋ณ„ ํ˜น์€ ํˆฌ์ž… ๊ตํ†ต๋Ÿ‰๋ณ„๋กœ ๊ตฌ๋ถ„๋˜์ง€ ์•Š์•˜๊ธฐ ๋•Œ๋ฌธ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ์ฐจ์ข…๋ณ„ ๊ตํ†ต์ƒํ™ฉ๋ณ„ ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด์˜ ์šด์˜ ๊ธฐ์ค€์„ ๋‹ค๋ฅด๊ฒŒ ์„ค์ •ํ•˜๋ฉด ์šด์˜๋นˆ๋„์™€ ๊ทธ์— ๋”ฐ๋ฅธ ํ•ฉ๋ฅ˜์ œ์–ด์ „๋žต์˜ ๊ฒฐ๊ณผ๊ฐ€ ๋‹ค๋ฅด๊ฒŒ ๋‚˜ํƒ€๋‚  ๊ฒƒ์ด๋‹ค.

Table 4. DMC Operating Percentage of Time on Traffic Demand

Traffic demand Scenario 2 (MV_DLM) Scenario 3 (MV_DLM&DEM) Scenario 5 (AV_DLM) Scenario 6 (AV_DLM&DEM)
LOS A 33% 42% 33% 42%
LOS B 67% 67% 67% 75%
LOS C 59% 67% 67% 67%
LOS D 25% 33% 25% 33%
LOS E 16% 25% 25% 33%
Variable 67% 67% 67% 67%

4.3 ๋„คํŠธ์›Œํฌ ํ‰๊ท  ํ†ตํ–‰์‹œ๊ฐ„

Fig. 5๋Š” ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด๊ฐ€ ์—†๋Š” ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ๊ณผ ์ผ๋ฐ˜์ฐจ ํ™˜๊ฒฝ(์‹œ๋‚˜๋ฆฌ์˜ค1๊ณผ 4)์—์„œ์˜ ํ†ตํ–‰์‹œ๊ฐ„์„ ๋น„๊ตํ•œ ๊ฒฐ๊ณผ์ด๋ฉฐ, ์ด๋ฅผ ๊ธฐ์ดˆ๋กœ ํ•˜์—ฌ ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ๊ณผ ์ผ๋ฐ˜์ฐจ ํ™˜๊ฒฝ์—์„œ์˜ ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด ํšจ๊ณผ๋ฅผ ํ™•์ธํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. LOS B~D ์ˆ˜์ค€์—์„œ๋Š” ํ•˜๋ฅ˜๋ถ€์˜ ๊ณต์‚ฌ๊ตฌ๊ฐ„์œผ๋กœ ์ธํ•ด ๋ฐœ์ƒํ•˜๋Š” ๋Œ€๊ธฐ์—ด์— ๋Œ€ํ•ด ์ž์œจ์ฃผํ–‰์ฐจ๋Š” ๋ฏธ๋ฆฌ ๋ฐ˜์‘ํ•˜๊ณ , ๋™์ผํ•œ ๊ณต๊ฐ„์— ๋” ์ ๊ทน์ ์œผ๋กœ ์ฐจ๋กœ๋ณ€๊ฒฝ์„ ์ˆ˜ํ–‰ํ•˜์—ฌ ์ฐจ์ข…์— ๋”ฐ๋ฅธ ์ฐจ์ด๊ฐ€ ๋‚˜ํƒ€๋‚ฌ์œผ๋‚˜, LOS A์™€ E์—์„œ๋Š” ์ฐจ์ข…๊ณผ ๊ด€๊ณ„์—†์ด ์ฐจ๋Ÿ‰ ๊ฐ„ ๊ฐ„์„ญ์ด ์ ๊ฑฐ๋‚˜ ๊ณผ๋„ํ•œ ์ •์ฒด๋กœ ์ธํ•ด ์ฐจ์ข… ๊ฐ„ ํ†ตํ–‰์‹œ๊ฐ„ ์ฐจ์ด๊ฐ€ ์ž‘์€ ์ˆ˜์ค€์ด๋‹ค. ์ฐจ์ข… ๊ฐ„ ์ฐจ์ด๊ฐ€ ๊ฐ€์žฅ ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚œ ๊ฒƒ์€ LOS C ์ˆ˜์ค€์ด๋ฉฐ, ์ž์œจ์ฃผํ–‰์ฐจ๊ฐ€ ์ผ๋ฐ˜์ฐจ๋ณด๋‹ค ์ตœ๋Œ€ 11%์— ์ค€ํ•˜๋Š” 150์ดˆ์˜ ํ‰๊ท  ํ†ตํ–‰์‹œ๊ฐ„์ด ๊ฐ์†Œํ•˜์˜€๋‹ค.

Figure_KSCE_38_6_10_F5.jpg
Fig. 5.

Travel Time for No Control Cases under Fixed Demand

Fig. 6์€ ์ผ๋ฐ˜์ฐจ ํ™˜๊ฒฝ๊ณผ ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ์—์„œ ํ•ฉ๋ฅ˜์ œ์–ด๊ฐ€ ์šด์˜๋˜์ง€ ์•Š์€ ๊ฒƒ๊ณผ ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด๋ฅผ ์šด์˜ํ•œ ๊ฒƒ(์‹œ๋‚˜๋ฆฌ์˜ค 1, 2, 3๊ณผ ์‹œ๋‚˜๋ฆฌ์˜ค 4, 5, 6)์„ ๋น„๊ตํ•œ ๊ฒƒ์ด๋‹ค. ๊ฒฐ๊ณผ์— ๋”ฐ๋ฅด๋ฉด LOS A๋ฅผ ์ œ์™ธํ•œ ๋ชจ๋“  ๊ตํ†ต ์ˆ˜์ค€์—์„œ ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด ์šด์˜์œผ๋กœ ์ธํ•œ ํ†ตํ–‰์‹œ๊ฐ„ ๊ฐ์†Œ ํšจ๊ณผ๊ฐ€ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

Figure_KSCE_38_6_10_F6.jpg
Fig. 6.

Travel Time under Fixed Demand

๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜ ์šด์˜์„ ํ†ตํ•ด ์ผ๋ฐ˜์ฐจ ํ™˜๊ฒฝ์—์„œ ์ตœ๋Œ€ 7% ์ˆ˜์ค€์˜ 97์ดˆ, ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ์—์„œ ์ตœ๋Œ€ 77์ดˆ์ธ 9%์˜ ํ‰๊ท  ํ†ตํ–‰์‹œ๊ฐ„์ด ๊ฐ์†Œ๋˜์—ˆ๋‹ค. ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜์— ๋™์ ์กฐ๊ธฐํ•ฉ๋ฅ˜๋ฅผ ์ถ”๊ฐ€๋กœ ์šด์˜ํ•œ ๊ฒฝ์šฐ๋Š” ์ผ๋ฐ˜์ฐจ ํ™˜๊ฒฝ์—์„œ ์ตœ๋Œ€ 7% ์ˆ˜์ค€์˜ 64์ดˆ, ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ์—์„œ ์ตœ๋Œ€ 167์ดˆ๋กœ์จ 19%์˜ ํ‰๊ท  ํ†ตํ–‰์‹œ๊ฐ„์ด ๊ฐ์†Œ๋˜์—ˆ๋‹ค. ๋™์ ์กฐ๊ธฐํ•ฉ๋ฅ˜๋กœ ์ธํ•œ ์ถ”๊ฐ€ ๊ฐœ์„  ํšจ๊ณผ๋Š” ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ์˜ LOS B์™€ C์—์„œ๋งŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

Fig. 7์€ ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด์˜ ํ†ตํ–‰์‹œ๊ฐ„ ๊ฐœ์„  ํšจ๊ณผ๋ฅผ ์ฐจ์ข…๋ณ„๋กœ ์ •๋ฆฌํ•œ ๊ฒƒ์ด๋‹ค. Fig. 7(a)๋ฅผ ํ†ตํ•ด ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜ ์šด์˜ ํšจ๊ณผ๊ฐ€ ์ผ๋ฐ˜์ฐจ ํ™˜๊ฒฝ์—์„œ๋Š” โ€“5~7%, Fig. 7(b)๋ฅผ ํ†ตํ•ด ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ์—์„œ๋Š” 0~9%์˜ ๊ฐœ์„ ์œจ์„ ๋ณด์ด๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. LOS A์˜ ๊ตํ†ต์ˆ˜์ค€์ผ ๋•Œ ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜๋ฅผ ์ผ๋ฐ˜์ฐจ ํ™˜๊ฒฝ(์‹œ๋‚˜๋ฆฌ์˜ค 2)์—์„œ ์šด์˜์‹œ ํ•ฉ๋ฅ˜์ œ์–ด๋ฅผ ํ•˜์ง€ ์•Š๋Š” ๊ฒƒ(์‹œ๋‚˜๋ฆฌ์˜ค 1)๋ณด๋‹ค ํ†ตํ–‰์‹œ๊ฐ„์ด 5% ์ปค์ง€๋Š” ๊ฒƒ์ด ๊ด€์ธก๋˜์—ˆ๋‹ค. ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ(์‹œ๋‚˜๋ฆฌ์˜ค 5)์—์„œ๋Š” ๊ฐœ์„ ํšจ๊ณผ๋Š” ์—†์œผ๋‚˜, ํ†ตํ–‰์‹œ๊ฐ„์„ ์œ ์ง€ํ•˜๋Š” ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด LOS A ์ˆ˜์ค€์˜ ๊ตํ†ต์ƒํ™ฉ์—์„œ ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜ ์šด์˜์˜ ํ•„์š”์„ฑ์ด ์—†๋‹ค๋Š” ๊ธฐ์กด ์—ฐ๊ตฌ๊ฒฐ๊ณผ๋“ค๊ณผ ์œ ์‚ฌํ•œ ๊ฒฐ๋ก ์ด ๋„์ถœ๋˜์—ˆ๋‹ค. LOS B์—์„œ ์‹œ๋‚˜๋ฆฌ์˜ค 2์™€ 4์˜ ๊ฐœ์„ ์œจ์ด ๊ฐ๊ฐ 6%์™€ 8%๋กœ ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ์—์„œ์˜ ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜ ํšจ๊ณผ๊ฐ€ ํฐ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋ฐ˜๋ฉด LOS C์—์„œ๋Š” ์‹œ๋‚˜๋ฆฌ์˜ค 2์™€ 4์˜ ๊ฐœ์„ ์œจ์ด ๊ฐ๊ฐ 5%, 2%๋กœ ์ผ๋ฐ˜์ฐจ ํ™˜๊ฒฝ์˜ ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜ ํšจ๊ณผ๊ฐ€ ํฐ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. LOS D์™€ E์—์„œ๋Š” ์‹œ๋‚˜๋ฆฌ์˜ค 2์™€ 4๊ฐ€ ๋ชจ๋‘ ๊ฐœ์„ ์œจ 5%๋ฅผ ๋ณด์ด๋ฉฐ, ์ฐจ์ข… ๊ฐ„ ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜ ํšจ๊ณผ ์ฐจ์ด๊ฐ€ ์—†์—ˆ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜ ์šด์˜์„ ํ†ตํ•ด LOS B~E ์ˆ˜์ค€์˜ ์ผ๋ฐ˜์ฐจ ํ™˜๊ฒฝ๊ณผ ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ์—์„œ ํ‰๊ท  ํ†ตํ–‰์‹œ๊ฐ„ ๊ฐœ์„  ํšจ๊ณผ๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.

Figure_KSCE_38_6_10_F7.jpg
Fig. 7.

Travel Time Improvement Rate Compared to No Control under Fixed Demand

๋™์ ์กฐ๊ธฐํ•ฉ๋ฅ˜๊นŒ์ง€ ์ถ”๊ฐ€ ์šด์˜ํ•œ ๊ฒฝ์šฐ๋Š” ์ผ๋ฐ˜์ฐจ ํ™˜๊ฒฝ์—์„œ โ€“5~7%, ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ์—์„œ 0~19%์˜ ๊ฐœ์„ ์œจ์„ ๋ณด์ด๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. LOS A์—์„œ ์‹œ๋‚˜๋ฆฌ์˜ค 3๊ณผ 6์ด ๊ฐ๊ฐ โ€“5%์™€ 0%์˜ ๊ฐœ์„ ์œจ์„ ๋ณด์ด๋ฉฐ, LOS B์—์„œ ์‹œ๋‚˜๋ฆฌ์˜ค 3๊ณผ 6์˜ ๊ฐœ์„ ์œจ์ด ๊ฐ๊ฐ 6%์™€ 19%๋กœ ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ์—์„œ ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด ์šด์˜ ํšจ๊ณผ๊ฐ€ ์ผ๋ฐ˜์ฐจ ํ™˜๊ฒฝ๋ณด๋‹ค ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋ฐ˜๋ฉด, LOS C์—์„œ๋Š” ์‹œ๋‚˜๋ฆฌ์˜ค 3๊ณผ 6์ด ๋ชจ๋‘ 5%์˜ ๊ฐœ์„ ์œจ์„ ๋ณด์ด๋ฉฐ, ์ฐจ์ข… ๊ฐ„ ์ฐจ์ด๊ฐ€ ๋‚˜ํƒ€๋‚˜์ง€ ์•Š์•˜๋‹ค.

LOS A์™€ E ์ˆ˜์ค€์—์„œ ๋™์ผ ์ฐจ์ข… ๋‚ด ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด ๊ฐ„ ํ‰๊ท  ํ†ตํ–‰์‹œ๊ฐ„ ์ฐจ์ด(์‹œ๋‚˜๋ฆฌ์˜ค 2์™€ 3, ์‹œ๋‚˜๋ฆฌ์˜ค 5์™€ 6)๊ฐ€ ์—†๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Š” ์ผ๋ฐ˜์ฐจ ํ™˜๊ฒฝ ๋ฐ ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ ๋ชจ๋‘ LOS A์™€ E ์ˆ˜์ค€์—์„œ ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด ์šด์˜ ๊ธฐ์ค€์— ๋ถ€ํ•ฉํ•˜์ง€ ๋ชปํ•ด ์šด์˜ ๋นˆ๋„๊ฐ€ ๋งค์šฐ ๋‚ฎ์•˜๊ธฐ ๋•Œ๋ฌธ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ๋™์ ์กฐ๊ธฐํ•ฉ๋ฅ˜์˜ ์ถ”๊ฐ€ ์šด์˜์œผ๋กœ ์ธํ•œ ๊ฐœ์„  ํšจ๊ณผ๋Š” ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ์˜ LOS B์™€ C ์ˆ˜์ค€์—์„œ๋งŒ ํ™•์ธ๋์œผ๋ฉฐ, ์ผ๋ฐ˜์ฐจ ํ™˜๊ฒฝ์—์„œ๋Š” ๋™์ ์กฐ๊ธฐํ•ฉ๋ฅ˜์˜ ์ถ”๊ฐ€ ์šด์˜ ํšจ๊ณผ๊ฐ€ ํ™•์ธ๋˜์ง€ ์•Š์•˜๋‹ค.

์•ž์„  ๊ฒฐ๊ณผ๋ฅผ ์ •๋ฆฌํ•˜๋ฉด ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด๊ฐ€ ์šด์˜๋˜์ง€ ์•Š์€ ์‹œ๋‚˜๋ฆฌ์˜ค 1๊ณผ 4์˜ ๋น„๊ต๋ฅผ ํ†ตํ•ด ์ผ๋ฐ˜์ฐจ ํ™˜๊ฒฝ ๋Œ€๋น„ ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ์˜ ํ†ตํ–‰์‹œ๊ฐ„์€ LOS B์—์„œ 7%, LOS C์—์„œ 11%์˜ ๊ฐœ์„  ํšจ๊ณผ๊ฐ€ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์‹œ๋‚˜๋ฆฌ์˜ค 2์™€ 5์˜ ๋น„๊ต๋ฅผ ํ†ตํ•ด ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜์˜ ํ†ตํ–‰์‹œ๊ฐ„ ๊ฐœ์„  ํšจ๊ณผ๋Š” ์ผ๋ฐ˜์ฐจ ํ™˜๊ฒฝ์—์„œ LOS B๋Š” 5%, LOS C๋Š” 7%๋กœ ๋‚˜ํƒ€๋‚ฌ๊ณ , ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ์—์„œ LOS B๋Š” 9%, LOS C๋Š” 3%๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜์— ๋™์ ์กฐ๊ธฐํ•ฉ๋ฅ˜๊นŒ์ง€ ์šด์˜๋œ ์‹œ๋‚˜๋ฆฌ์˜ค 3๊ณผ 6์˜ ๋น„๊ต๋ฅผ ํ†ตํ•ด ์ผ๋ฐ˜์ฐจ ํ™˜๊ฒฝ์—์„œ LOS B๋Š” 7%, LOS C๋Š” 6%๋กœ ๋‚˜ํƒ€๋‚ฌ๊ณ , ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ์—์„œ LOS B๋Š” 19%, LOS C๋Š” 6%์˜ ๊ฐœ์„  ํšจ๊ณผ๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค.

Table 5๋Š” ์ผ๋ฐ˜์ฐจ ํ™˜๊ฒฝ์—์„œ ํ•ฉ๋ฅ˜์ œ์–ด์ „๋žต์ด ์šด์˜๋˜์ง€ ์•Š๋Š” ์‹œ๋‚˜๋ฆฌ์˜ค 1 ๋Œ€๋น„ ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ์˜ ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด ์‹œ๋‚˜๋ฆฌ์˜ค ๊ฒฐ๊ณผ๋ฅผ ๋น„๊ตํ•œ ๊ฒƒ์ด๋‹ค. ํŠนํžˆ LOS B ์ˆ˜์ค€์—์„œ ์ž์œจ์ฃผํ–‰์ฐจ์˜ ํ†ตํ–‰์‹œ๊ฐ„ ๊ฐœ์„  ํšจ๊ณผ๋Š” 7%์ด๊ณ , ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜ ์šด์˜์„ ํ†ตํ•ด 15%, ๋™์ ์กฐ๊ธฐํ•ฉ๋ฅ˜์˜ ์ถ”๊ฐ€ ์šด์˜์„ ํ†ตํ•ด 25%๊ฐ€ ๊ฐœ์„ ๋˜์—ˆ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ์ž์œจ์ฃผํ–‰์ฐจ ๋„์ž…์˜ ํšจ๊ณผ๋งŒํผ ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด์˜ ํšจ๊ณผ๊ฐ€ ๋†’์Œ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ์œผ๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ํ–ฅํ›„ ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ์—์„œ๋„ ๊ตํ†ต๊ด€๋ฆฌ ์—ฐ๊ตฌ์˜ ํ•„์š”์„ฑ์ด ๋†’์„ ๊ฒƒ์œผ๋กœ ์ถ”์ •๋œ๋‹ค.

Table 5. Travel Time Improvement of DMC Scenarios for AV Compared to Scenario 1(No Control for MV)

Traffic Demand Scenario 1 (MV_No control) Scenario 4 (AV_No control) Scenario 5 (AV_DLM) Scenario 6 (AV_DLM&DEM)
LOS A 400 sec 392 sec (2%) 392 sec (2%) 393 sec (2%)
LOS B 952 sec 881 sec (7%) 805 sec (15%) 714 sec (25%)
LOS C 1354 sec 1205 sec (11%) 1173 sec (13%) 1131 sec (16%)
LOS D 1633 sec 1575 sec (4%) 1470 sec (10%) 1470 sec (10%)
LOS E 1716 sec 1705 sec (1%) 1651 sec (4%) 1650 sec (4%)

๋‹ค์Œ์œผ๋กœ LOS A-C-E-C-A ์ˆœ์„œ๋กœ ๋ณ€๋™๋˜๋Š” ๊ตํ†ต ์ˆ˜์š”์˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์—์„œ ๋„คํŠธ์›Œํฌ์™€ ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด ์šด์˜๊ตฌ๊ฐ„์˜ ํ‰๊ท ํ†ตํ–‰์‹œ๊ฐ„์„ ๋น„๊ตํ•˜์˜€๋‹ค(Fig. 8 ์ฐธ๊ณ ). Fig. 8(a)๋Š” ์‹œ๋‚˜๋ฆฌ์˜ค1๊ณผ 4๋ฅผ ๋น„๊ตํ•œ ๊ฒƒ์œผ๋กœ ์ž์œจ์ฃผํ–‰์ฐจ์™€ ์ผ๋ฐ˜์ฐจ์— ๋”ฐ๋ฅธ ์ฐจ์ด๊ฐ€ ๋‚˜ํƒ€๋‚˜๋Š”๋ฐ ์ด๋Š” ๊ณต์‚ฌ๊ตฌ๊ฐ„์œผ๋กœ ์ธํ•œ ๋Œ€๊ธฐ์—ด์— ๋Œ€ํ•ด ์ž์œจ์ฃผํ–‰์ฐจ๋Š” ๋ฏธ๋ฆฌ ๋ฐ˜์‘ํ•˜๊ณ , ๋™์ผํ•œ ๊ณต๊ฐ„์— ๋” ์ ๊ทน์ ์œผ๋กœ ์ฐจ๋กœ๋ณ€๊ฒฝ์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค.

Figure_KSCE_38_6_10_F8.jpg
Fig. 8.

Travel Time and Improvement for DMC Cases Compared to No Control under Variable Demand

Fig. 8(b)์™€ (c)๋Š” ์‹œ๋‚˜๋ฆฌ์˜ค 1, 2, 3๊ณผ ์‹œ๋‚˜๋ฆฌ์˜ค 4, 5, 6์„ ๋น„๊ตํ•œ ๊ฒƒ์œผ๋กœ ๊ฐ๊ฐ ์ผ๋ฐ˜์ฐจ ํ™˜๊ฒฝ๊ณผ ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ์—์„œ ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด๋ฅผ ์šด์˜ํ•˜์ง€ ์•Š์€ ๊ฒฝ์šฐ์™€ ์šด์˜ํ•œ ๊ฒฝ์šฐ๋ฅผ ๋น„๊ตํ•œ ๊ฒƒ์ด๋‹ค. ์ผ๋ฐ˜์ฐจ ํ™˜๊ฒฝ๊ณผ ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ์—์„œ ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด ์šด์˜์œผ๋กœ ์ธํ•œ ๋„คํŠธ์›Œํฌ ๋ฐ ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด ์šด์˜๊ตฌ๊ฐ„์—์„œ ํ†ตํ–‰์‹œ๊ฐ„ ๊ฐ์†Œ ํšจ๊ณผ๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. ๋™์ ์กฐ๊ธฐํ•ฉ๋ฅ˜๊ฐ€ ์ถ”๊ฐ€๋œ ๊ฒฝ์šฐ๋Š” ์ผ๋ฐ˜์ฐจ ํ™˜๊ฒฝ๊ณผ ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ์˜ ๊ฐœ์„ ์œจ์ด ์ฐจ์ด๋ฅผ ๋ณด์˜€์œผ๋ฉฐ, ํŠนํžˆ ์ผ๋ฐ˜์ฐจ ํ™˜๊ฒฝ์˜ ์‹œ๋‚˜๋ฆฌ์˜ค 3์€ ์‹œ๋‚˜๋ฆฌ์˜ค 2๋ณด๋‹ค ํ‰๊ท  ํ†ตํ–‰์‹œ๊ฐ„์ด ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚˜ ์ผ๋ฐ˜์ฐจ ํ™˜๊ฒฝ์—์„œ์˜ ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜ ์šด์˜ ๋Œ€๋น„ ๋™์ ์กฐ๊ธฐํ•ฉ๋ฅ˜ ์ถ”๊ฐ€ ์šด์˜์œผ๋กœ ์ธํ•œ ์ถ”๊ฐ€ ๊ฐœ์„ ์„ ํ™•์ธํ•  ์ˆ˜ ์—†์—ˆ๋‹ค. ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ์˜ ์‹œ๋‚˜๋ฆฌ์˜ค 6์€ ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜๋งŒ ์šด์˜๋œ ์‹œ๋‚˜๋ฆฌ์˜ค 5๋ณด๋‹ค ํ†ตํ–‰์‹œ๊ฐ„์ด ๋” ์ž‘๊ฒŒ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, ์ด๋Š” ๋ณ€๋™ํ•˜๋Š” ๊ตํ†ต ์ˆ˜์š”์˜ ์‹œ๋‚˜๋ฆฌ์˜ค 2, 3, 5, 6 ์ค‘์—์„œ ๊ฐ€์žฅ ์ข‹์€ ๊ฐœ์„  ํšจ๊ณผ๋ฅผ ๋ณด์ธ ๊ฒƒ์ด๋‹ค.

Fig. 8(d)๋Š” ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด ์šด์˜์œผ๋กœ ์ธํ•œ ํ‰๊ท  ํ†ตํ–‰์‹œ๊ฐ„ ๊ฐœ์„ ์œจ์„ ๋น„๊ตํ•˜์˜€์œผ๋ฉฐ, ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜ ์šด์˜์€ ์ผ๋ฐ˜์ฐจ ํ™˜๊ฒฝ์—์„œ 3.5~5%, ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ์—์„œ 0.1~3%์˜ ๊ฐœ์„ ์œจ์„ ๋ณด์˜€๋‹ค. ๋™์ ์กฐ๊ธฐํ•ฉ๋ฅ˜๊นŒ์ง€ ์ถ”๊ฐ€๋œ ๊ฒฝ์šฐ์—๋Š” ๊ณ ์ • ๊ตํ†ต์ˆ˜์š” ๊ฒฐ๊ณผ์™€ ๋™์ผํ•˜๊ฒŒ ์ผ๋ฐ˜์ฐจ ํ™˜๊ฒฝ์—์„œ๋Š” ์ถ”๊ฐ€ ๊ฐœ์„ ์ด ์—†์—ˆ์œผ๋‚˜, ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ์—์„œ๋Š” ์ถ”๊ฐ€ ํšจ๊ณผ๊ฐ€ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

4.4 ๊ณต์‚ฌ๊ตฌ๊ฐ„ ๋ˆ„์ ํ†ต๊ณผ๊ตํ†ต๋Ÿ‰

์•ž์„œ ์‹œ๋‚˜๋ฆฌ์˜ค 2, 3, 5, 6์„ ํ†ตํ•ด LOS A์™€ E ์ˆ˜์ค€์„ ์ œ์™ธํ•˜๋ฉด ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜ ์šด์˜ ๋Œ€๋น„ ๋™์ ์กฐ๊ธฐํ•ฉ๋ฅ˜ ์ถ”๊ฐ€ ์šด์˜ ์‹œ ํ‰๊ท  ํ†ตํ–‰์‹œ๊ฐ„์˜ ๊ฐœ์„ ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ์œผ๋ฉฐ, ์ถ”๊ฐ€์ ์œผ๋กœ ๊ณต์‚ฌ๊ตฌ๊ฐ„ ํ†ต๊ณผ๊ตํ†ต๋Ÿ‰์˜ ๊ฐœ์„  ํšจ๊ณผ๋ฅผ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด LOS ์ˆ˜์ค€๋ณ„ ๋ˆ„์ ํ†ต๊ณผ๊ตํ†ต๋Ÿ‰์„ ๋น„๊ตํ•˜์˜€๋‹ค(Table 6 ์ฐธ๊ณ ). ์‹œ๋‚˜๋ฆฌ์˜ค 2์™€ 3์˜ ๋ˆ„์ ํ†ต๊ณผ๊ตํ†ต๋Ÿ‰์€ ํ‰๊ท  ํ†ตํ–‰์‹œ๊ฐ„ ๊ฒฐ๊ณผ์™€ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ์ผ๋ฐ˜์ฐจ๋Š” ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜ ์šด์˜ ๋Œ€๋น„ ๋™์ ์กฐ๊ธฐํ•ฉ๋ฅ˜ ์ถ”๊ฐ€ ์šด์˜ ์‹œ ๋ฏธ๋ฏธํ•œ ๊ฐœ์„  ํšจ๊ณผ๋ฅผ ๋ณด์˜€๊ณ , ์˜คํžˆ๋ ค LOS C ์ˆ˜์ค€์—์„œ๋Š” ๋™์ ์กฐ๊ธฐํ•ฉ๋ฅ˜ ์ถ”๊ฐ€ ์šด์˜ ์‹œ 3.7% ๋‚ฎ์€ ๋ˆ„์ ํ†ต๊ณผ๊ตํ†ต๋Ÿ‰์„ ๋ณด์˜€๋‹ค.

Table 6. Comparison of Cumulative Throughput at Work Zone

Traffic demand LOS A LOS B LOS C LOS D LOS E Variable
Scenario 2 (Veh) 1,334 1,895 1,931 1,925 1,992 1,780
Scenario 3 (Veh) 1,334 1,918 1,860 1,960 1,992 1,780
Increment 0% 1.2% -3.7% 1.8% 0% 0%
Scenario 5 (Veh) 1,383 2,036 2,047 1,916 2,209 1,779
Scenario 6 (Veh) 1,383 2,319 2,286 2,103 2,209 1,843
Increment 0% 13.9% 11.7% 9.8% 0% 3.6%

์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ์˜ ์‹œ๋‚˜๋ฆฌ์˜ค 5์™€ 6์˜ ๋น„๊ต๋ฅผ ํ†ตํ•ด์„œ ๋™์ ์กฐ๊ธฐํ•ฉ๋ฅ˜์˜ ์ถ”๊ฐ€ ์šด์˜์— ๋”ฐ๋ฅธ ๋ˆ„์ ํ†ต๊ณผ๊ตํ†ต๋Ÿ‰ ๊ฐœ์„ ์ด ์žˆ์—ˆ์œผ๋ฉฐ ์ตœ๋Œ€ 14%์˜ ์ฆ๊ฐ€์œจ์„ ๋ณด์˜€๋‹ค. LOS B, C, D์—์„œ ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ์ผ ๋•Œ์˜ ๊ฐœ์„ ์œจ์€ ์ผ๋ฐ˜์ฐจ ํ™˜๊ฒฝ์ผ ๋•Œ์˜ ๊ฐœ์„ ์œจ๋ณด๋‹ค ํ‰๊ท  12% ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ์ง€๋งŒ, LOS A์™€ E ์ˆ˜์ค€์—์„œ๋Š” ํ‰๊ท  ํ†ตํ–‰์‹œ๊ฐ„ ๊ฒฐ๊ณผ์™€ ๋™์ผํ•˜๊ฒŒ ๋™์ ์กฐ๊ธฐํ•ฉ๋ฅ˜์˜ ์ถ”๊ฐ€ ์šด์˜์œผ๋กœ ์ธํ•œ ๊ฐœ์„  ํšจ๊ณผ๊ฐ€ ๋‚˜ํƒ€๋‚˜์ง€ ์•Š์•˜๋‹ค.

๊ฒฐ๊ณผ์ ์œผ๋กœ LOS A-C-E-C-A์˜ ๋ณ€๋™ํ•˜๋Š” ๊ตํ†ต์ˆ˜์š”์˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์—์„œ ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ์—์„œ์˜ ๋™์ ์กฐ๊ธฐํ•ฉ๋ฅ˜ ์ถ”๊ฐ€ ์šด์˜์€ ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜๋งŒ ์šด์˜๋œ ๊ฒฝ์šฐ๋ณด๋‹ค 3.6%์˜ ๊ณต์‚ฌ๊ตฌ๊ฐ„ ํ†ต๊ณผ๊ตํ†ต๋Ÿ‰์„ ๊ฐœ์„ ์‹œ์ผฐ์œผ๋‚˜, ์ผ๋ฐ˜์ฐจ ํ™˜๊ฒฝ์—์„œ๋Š” ๋™์ ์กฐ๊ธฐํ•ฉ๋ฅ˜์˜ ์ถ”๊ฐ€ ์šด์˜ ํšจ๊ณผ๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์—†์—ˆ๋‹ค.

5. ๊ฒฐ ๋ก 

์ตœ๊ทผ ์ž์œจ์ฃผํ–‰์ฐจ์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ๋†’์•„์ง€๋ฉด์„œ ๊ด€๋ จ ์—ฐ๊ตฌ์™€ ๊ฐœ๋ฐœ์ด ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ๋ณธ ์—ฐ๊ตฌ๋Š” ๋งŽ์€ ์ง€์—ญ์—์„œ ์šด์˜๋˜๋Š” ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜์™€ ๋™์ ์กฐ๊ธฐํ•ฉ๋ฅ˜๋ฅผ ์ผ๋ฐ˜์ฐจ ๋Œ€๋น„ ๋น ๋ฅธ ๋ฐ˜์‘์†๋„์™€ ํ†ต์‹ ์ด ๊ฐ€๋Šฅํ•œ ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ์—์„œ ํšจ๊ณผ ๋ถ„์„ํ•˜์˜€๋‹ค. ์‹ค์ œ ์šด์˜๊ธฐ์ค€์— ๋งž์ถฐ ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด๋ฅผ ๊ตฌ์„ฑํ•˜๊ณ  ์ฐจ์ข…๊ณผ ํ•ฉ๋ฅ˜์ œ์–ด์ „๋žต์ด ๋ฐ˜์˜๋œ 6๊ฐœ์˜ ์‹œ๋‚˜๋ฆฌ์˜ค์— ๋Œ€ํ•ด ํˆฌ์ž…๊ตํ†ต๋Ÿ‰๋ณ„๋กœ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋ถ„์„๊ฒฐ๊ณผ๋กœ ๋„คํŠธ์›Œํฌ ํ†ตํ–‰์‹œ๊ฐ„๊ณผ ๊ณต์‚ฌ๊ตฌ๊ฐ„ ํ†ต๊ณผ๊ตํ†ต๋Ÿ‰์„ ์‚ฐ์ถœํ•˜์—ฌ ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด์˜ ์ผ๋ฐ˜์ฐจ ํ™˜๊ฒฝ๊ณผ ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ์—์„œ์˜ ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ๋น„๊ตํ•˜์˜€๋‹ค.

์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ์— ๋”ฐ๋ฅด๋ฉด ์ผ๋ฐ˜์ฐจ ํ™˜๊ฒฝ๊ณผ ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ์—์„œ ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜ ์šด์˜์€ ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด๋ฅผ ์šด์˜ํ•˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ๋ณด๋‹ค ๋„คํŠธ์›Œํฌ ํ‰๊ท  ํ†ตํ–‰์‹œ๊ฐ„๊ณผ ๊ณต์‚ฌ๊ตฌ๊ฐ„ ํ†ต๊ณผ๊ตํ†ต๋Ÿ‰์„ ๊ฐœ์„ ์‹œ์ผฐ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋™์ ์ง€์—ฐํ•ฉ๋ฅ˜์— ๋™์ ์กฐ๊ธฐํ•ฉ๋ฅ˜๋ฅผ ์ถ”๊ฐ€ ์šด์˜ํ•˜๋Š” ๊ฒฝ์šฐ ์ผ๋ฐ˜์ฐจ ํ™˜๊ฒฝ์—์„œ๋Š” ํšจ๊ณผ ๊ฐœ์„ ์ด ๋‚˜ํƒ€๋‚˜์ง€ ์•Š์•˜๊ณ , ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ์—์„œ๋Š” ํ‰๊ท  ํ†ตํ–‰์‹œ๊ฐ„ ๋ฐ ๊ณต์‚ฌ๊ตฌ๊ฐ„ ํ†ต๊ณผ๊ตํ†ต๋Ÿ‰ ๊ฐœ์„  ํšจ๊ณผ๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ๊ณ ์ •๋œ ๊ตํ†ต์ˆ˜์š”์™€ ๋ณ€๋™ํ•˜๋Š” ๊ตํ†ต์ˆ˜์š”์—์„œ ๋ชจ๋‘ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Š” ์ผ๋ฐ˜์ฐจ ๋Œ€๋น„ ์ž์œจ์ฃผํ–‰์ฐจ๊ฐ€ ์ƒ๋Œ€์ ์œผ๋กœ ๋น ๋ฅด๊ณ  ์ผ์ •ํ•œ ๋ฐ˜์‘์ด ๊ฐ€๋Šฅํ•˜๋ฉฐ, ๊ตํ†ต ์ธํ”„๋ผ์™€์˜ ํ†ต์‹ (V2I, I2V)์„ ํ†ตํ•ด ํ•˜๋ฅ˜๋ถ€์˜ ๊ตํ†ต์ƒํ™ฉ ๋ฐ ๋Œ€์‘ ์ •๋ณด๋ฅผ ์„ ์ œ์ ์œผ๋กœ ๋ฐ›์„ ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด ์šด์˜ ์‹œ ๊ฐœ์„  ํšจ๊ณผ๋ฅผ ๋ณด์ธ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ํŠนํžˆ ๋ณธ ์—ฐ๊ตฌ๋Š” ์ผ๋ฐ˜์ฐจ์˜ ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด์— ๋Œ€ํ•œ ์ค€์ˆ˜์œจ์„ 100%๋กœ ๊ฐ€์ •ํ–ˆ๋Š”๋ฐ ์‹ค์ œ ์šด์ „์ž์˜ ์ค€์ˆ˜์œจ์„ ์ ์šฉํ•œ๋‹ค๋ฉด ์ผ๋ฐ˜์ฐจ์˜ ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด ํšจ๊ณผ๊ฐ€ ๊ฐ์†Œํ•˜์—ฌ ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ์—์„œ์˜ ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด ํšจ๊ณผ์™€ ๋” ํฐ ์ฐจ์ด๊ฐ€ ๋‚˜ํƒ€๋‚  ๊ฒƒ์ด๋‹ค.

์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ์—์„œ์˜ ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด ์šด์˜ ํšจ๊ณผ๋Š” ์ผ๋ฐ˜์ฐจ ํ™˜๊ฒฝ์—์„œ ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ์œผ๋กœ ๋ณ€ํ™”๋  ๋•Œ ๊ฐœ์„ ๋˜๋Š” ์ˆ˜์ค€๋งŒํผ ์ถ”๊ฐ€์ ์ธ ํšจ๊ณผ๋ฅผ ๋ณด์˜€๋‹ค. ๋”ฐ๋ผ์„œ ์ตœ์ ํ™”๋œ ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด๋Š” ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ์—์„œ๋„ ๋งค์šฐ ์ค‘์š”ํ•œ ๊ณต์‚ฌ๊ตฌ๊ฐ„ ํ˜ผ์žก๊ด€๋ฆฌ์˜ ํ•˜๋‚˜๊ฐ€ ๋  ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.

๋ณธ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด์˜ ๊ฐœ์„  ๋ฐฉ์•ˆ์„ ์ œ์‹œํ•  ์ˆ˜ ์žˆ๋‹ค. ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด๋Š” ์šด์ „์ž์˜ ์ค€์ˆ˜์œจ ๋ฟ ์•„๋‹ˆ๋ผ ์ค€์ˆ˜์— ๋”ฐ๋ฅธ ํ•ฉ๋ฅ˜ํ–‰ํƒœ ๋˜ํ•œ ๋‹ค์–‘ํ•˜๊ธฐ ๋–„๋ฌธ์— ์ด๋ฅผ ๋ฐ˜์˜ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด ์šด์˜ ๊ตฌ๊ฐ„์„ ๋‹ค์†Œ ๊ธธ๊ฒŒ ์šด์˜ํ•œ๋‹ค. ์ค€์ˆ˜์œจ์ด 100%์ธ ์ž์œจ์ฃผํ–‰์ฐจ๋Š” ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด์— ๋Œ€ํ•ด ๋น ๋ฅด๊ณ  ์ผ์ •ํ•œ ํ•ฉ๋ฅ˜ํ–‰ํƒœ๊ฐ€ ๊ฐ€๋Šฅํ•˜๋ฏ€๋กœ ๊ธฐ์กด ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด์˜ ์šด์˜ ๊ตฌ๊ฐ„์„ ์ค„์ผ ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค. ๋˜ํ•œ ๊ธฐ์กด ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด๋Š” ์šด์ „์ž์—๊ฒŒ ์‹œ๊ฐ์ ์œผ๋กœ ์ •๋ณด ์ „๋‹ฌ์„ ์œ„ํ•ด PCMS (Portable Changeable Message Signs)๋ฅผ ์ผ์ • ๊ฑฐ๋ฆฌ๋งˆ๋‹ค ์„ค์น˜ํ•ด์•ผ ํ–ˆ์œผ๋‚˜, ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ์—์„œ๋Š” PCMS๋ฅผ I2V ํ†ต์‹ ์œผ๋กœ ๋Œ€์ฒดํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฐœ์„  ๋ฐฉ์•ˆ์€ PCMS์˜ ๋ฌผ๋ฆฌ์  ์„ค์น˜ ์ œ์•ฝ์„ ๋ฒ—์–ด๋‚  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๊ณต์‚ฌ๊ตฌ๊ฐ„ ๊ตํ†ต๊ด€๋ฆฌ์˜ ์šด์˜ ํšจ์œจ์„ ๋†’์ผ ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค.

ํ–ฅํ›„ ์—ฐ๊ตฌ๋กœ๋Š” ์ž์œจ์ฃผํ–‰์ฐจ์™€ ์ผ๋ฐ˜์ฐจ์˜ ํ˜ผํ•ฉ๋ฅ˜(mixed flow) ์ƒํ™ฉ์—์„œ ๋‹ค์–‘ํ•œ ์ž์œจ์ฃผํ–‰์ฐจ ์‹œ์žฅ๋ณด๊ธ‰๋ฅ ์— ๋Œ€ํ•œ ํšจ๊ณผ ๋ถ„์„ ๋ฐ ๋‹ค์–‘ํ•œ ๊ธฐํ•˜๊ตฌ์กฐ์—์„œ์˜ ํšจ๊ณผ ๋ถ„์„์ด ์ˆ˜ํ–‰๋˜์–ด์•ผํ•œ๋‹ค. ๋˜ํ•œ, ๊ธฐ์กด ๋™์ ํ•ฉ๋ฅ˜์ œ์–ด์˜ ์šด์˜ ๊ธฐ์ค€์€ ์ž์œจ์ฃผํ–‰์ฐจ ํ™˜๊ฒฝ์—์„œ์˜ ์ตœ์  ์šด์˜์„ ์œ„ํ•ด ๋ณ€๊ฒฝ๋  ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์œผ๋ฏ€๋กœ ์ด๋ฅผ ๊ณ ๋ คํ•œ ์šด์˜ ๊ธฐ์ค€๊ฐ’ ๋„์ถœ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค.

Acknowledgements

๋ณธ ์—ฐ๊ตฌ๋Š” ๊ตญํ† ๊ตํ†ต๋ฌผ๋ฅ˜์—ฐ๊ตฌ์‚ฌ์—… โ€˜์ž์œจํ˜‘๋ ฅ์ฃผํ–‰์„ ์œ„ํ•œ LDM ๋ฐ V2X ๊ธฐ๋ฐ˜ ๋„๋กœ์‹œ์Šคํ…œ ๊ฐœ๋ฐœโ€™์˜ ์—ฐ๊ตฌ๋น„์ง€์›(code: 18TLRP- B101406-04)๊ณผ ์„œ์šธ๋Œ€ํ•™๊ต ๊ฑด์„คํ™˜๊ฒฝ์ข…ํ•ฉ์—ฐ๊ตฌ์†Œ์˜ ์ง€์›์— ์˜ํ•ด ์ˆ˜ํ–‰๋˜์—ˆ์Œ.

References

1 
ATKINS (2016). Research on the Impacts of Connected and Autonomous Vehicles(CAVs) on Traffic Flow, Report of Department for Transport, United Kingdom.
2 
Ge, Q. and Menendez, M. (2013). "A simulation study for the static early merge and late merge controls at freeway work zones." Swiss Transport Research Conference, Monte Verita/Ascona, Switzerland.
3 
Ghiasi, A., Ma, J., Zhou, F. and Li, X. (2017). "Speed harmonization algorithm using connected autonomous vehicles." Transportation Research Record: Journal of the Transportation Research Board, No. 2565.
4 
Grumert, E., Ma, X. and Tapani, A. (2015). "Analysis of a cooperative variable speed limit system using microscopic traffic simulation." Transportation Research Part C: Emerging Technologies, Vol. 52, pp. 173-186.DOI
5 
Han, Y., Chen, D. and Ahn, S. (2017). "Variable speed limit control at fixed freeway bottlenecks using connected vehicles." Transportation Research Part B: Methodological, Vol. 98, pp. 113-134.DOI
6 
Kang, K. P., Chang, G. L. and Paracha, J. (2006). "Dynamic late merge control at highway work zones: evaluation, observations, and suggestions." Transportation Research Record: Journal of the Transportation Research Board, Vol. 1948, pp. 86-95.DOI
7 
Khondaker, B. and Kattan, L. (2015). "Variable speed limit: A microscopic analysis in a connected vehicle environment." Transportation Research Part C: Emerging Technologies, Vol. 58, pp. 146-159.DOI
8 
Mahmassani, H. S. (2016). "50th anniversary invited articleโ€”autonomous vehicles and connected vehicle systems: flow and operations considerations." Transportation Science, Vol. 50, No. 4, pp. 1140-1162.DOI
9 
Mccoy, P. and Pesti, G. (2001). "Dynamic late merge control concept for work zones on rural interstate highways." Transportation Research Record: Journal of the Transportation Research Board, Vol. 1745, pp. 20-26.DOI
10 
Meyer, E. (2004). Construction Area Late Merge (CALM) System, Report of Kansas Department of Transportation, Meyer ITS, Lawrence, Kansas.
11 
Mirshahi, M., Obenberger, J., Fuhs, C. A., Howard, C. E., Krammes, R. A., Kuhn, B. T., Mayhew, R. M., Moore, M. A., Sahebjam, K., Stone, C. J. and Yung, J. L. (2007). Active Traffic Management: The Next Step in Congestion Management, Report of Federal Highway Administration, American Trade Initiatives, Alexandria, Vinrginia.
12 
Qom, S. F., Xiao, Y. and Hadi, M. (2016). "Evaluation of cooperative adaptive cruise control (CACC) vehicles on managed lanes utilizing macroscopic and mesoscopic simulation." Transportation Research Record: Journal of the Transportation Research Board, No. 2565.
13 
Radwan, E., Harb, R. and Ramasamy, S. (2009). Evaluation of Safety and Operational Effectiveness of Dynamic Lane Merge System in Florida, Report of Florida Department of Transportation, Center for Advanced Transportation Systems Simulation, University of Central Florida, Orlando, Florida.
14 
Shladover, S. E. (2017). "Connected and automated vehicle systems: introduction and overview." Journal of Intelligent Transportation Systems, Vol. 22, No. 3, pp. 190-200.DOI
15 
Subhanka, N. (2018). Impact of Level 3 Automated Vehicle Merging on 2-To-1 Lane Freeway, Master Thesis, University of Wisconsin- Madison, Madison, Wisconsin, USA.
16 
Sun, R., Hu, J., Xie, X. and Zhang, Z. (2014). "Variable speed limit design to relieve traffic congestion based on cooperative vehicle infrastructure system." Procedia-Social and Behavioral Sciences, Vol. 138, pp. 427-438.DOI
17 
Taavola, D., Jackels, J. and Swenson, T. (2003). "Dynamic late merge system evaluation: initial deployment on US route 10 summer 2003." Transportation Research Record: Journal of the Transportation Research Board, No. 976036.
18 
Talebpour, A. and Mahmassani, H. S. (2016). "Influence of connected and autonomous vehicles on traffic flow stability and throughput." Transportation Research Part C: Emerging Technologies, Vol. 71, pp. 143-163.DOI
19 
Talebpour, A., Mahmassani, H. S. and Elfar, A. (2017). "Investigating the effects of reserved lanes for autonomous vehicles on congestion and travel time reliability." Transportation Research Record: Journal of the Transportation Research Board, Vol. 2622, pp. 1-12.DOI
20 
Talebpour, A., Mahmassani, H. S. and Hamdar, S. H. (2013). "Speed harmonization evaluation of effectiveness under congested conditions." Transportation Research Record: Journal of the Transportation Research Board, Vol. 2391, No. 1, pp. 69-79.DOI
21 
Ullman, G., Schroeder, J. and Gopalakrishna, D. (2014). Use of Technology and Data for Effective WorkZone Management: WorkZone ITS Implement Guide, Report of Federal Highway Administration, Battelle, Columbus, Ohio, Texas A&M Transportation Institute, The Texas A&M University System, College Station, Texas
22 
Yang, N., Chang, G. L. and Kang, K. P. (2009). "Simulation-based study on a lane-based signal system for merge control at freeway work zones." Journal of Transportation Engineering, ASCE, Vol. 135, No. 1, pp. 9-17.DOI