Mobile QR Code QR CODE : Journal of the Korean Society of Civil Engineers

  1. ํ•œ๊ตญ๊ฑด์„ค๊ธฐ์ˆ ์—ฐ๊ตฌ์› ๊ตญํ† ๋ณด์ „์—ฐ๊ตฌ๋ณธ๋ถ€ ์—ฐ๊ตฌ์œ„์›, ๊ณตํ•™๋ฐ•์‚ฌ (Korea Institute of Civil Engineering and Building Technology)
  2. ์ •ํšŒ์›โ€ค์œ ์—ญํ†ตํ•ฉ๊ด€๋ฆฌ์—ฐ๊ตฌ์› ์œ ์—ญ๊ด€๋ฆฌ์œตํ•ฉ์„ผํ„ฐ ์„ผํ„ฐ์žฅ, ๊ณตํ•™๋ฐ•์‚ฌ (Integrated Watershed Management Institute)
  3. ์ข…์‹ ํšŒ์›โ€คํ•œ๊ตญ๊ฑด์„ค๊ธฐ์ˆ ์—ฐ๊ตฌ์› ๊ตญํ† ๋ณด์ „์—ฐ๊ตฌ๋ณธ๋ถ€ ์„ ์ž„์—ฐ๊ตฌ์œ„์›, ๊ณตํ•™๋ฐ•์‚ฌ (Korea Institute of Civil Engineering and Building Technology)


ํ•œ๊ฐ•์œ ์—ญ, ๊ฒฝ์•ˆ์ฒœ, ๊ธฐํ›„๋ณ€ํ™”, ๋‹ค์ค‘ GCM, SWAT
Han river, Gyeongan-cheon, Climate change, Multiple GCMs, SWAT

  • 1. ์„œ ๋ก 

  • 2. ์—ฐ๊ตฌ๋ฐฉ๋ฒ•

  •   2.1 ๊ธฐํ›„๋ณ€ํ™” ์‹œ๋‚˜๋ฆฌ์˜ค ์ ์šฉ

  •   2.2 ์œ ์—ญ๋ชจ๋ธ๋ง ๊ตฌ์ถ•

  • 3. ์ ์šฉ ๊ฒฐ๊ณผ

  •   3.1 ๋ฏธ๋ž˜ ๊ธฐํ›„๋ณ€ํ™”์— ๋”ฐ๋ฅธ ๊ฐ•์ˆ˜๋Ÿ‰ ๋ณ€ํ™”

  •   3.2 ๋ฏธ๋ž˜ ๊ธฐํ›„๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์ฆ๋ฐœ์‚ฐ๋Ÿ‰ ๋ณ€ํ™”

  •   3.3 ๋ฏธ๋ž˜ ๊ธฐํ›„๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์œ ์ถœ๋Ÿ‰ ๋ณ€ํ™”

  • 4. ๊ฒฐ ๋ก 

1. ์„œ ๋ก 

๊ธฐํ›„๋ณ€ํ™”์— ์˜ํ•œ ์ˆ˜์ž์› ์˜ํ–ฅ์— ๋Œ€ํ•ด์„œ๋Š” ๊ตญ์™ธ๋Š” ๋ฌผ๋ก  ๊ตญ๋‚ด์—์„œ๋„ ์ด๋ฏธ ๋งŽ์€ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜์–ด ์™”์œผ๋ฉฐ, ์ง€์—ญ๋ณ„ ์ฐจ์ด๋Š” ์žˆ์œผ๋‚˜ ๋Œ€์ฒด๋กœ ๊ตญ๋‚ด์˜ ๊ฒฝ์šฐ๋Š” ๊ฐ•์ˆ˜๋Ÿ‰๊ณผ ๊ธฐ์˜จ์˜ ์ฆ๊ฐ€, ์ฆ๋ฐœ์‚ฐ๋Ÿ‰์˜ ์ฆ๊ฐ€, ์œ ์ถœ๋Ÿ‰์˜ ์ฆ๊ฐ€ ๋“ฑ์ด ์ „๋ง๋˜๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ ๊ทนํ•œ์‚ฌ์ƒ์˜ ์ฆ๊ฐ€์™€ ๊ณ„์ ˆ์  ๋ณ€๋™์„ฑ์˜ ์ฆ๊ฐ€๋กœ ์ธํ•ด ๊ฐ€๋ญ„๊ณผ ํ™์ˆ˜์˜ ๋ฐœ์ƒ์ด ์ฆ๊ฐ€ํ•  ๊ฒƒ์œผ๋กœ ์ „๋ง๋˜๊ธฐ๋„ ํ•œ๋‹ค.

์ผ๋ฐ˜์ ์œผ๋กœ ๋ฏธ๋ž˜ ๊ธฐํ›„๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์ˆ˜๋ฌธํ•™์  ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜๋Š” ๊ณผ์ •์—๋Š” ๋ฏธ๋ž˜ ์˜จ์‹ค๊ฐ€์Šค ์‹œ๋‚˜๋ฆฌ์˜ค์— ๋”ฐ๋ฅธ GCM (General Circulation Model)์˜ ์„ ์ •, ๋Œ€์ƒ์œ ์—ญ์— ๋Œ€ํ•œ ๋ถ„์„์„ ์œ„ํ•ด ์ €ํ•ด์ƒ๋„ GCM ์ž๋ฃŒ์˜ ๊ณต๊ฐ„์ ์ธ ์ƒ์„ธํ™”, ์ƒ์„ธํ™”๋œ ๊ธฐํ›„์ž๋ฃŒ๋ฅผ ์ž…๋ ฅ์ž๋ฃŒ๋กœ ํ™œ์šฉํ•˜๋Š” ์ˆ˜๋ฌธ๋ชจํ˜•์˜ ์„ ์ • ๋“ฑ ๋‹จ๊ณ„๋ณ„ ๊ณผ์ •์—์„œ ๋งŽ์€ ๋ถˆํ™•์‹ค์„ฑ์„ ๋‚ดํฌํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ด ์ค‘์—์„œ๋„ GCM์— ๋”ฐ๋ฅธ ๋ถˆํ™•์‹ค์„ฑ์ด ๊ฐ€์žฅ ํฐ ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค(Wilby and Harris, 2006; Kay et al., 2009; Lee, 2014; Kim et al., 2018). Kim et al.(2018)์˜ ์—ฐ๊ตฌ์—์„œ๋Š” ์ถฉ์ฃผ๋Œ ์œ ์—ญ์„ ๋Œ€์ƒ์œผ๋กœ 29๊ฐœ GCMs๊ณผ 2๊ฐœ์˜ ์ƒ์„ธํ™” ๊ธฐ๋ฒ•(SQM, SDQDM)์„ ์ ์šฉํ•˜์—ฌ GCM๊ณผ ์ƒ์„ธํ™”๊ธฐ๋ฒ•์— ๋”ฐ๋ฅธ ๋ถˆํ™•์‹ค์„ฑ ๋ถ„์„์„ ํ†ตํ•ด ๋ฏธ๋ž˜ ๊ธฐํ›„์ž๋ฃŒ์˜ ์‹œใ†๊ณต๊ฐ„์  ์žฌํ˜„ ๊ณผ์ •์—์„œ ๋ถˆํ™•์‹ค์„ฑ์ด ์ƒ๋Œ€์ ์œผ๋กœ ์ ์€ 16๊ฐœ GCMs๊ณผ SQM (Simple Quantile Mapping) (Cho et al., 2018a) ์ƒ์„ธํ™” ๊ธฐ๋ฒ•์„ ์„ ์ •ํ•œ ๋ฐ” ์žˆ๋‹ค.

๋ณธ ์—ฐ๊ตฌ์—์„œ ๋Œ€์ƒ์œผ๋กœ ํ•˜๋Š” ๊ฒฝ์•ˆ์ฒœ ์œ ์—ญ์€ ํ•œ๊ฐ•๊ถŒ์—ญ์˜ ํŒ”๋‹นํ˜ธ๋กœ ์œ ์ž…ํ•˜๋Š” ๊ธธ์ด 49.5 km์˜ ์ค‘์†Œ๊ทœ๋ชจ ํ•˜์ฒœ์œ ์—ญ์œผ๋กœ์„œ, ํŒ”๋‹นํ˜ธ ์ „์ฒด ์ƒ๋ฅ˜ ํ•˜์ฒœ ์ค‘ ํŒ”๋‹นํ˜ธ ์œ ์ž…๋Ÿ‰์— ๋Œ€ํ•œ ๊ธฐ์—ฌ๋„๋Š” 2 % ์ด๋‚ด์ด์ง€๋งŒ (Kim et al., 2014), BOD ์˜ค์—ผ๋ถ€ํ•˜๋Ÿ‰์€ 16 % ์ˆ˜์ค€์˜ ๋†’์€ ์˜ค์—ผ๋„๋ฅผ ์ง€๋‹ˆ๊ณ  ์žˆ์–ด ํŒ”๋‹นํ˜ธ ์ˆ˜์งˆ ๋ฌธ์ œ์— ์žˆ์–ด ๊ด€์‹ฌ์ด ๋†’์€ ์ง€์—ญ์ด๋‹ค(Cho, 2012). ๊ฒฝ์•ˆ์ฒœ ์œ ์—ญ์— ๋Œ€ํ•ด ๊ณผ๊ฑฐ ๊ธฐํ›„๋ณ€ํ™” ์˜ํ–ฅ์„ ๋ถ„์„ํ•œ ์—ฐ๊ตฌ๋ฅผ ๋ณด๋ฉด, Bae et al.(2007)์€ SRES A2 ์‹œ๋‚˜๋ฆฌ์˜ค ์ƒํ™ฉ์—์„œ ๊ฐ•์ˆ˜๋Ÿ‰๊ณผ ์œ ์ถœ๋Ÿ‰์€ ๊ฐ์†Œํ•˜๊ณ  ์ฆ๋ฐœ์‚ฐ๋Ÿ‰์€ ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋ถ„์„ํ•œ ๋ฐ” ์žˆ์œผ๋ฉฐ, Ahn et al.(2008)๋„ A2 ์‹œ๋‚˜๋ฆฌ์˜ค์™€ B2 ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ ๋น„์Šทํ•œ ์ „๋ง์„ ํ•˜์˜€๋‹ค. Ahn et al.(2009)์˜ ์—ฐ๊ตฌ์—์„œ๋Š” 3๊ฐœ ์‹œ๋‚˜๋ฆฌ์˜ค(A2, A1B, B1)์™€ 2๊ฐœ GCMs (MIROC3.2 hires, ECHAM5-OM)์„ ์ด์šฉํ•˜์—ฌ ๋ฏธ๋ž˜ ๊ธฐํ›„๋ณ€ํ™” ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜์˜€์œผ๋ฉฐ, ์—ฌ๋ฆ„์ฒ ์„ ์ œ์™ธํ•œ ๋ชจ๋“  ๊ณ„์ ˆ์—์„œ ๊ฐ•์ˆ˜๋Ÿ‰์ด ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์ „๋งํ•˜์˜€๋‹ค. Kim et al.(2010)์˜ ์—ฐ๊ตฌ์—์„œ๋„ A2 ์‹œ๋‚˜๋ฆฌ์˜ค ํ•˜์—์„œ ๊ฐ•์ˆ˜๋Ÿ‰๊ณผ ์œ ์ถœ๋Ÿ‰์ด ๊ณผ๊ฑฐ์— ๋น„ํ•ด ์ „๋ฐ˜์ ์œผ๋กœ ๊ฐ์†Œํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋น„๊ต์  ์ตœ๊ทผ์— ์ˆ˜ํ–‰๋œ Woo et al.(2018)์˜ ์—ฐ๊ตฌ์—์„œ๋„ RCP 4.5์™€ RCP 8.5 ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ HadGEM3-RA ๊ธฐํ›„์ž๋ฃŒ๋ฅผ ์ ์šฉํ•œ ๊ฒฐ๊ณผ ๋ฏธ๋ž˜์˜ ์œ ์ถœ๋Ÿ‰์ด ๊ฐ์†Œํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋ถ„์„๋˜์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ๋“ค์€ ๋Œ€๋ถ€๋ถ„ ๋‹จ์ผ ๋˜๋Š” ํ•œ์ •๋œ ์ˆ˜์˜ GCM์„ ์ ์šฉํ•˜๊ณ  ์žˆ๊ฑฐ๋‚˜ ๊ณผ๊ฑฐ์˜ ์‹œ๋‚˜๋ฆฌ์˜ค์ธ SRES ์ž๋ฃŒ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฏธ๋ž˜์˜ ๊ธฐํ›„๋ณ€ํ™” ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜๊ณ  ์žˆ์–ด ๋‹ค์–‘ํ•œ ๋ฏธ๋ž˜์˜ ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜๊ณ  ํ‰๊ฐ€ํ•˜๋Š”๋ฐ ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค.

๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ธฐ์กด Kim et al.(2018)์˜ ์—ฐ๊ตฌ๊ฒฐ๊ณผ๋ฅผ ๊ณ ๋ คํ•˜์—ฌ 16๊ฐœ GCMs๊ณผ SQM ์ƒ์„ธํ™” ๊ธฐ๋ฒ•์„ ํ†ตํ•ด ๋„์ถœ๋œ ๋ฏธ๋ž˜ ๊ธฐํ›„์ž๋ฃŒ์™€ SWAT (Soil and Water Assessment Tool) ์œ ์—ญ๋ชจํ˜•์„ ์ด์šฉํ•˜์—ฌ ๋‹ค์–‘ํ•œ GCM ์ž๋ฃŒ์— ๋”ฐ๋ฅธ ๋ฏธ๋ž˜ ์ˆ˜๋ฌธ ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜์˜€๋‹ค.

2. ์—ฐ๊ตฌ๋ฐฉ๋ฒ•

2.1 ๊ธฐํ›„๋ณ€ํ™” ์‹œ๋‚˜๋ฆฌ์˜ค ์ ์šฉ

๊ธฐํ›„๋ชจ๋ธ์— ๋”ฐ๋ฅธ ๋ฏธ๋ž˜ ์ „๋ง์ž๋ฃŒ์˜ ๋ถˆํ™•์‹ค์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ ๊ฐ€๋Šฅํ•œ ๋งŽ์€ ๊ธฐํ›„๋ชจ๋ธ๋กœ๋ถ€ํ„ฐ ์ƒ์‚ฐ๋œ ๋‹ค์–‘ํ•œ ๊ธฐํ›„๋ณ€ํ™” ์‹œ๋‚˜๋ฆฌ์˜ค์— ๋”ฐ๋ฅธ ์˜ํ–ฅ์„ ์ƒํ˜ธ ๋น„๊ตใ†๊ฒ€ํ† ํ•˜์˜€๋‹ค. ๊ธฐ์กด Kim et al.(2018)์˜ ์—ฐ๊ตฌ์—์„œ๋Š” ํ•œ๊ฐ•๊ถŒ์—ญ ์ถฉ์ฃผ๋Œ ์œ ์—ญ์„ ๋Œ€์ƒ์œผ๋กœ 29๊ฐœ GCMs๊ณผ 2๊ฐœ์˜ ์ƒ์„ธํ™” ๊ธฐ๋ฒ•(SQM, SDQDM)์„ ์ ์šฉํ•˜์—ฌ GCM๊ณผ ์ƒ์„ธํ™”๊ธฐ๋ฒ•์— ๋”ฐ๋ฅธ ๋ถˆํ™•์‹ค์„ฑ ๋ถ„์„์„ ํ†ตํ•ด ๋ฏธ๋ž˜ ๊ธฐํ›„์ž๋ฃŒ์˜ ์‹œใ†๊ณต๊ฐ„์  ์žฌํ˜„ ๊ณผ์ •์—์„œ ๋ถˆํ™•์‹ค์„ฑ์ด ์ƒ๋Œ€์ ์œผ๋กœ ์ ์€ 16๊ฐœ GCMs๊ณผ SQM ์ƒ์„ธํ™” ๊ธฐ๋ฒ•์„ ์„ ์ •ํ•œ ๋ฐ” ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋„ ์ƒ๊ธฐ ์—ฐ๊ตฌ์—์„œ ์„ ์ •ํ•˜์˜€๋˜ 16๊ฐœ GCMs๊ณผ SQM ์ƒ์„ธํ™” ๊ธฐ๋ฒ•์„ ๊ฒฝ์•ˆ์ฒœ ์œ ์—ญ์„ ๋Œ€์ƒ์œผ๋กœ ์ ์šฉํ•˜์˜€๋‹ค. SQM ๊ธฐ๋ฒ•์€ ๊ด€์ธก์ง€์  ๋ฐ ๊ธฐ์ƒ๋ณ€์ˆ˜์— ๋Œ€ํ•ด ๋…๋ฆฝ์ ์œผ๋กœ ์ƒ์„ธํ™”๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ์„œ ๊ณ„์‚ฐ์ด ๋น ๋ฅด๋‹ค๋Š” ์žฅ์ ์ด ์žˆ์œผ๋ฉฐ, Kim et al.(2018)๊ณผ Cho et al.(2018b)์˜ ์—ฐ๊ตฌ ๋“ฑ์„ ํ†ตํ•ด ๊ฐ•์ˆ˜๋Ÿ‰, ๊ธฐ์˜จ ๋“ฑ์˜ ๊ธฐํ›„๋ณ€์ˆ˜์— ๋Œ€ํ•œ ๊ณต๊ฐ„ ์žฌํ˜„์„ฑ ํ‰๊ฐ€์—์„œ ์šฐ์ˆ˜์„ฑ์„ ํ™•์ธํ•œ ๋ฐ” ์žˆ๋‹ค. 16๊ฐœ GCMs์— ๋Œ€ํ•œ ๊ณต๊ฐ„ํ•ด์ƒ๋„, ์ƒ์‚ฐ๊ธฐ๊ด€, ์‚ฐ์ถœ๋˜๋Š” ์ฃผ์š” ๊ธฐํ›„์ธ์ž ๋“ฑ์€ Kim et al.(2018)์˜ ๋…ผ๋ฌธ์— ํ‘œ๋กœ ์ž˜ ์ •๋ฆฌ๋˜์–ด ์žˆ๋‹ค.

๋ฏธ๋ž˜ ๊ธฐํ›„์˜ํ–ฅ ๋ถ„์„์„ ์œ„ํ•ด ์˜จ์‹ค๊ฐ€์Šค ์‹œ๋‚˜๋ฆฌ์˜ค๋กœ ์ ์šฉ๋˜๊ณ  ์žˆ๋Š” RCP ์‹œ๋‚˜๋ฆฌ์˜ค๋Š” ํƒ€ ์—ฐ๊ตฌ์—์„œ๋„ ๋งŽ์ด ํ™œ์šฉ๋˜๊ณ  ์žˆ๋Š” RCP 4.5 (์˜จ์‹ค๊ฐ€์Šค ์ €๊ฐ์ •์ฑ…์ด ์ƒ๋‹นํžˆ ์‹คํ˜„๋œ๋‹ค๋Š” ์‹œ๋‚˜๋ฆฌ์˜ค)์™€ RCP 8.5 (ํ˜„์žฌ ์ถ”์„ธ๋Œ€๋กœ ์˜จ์‹ค๊ฐ€์Šค๊ฐ€ ์ง€์† ๋ฐฐ์ถœ๋œ๋‹ค๋Š” ์‹œ๋‚˜๋ฆฌ์˜ค)์— ๋”ฐ๋ฅธ ๊ฒฐ๊ณผ๋ฅผ ์ ์šฉํ•˜์˜€๋‹ค.

SWAT ๋ชจํ˜•์„ ์ด์šฉํ•œ ์œ ์ถœ๋Ÿ‰ ๋ชจ์˜๋ฅผ ์œ„ํ•ด CCSM4, CESM1- BGC ๋“ฑ ์ด 16๊ฐœ GCMs์— ์˜ํ•œ ์ „๋ง์ž๋ฃŒ(๊ฐ•์ˆ˜๋Ÿ‰๊ณผ ์ตœ๊ณ /์ตœ์ €๊ธฐ์˜จ)๋ฅผ ํ™œ์šฉํ•˜์˜€์œผ๋ฉฐ, RCP 4.5์™€ RCP 8.5์— ๋Œ€ํ•ด ๊ฐ•์ˆ˜๋Ÿ‰, ์ฆ๋ฐœ์‚ฐ๋Ÿ‰ ๋ฐ ์œ ์ถœ๋Ÿ‰์„ ์ค‘์‹ฌ์œผ๋กœ ๋ฏธ๋ž˜์˜ ๊ธฐํ›„๋ณ€ํ™” ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜์˜€๋‹ค.

2.2 ์œ ์—ญ๋ชจ๋ธ๋ง ๊ตฌ์ถ•

๋Œ€์ƒ ์œ ์—ญ๋ฉด์ ์€ Fig. 1๊ณผ ๊ฐ™์ด ํ•˜๋ฅ˜๋ถ€์˜ ๊ฒฝ์•ˆ๊ต ์ง€์ ์„ ๊ธฐ์ค€์œผ๋กœ ์•ฝ 262 km2๋กœ์„œ, SWAT ๋ชจํ˜• ์ ์šฉ์„ ์œ„ํ•ด ์œ ์—ญ ๋‚ด ์ฃผ์š”ํ•ฉ๋ฅ˜์ ์„ ๊ธฐ์ค€์œผ๋กœ 11๊ฐœ์˜ ์†Œ์œ ์—ญ์œผ๋กœ ๊ตฌ๋ถ„ํ•˜์˜€๋‹ค.

Figure_KSCE_40_01_14_F1.jpg
Fig. 1.

Study Watershed

๋ชจํ˜•์˜ ๋งค๊ฐœ๋ณ€์ˆ˜ ๋ณด์ •์„ ์œ„ํ•ด ์œ ์—ญ ํ•˜๋ฅ˜๋ถ€์ธ ๊ฒฝ์•ˆ๊ต ์ง€์ ์—์„œ์˜ 2003~2008๋…„์˜ ์œ ์ถœ๋Ÿ‰ ๊ด€์ธก์ž๋ฃŒ๋ฅผ ํ™œ์šฉํ•˜์˜€์œผ๋ฉฐ, ๊ฒ€์ฆ์ž๋ฃŒ๋Š” 2009~2018๋…„์˜ ์ตœ๊ทผ 10๋…„ ์ž๋ฃŒ๋ฅผ ํ™œ์šฉํ•˜์˜€๋‹ค. ๋งค๊ฐœ๋ณ€์ˆ˜ ๋ณด์ •์€ ์œ ์ถœ๋Ÿ‰์— ๊ด€๋ จ๋œ ๋งค๊ฐœ๋ณ€์ˆ˜(CN2, ALPHA_BF, GW_DELAY, GWQMN, ESCO, SLSOIL)๋ฅผ ์ค‘์‹ฌ์œผ๋กœ SWAT-CUP์˜ SUFI2 ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•˜์—ฌ ์ž๋™๋ณด์ •ํ•˜์˜€๋‹ค.

Fig. 2๋Š” ๋ณด์ •๊ธฐ๊ฐ„๊ณผ ๊ฒ€์ฆ๊ธฐ๊ฐ„์— ๋Œ€ํ•ด ์ผ ์œ ์ถœ๋Ÿ‰ ๊ด€์ธก์น˜์™€ ๋ชจ์˜์น˜๋ฅผ ๋น„๊ตํ•œ ๊ฒƒ์ด๊ณ , Fig. 3์€ ์›” ์œ ์ถœ๋Ÿ‰์— ๋Œ€ํ•œ ๋น„๊ต ๊ฒฐ๊ณผ์ด๋‹ค. ์•ž์„œ ๊ธฐ์ˆ ํ•œ๋Œ€๋กœ SWAT-CUP SUFI2 ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ™œ์šฉํ•˜์—ฌ ์ตœ์ ์˜ ๊ฒฐ๊ณผ๋ฅผ ๋„์ถœํ•œ ๊ฒƒ์œผ๋กœ, ์ „๋ฐ˜์ ์ธ ๊ฒฝํ–ฅ์„ ์ž˜ ๋ชจ์˜ํ•˜๊ณ  ์žˆ์œผ๋‚˜ ์ผ๋ถ€ ๊ฐ•์ˆ˜๋Ÿ‰์ด ๋งŽ์€ ์—ฌ๋ฆ„์ฒ ์— ๊ด€์ธก์น˜์— ๋น„ํ•ด ๋‹ค์†Œ ๋‚ฎ์€ ๋ชจ์˜ ๊ฒฝํ–ฅ์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. Table 1์€ ๊ฐ๊ฐ์˜ ๊ฒฐ๊ณผ์— ๋Œ€ํ•œ R2 (Coefficient of determination), NSE (Nash-Sutcliffe efficiency), RSR (Ratio of RMSE to the standard deviation of the observations), PBIAS (Percent bias) ๋“ฑ์˜ ๋Œ€ํ‘œ์ ์ธ ์ ํ•ฉ์„ฑ(Goodness of fit) ํ‰๊ฐ€์ง€์ˆ˜๋ฅผ ํ‘œ๋กœ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์ด๋‹ค.

Figure_KSCE_40_01_14_F2.jpg
Fig. 2.

Calibration and Validation Results for Daily Flow

Figure_KSCE_40_01_14_F3.jpg
Fig. 3.

Calibration and Validation Results for Monthly Flow

Table 1. Goodness of Fit Results for Daily and Monthly Simulations in this Study

GOF index Calibration Validation
Daily flow Monthly flow Daily flow Monthly flow
R2 0.72 0.83 0.81 0.92
NSE 0.71 0.78 0.76 0.85
RSR 0.54 0.46 0.49 0.39
PBIAS (%) -18.4 -18.2 -22.1 -22.0

Table 2๋Š” Moriasi et al.(2007)์ด ์ œ์‹œํ•œ ๋ชจ๋ธ๋ง ๊ฒฐ๊ณผ์˜ ์ ํ•ฉ์„ฑ ํŒ๋‹จ ๊ธฐ์ค€ ์ค‘ SWAT ๋ชจํ˜•์— ๋Œ€ํ•œ ๋ถ€๋ถ„์„ ์ •๋ฆฌํ•œ ๊ฒƒ์œผ๋กœ์„œ, ๋ณธ ์—ฐ๊ตฌ์—์„œ ๋„์ถœ๋œ ๋ณด์ • ๋ฐ ๊ฒ€์ฆ๊ธฐ๊ฐ„์— ๋Œ€ํ•œ ๊ฒฐ๊ณผ๋Š” NSE์™€ RSR ๊ธฐ์ค€์œผ๋กœ๋Š” Very good, PBIAS ๊ธฐ์ค€์œผ๋กœ๋Š” Satisfactory ์ด์ƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ์ฆ‰, Figs. 2 and 3์— ๋‚˜ํƒ€๋‚œ ๊ฒƒ์ฒ˜๋Ÿผ ์ผ๋ถ€ ์ผ ์ž๋ฃŒ ๋ฐ ์›” ์ž๋ฃŒ์—์„œ ํŽธ์ฐจ๊ฐ€ ์žˆ์œผ๋‚˜ ์žฅ๊ธฐ๊ฐ„์— ๊ฑธ์ณ ๊ด€์ธก์น˜์˜ ๊ฒฝํ–ฅ์„ ์ž˜ ์žฌํ˜„ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ๋ชจ๋ธ๋ง์„ ํ†ตํ•ด ๋„์ถœ๋œ ๋ชจ์˜์ž๋ฃŒ์˜ ์‹ ๋ขฐ์„ฑ ๋ฐ ํ™œ์šฉ์„ฑ์ด ๋†’๋‹ค๊ณ  ํŒ๋‹จํ•  ์ˆ˜ ์žˆ๋‹ค.

Table 2. Model Performance Ratings for a Monthly Time Step (Moriasi et al., 2007)

Performance rating NSE RSR PBIAS
Very good 0.75 to 1.00 0.00 to 0.50 <ยฑ10
Good 0.65 to 0.75 0.50 to 0.60 ยฑ10 to ยฑ15
Satisfactory 0.50 to 0.65 0.60 to 0.70 ยฑ15 to ยฑ25
Unsatisfactory โ‰ค0.50 >0.70 โ‰ฅยฑ25

3. ์ ์šฉ ๊ฒฐ๊ณผ

3.1 ๋ฏธ๋ž˜ ๊ธฐํ›„๋ณ€ํ™”์— ๋”ฐ๋ฅธ ๊ฐ•์ˆ˜๋Ÿ‰ ๋ณ€ํ™”

SWAT ๋ชจํ˜•์„ ์ ์šฉํ•˜๊ธฐ ์ „์— ๋ฏธ๋ž˜ ๊ธฐํ›„๋ณ€ํ™” ์‹œ๋‚˜๋ฆฌ์˜ค์— ๋”ฐ๋ฅธ ๊ฒฝ์•ˆ์ฒœ ์œ ์—ญ์˜ ๊ฐ•์ˆ˜๋Ÿ‰์˜ ๋ณ€ํ™”๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. Fig. 4๋Š” ๊ณผ๊ฑฐ๊ธฐ๊ฐ„(1980~2009๋…„)๊ณผ ๋ฏธ๋ž˜๊ธฐ๊ฐ„(2010~2099๋…„)์— ๋Œ€ํ•œ ์—ฐ๋„๋ณ„ ๊ฐ•์ˆ˜๋Ÿ‰์˜ ๋ณ€ํ™”๋ฅผ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์œผ๋กœ ๋ฏธ๋ž˜๊ธฐ๊ฐ„์˜ ๊ฒฝ์šฐ์—๋Š” GCM์— ๋”ฐ๋ฅธ ๋ณ€๋™์„ฑ์„ ์Œ์˜์œผ๋กœ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ๋ฏธ๋ž˜๊ธฐ๊ฐ„์— ๋Œ€ํ•ด GCM์— ๋”ฐ๋ฅธ ์ตœ๋Œ€~์ตœ์†Œ ์ฐจ์ด๊ฐ€ 1,500 mm, ํ‰๊ท ๊ฐ’ ๋Œ€๋น„ ํŽธ์ฐจ๋Š” ์•ฝ โ€“40 % ~ +60 % ์ •๋„๋กœ ๋ณ€๋™์„ฑ์ด ๋งค์šฐ ํฐ ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋ฏธ๋ž˜๋กœ ๊ฐˆ์ˆ˜๋ก ์ ์ฐจ ์ฆ๊ฐ€ํ•˜๋Š” ์ถ”์„ธ์ด๋‹ค.

Figure_KSCE_40_01_14_F4.jpg
Fig. 4.

Annual Precipitation for Past and Future Periods

๋ฏธ๋ž˜๊ธฐ๊ฐ„๋ณ„ ์ฐจ์ด๋ฅผ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด ๋ฏธ๋ž˜๊ธฐ๊ฐ„(2010~2099๋…„)์„ ํฌ๊ฒŒ 3๊ฐœ์˜ ๊ธฐ๊ฐ„(2010~2039๋…„, 2040~2069๋…„, 2070~2099๋…„)์œผ๋กœ ๊ตฌ๋ถ„ํ•˜๊ณ  ๊ณผ๊ฑฐ ๊ธฐ๊ฐ„(1980~2009๋…„)์— ๋Œ€ํ•ด ๊ด€์ธก๋œ ๊ฐ’๊ณผ ๋น„๊ตํ•˜์˜€๋‹ค. Fig. 5๋Š” ๊ฐ GCM ๊ฒฐ๊ณผ ์ค‘ ๊ฐ•์ˆ˜๋Ÿ‰ ๊ฐ’์„ ๊ฒฝ์•ˆ์ฒœ ์œ ์—ญ์— ๋Œ€ํ•ด ์ƒ์„ธํ™”์‹œํ‚จ ํ›„ ๋ฏธ๋ž˜ ๊ธฐ๊ฐ„์— ๋”ฐ๋ผ ๋น„๊ตํ•œ ๊ฒฐ๊ณผ์ด๋‹ค. ์ผ๋ถ€ GCM ๊ฒฐ๊ณผ๋ฅผ ์ œ์™ธํ•˜๊ณ ๋Š” ๋Œ€์ฒด๋กœ ๋ฏธ๋ž˜ ํ›„๋ฐ˜๊ธฐ๋กœ ๊ฐˆ์ˆ˜๋ก ๊ฐ•์ˆ˜๋Ÿ‰์ด ์ฆ๊ฐ€ํ•˜๋ฉฐ RCP 4.5๋ณด๋‹ค RCP 8.5 ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ ๋” ๋งŽ์ด ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์ „๋ง๋˜์—ˆ๋‹ค. ๊ณผ๊ฑฐ ๊ด€์ธก๊ฐ’๊ณผ ๋น„๊ตํ•ด์„œ๋Š” ๋ฏธ๋ž˜ ์ „๋ฐ˜๊ธฐ์—๋Š” ์‹œ๋‚˜๋ฆฌ์˜ค์— ๋”ฐ๋ผ ์ผ๋ถ€ GCM์—์„œ ๋‚ฎ๊ฒŒ ์ „๋ง๋˜์—ˆ์œผ๋‚˜ ์ค‘๋ฐ˜๊ธฐ์™€ ํ›„๋ฐ˜๊ธฐ์—๋Š” ๊ฑฐ์˜ ๋ชจ๋“  GCM์˜ ๊ฒฐ๊ณผ๊ฐ€ ๊ด€์ธก๊ฐ’๋ณด๋‹ค ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ฆ‰ ํ˜„์žฌ์˜ RCP 4.5์™€ 8.5 ์‹œ๋‚˜๋ฆฌ์˜ค ์ƒํ™ฉ์—์„œ๋Š” ๋ฏธ๋ž˜๋กœ ๊ฐˆ์ˆ˜๋ก ๊ฐ•์ˆ˜๋Ÿ‰์ด ์ฆ๊ฐ€ํ•  ๊ฒƒ์œผ๋กœ ์ „๋ง๋˜๊ณ  ์žˆ๋‹ค.

Figure_KSCE_40_01_14_F5.jpg
Fig. 5.

Annual Precipitation by GCMs for Future Climate Change Scenarios of RCP 4.5 and RCP 8.5

Fig. 6์€ ๋ฏธ๋ž˜๊ธฐ๊ฐ„์— ๋”ฐ๋ฅธ ๊ฐ•์ˆ˜๋Ÿ‰์˜ ์›”๋ณ„ ๋ณ€ํ™”๋ฅผ ๋น„๊ตํ•œ ๊ฒƒ์œผ๋กœ, GCM์— ๋”ฐ๋ฅธ ๋ณ€๋™์„ฑ์„ ๋ฐ•์Šคํ”Œ๋กฏ์œผ๋กœ ๋‚˜ํƒ€๋‚ด์—ˆ์œผ๋ฉฐ ๊ณผ๊ฑฐ 30๋…„(1980~2009๋…„)์— ๋Œ€ํ•œ ๊ด€์ธก์ž๋ฃŒ์™€ ๋น„๊ตํ•˜์˜€๋‹ค. GCM์— ๋”ฐ๋ผ ์ฐจ์ด๋Š” ์žˆ์ง€๋งŒ, ๋Œ€์ฒด๋กœ 1์›”~6์›”๊ณผ 10์›”~12์›”์€ ๊ณผ๊ฑฐ ๊ด€์ธก์น˜์™€ ํฐ ์ฐจ์ด๊ฐ€ ์—†๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋ฐ˜๋ฉด์— 7์›”~9์›”์€ GCM์— ๋”ฐ๋ผ ๋ณ€๋™์„ฑ์ด ๋‹ค์†Œ ํฌ๋ฉฐ, ๋ฏธ๋ž˜ ํ›„๋ฐ˜๊ธฐ๋กœ ๊ฐˆ์ˆ˜๋ก, RCP 4.5๋ณด๋‹ค๋Š” RCP 8.5 ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ ๋ณ€๋™ํญ์ด ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. RCP 8.5์—์„œ๋Š” 6์›” ๊ฐ•์ˆ˜๋Ÿ‰๋„ GCM๋ณ„๋กœ ์ฐจ์ด๊ฐ€ ์ข€ ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋˜ํ•œ GCM ํ‰๊ท ์น˜๋ฅผ ๊ธฐ์ค€์œผ๋กœ 7์›”์˜ ๊ฐ•์ˆ˜๋Ÿ‰์€ ๊ณผ๊ฑฐ์ž๋ฃŒ์™€ ํฐ ์ฐจ์ด๊ฐ€ ์—†์œผ๋‚˜, 8์›”๊ณผ 9์›”์˜ ๊ฐ•์ˆ˜๋Ÿ‰์€ ๋Œ€์ฒด๋กœ ์ฆ๊ฐ€ํ•  ๊ฒƒ์œผ๋กœ ์ „๋ง๋˜์—ˆ๋‹ค. ์ฆ‰, ํ˜„์žฌ์˜ RCP ๊ธฐํ›„๋ณ€ํ™” ์‹œ๋‚˜๋ฆฌ์˜ค ํ•˜์—์„œ๋Š” ๋ฏธ๋ž˜์˜ ์—ฌ๋ฆ„์ฒ  ๊ฐ•์ˆ˜๋Ÿ‰์ด ์ฆ๊ฐ€ํ•  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒํ•  ์ˆ˜ ์žˆ๋‹ค.

Figure_KSCE_40_01_14_F6.jpg
Fig. 6.

Monthly Variation in Precipitation with Future Periods for RCP 4.5 and RCP 8.5

3.2 ๋ฏธ๋ž˜ ๊ธฐํ›„๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์ฆ๋ฐœ์‚ฐ๋Ÿ‰ ๋ณ€ํ™”

Fig. 7์€ ๋ฏธ๋ž˜ ๊ธฐํ›„์ž๋ฃŒ๋ฅผ ๊ฒฝ์•ˆ์ฒœ ์œ ์—ญ์— ๋Œ€ํ•ด ์ƒ์„ธํ™”์‹œํ‚จ ํ›„ SWAT ๋ชจํ˜•์˜ ์ž…๋ ฅ์ž๋ฃŒ๋กœ ์ ์šฉํ•˜์—ฌ ๋ชจ์˜๋œ ์ฆ๋ฐœ์‚ฐ๋Ÿ‰์— ๋Œ€ํ•œ ์—ฐ๋„๋ณ„ ๋ณ€ํ™”๋ฅผ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์ด๋‹ค. GCM์— ๋”ฐ๋ฅธ ์—ฐ๋„๋ณ„ ์ตœ๋Œ€~์ตœ์†Œ ์ฐจ์ด๋Š” 150 mm, ํ‰๊ท ๊ฐ’ ๋Œ€๋น„ ํŽธ์ฐจ๋Š” ยฑ15 % ์ •๋„์ด๋ฉฐ, ๋ฏธ๋ž˜๋กœ ๊ฐˆ์ˆ˜๋ก RCP 8.5 ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ์˜ ์ฆ๊ฐ€์ถ”์„ธ๊ฐ€ ์ƒ๋Œ€์ ์œผ๋กœ ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

Figure_KSCE_40_01_14_F7.jpg
Fig. 7.

Annual Evapotranspiration for Past and Future Periods

Fig. 8์€ ์•ž์„  Fig. 5์™€ ๊ฐ™์ด GCM๋ณ„ ์ฆ๋ฐœ์‚ฐ๋Ÿ‰์˜ ์—ฐ ํ‰๊ท ๊ฐ’์„ ๋น„๊ตํ•œ ๊ฒƒ์ด๋‹ค. ๋ฏธ๋ž˜ ์ „๋ฐ˜๊ธฐ(2010~2039)์—๋Š” ๊ณผ๊ฑฐ์™€ ๋น„์Šทํ•  ๊ฒƒ์œผ๋กœ ์ „๋งํ•œ GCM๋„ ๋งŽ์•˜์œผ๋‚˜, ๋ฏธ๋ž˜ ์ค‘๋ฐ˜๊ธฐ(2040~2069)์™€ ํ›„๋ฐ˜๊ธฐ(2070~2099)์—๋Š” ๊ฑฐ์˜ ๋ชจ๋“  GCM์— ๋Œ€ํ•ด ๊ณผ๊ฑฐ๋ณด๋‹ค ์ฆ๋ฐœ์‚ฐ๋Ÿ‰์ด ์ฆ๊ฐ€ํ•  ๊ฒƒ์œผ๋กœ ์ „๋ง๋˜์—ˆ๋‹ค. ๊ฐ•์ˆ˜๋Ÿ‰๊ณผ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ RCP 8.5์—์„œ์˜ ๋ณ€๋™์„ฑ์ด ๋” ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

Figure_KSCE_40_01_14_F8.jpg
Fig. 8.

Annual Evapotranspiration by GCMs for Future Climate Change Scenarios of RCP 4.5 and RCP 8.5

Fig. 9๋Š” ๋ฏธ๋ž˜๊ธฐ๊ฐ„์— ๋”ฐ๋ผ ์›”๋ณ„ ์ฆ๋ฐœ์‚ฐ๋Ÿ‰์˜ ๋ณ€ํ™”๋ฅผ ๋น„๊ตํ•œ ๊ฒƒ์œผ๋กœ์„œ, 4์›”๊ณผ 9์›”, 10์›”์€ ๊ณผ๊ฑฐ๋Œ€๋น„ ์ฆ๊ฐ€ํ•  ๊ฒƒ์œผ๋กœ ์ „๋ง๋˜๋Š” ๋ฐ˜๋ฉด, 7์›”๊ณผ 8์›”์€ ๊ฐ์†Œํ•  ๊ฒƒ์œผ๋กœ ์ „๋ง๋˜์—ˆ๋‹ค. ์ด๋Š” ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ์›์ธ์ด ์žˆ์„ ์ˆ˜ ์žˆ์œผ๋‚˜, ์•ž์˜ Fig. 6์— ๋‚˜ํƒ€๋‚œ ๊ฒƒ๊ณผ ๊ฐ™์ด ์—ฌ๋ฆ„์ฒ  ๊ฐ•์ˆ˜๋Ÿ‰์˜ ์ฆ๊ฐ€ ๋“ฑ์ด ํ•œ ์›์ธ์ผ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ๋˜ํ•œ ๊ฐ•์ˆ˜๋Ÿ‰๊ณผ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ RCP 4.5๋ณด๋‹ค๋Š” RCP 8.5์—์„œ ๊ทธ๋ฆฌ๊ณ  ๋ฏธ๋ž˜ ํ›„๋ฐ˜๊ธฐ๋กœ ๊ฐˆ์ˆ˜๋ก GCM์— ๋”ฐ๋ฅธ ๋ณ€๋™์„ฑ์ด ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚จ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค.

Figure_KSCE_40_01_14_F9.jpg
Fig. 9.

Monthly Variation in Evapotranspiration with Future Periods for RCP 4.5 and RCP 8.5

3.3 ๋ฏธ๋ž˜ ๊ธฐํ›„๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์œ ์ถœ๋Ÿ‰ ๋ณ€ํ™”

Fig. 10์€ ์—ฐ๋„๋ณ„ ์œ ์ถœ๋Ÿ‰์˜ ๋ณ€ํ™”๋ฅผ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์œผ๋กœ, GCM์— ๋”ฐ๋ฅธ ์—ฐ๊ฐ„ ์œ ์ถœ๋Ÿ‰์˜ ์ตœ๋Œ€~์ตœ์†Œ ์ฐจ์ด๋Š” ์•ฝ 1,380 mm, ํ‰๊ท ๊ฐ’ ๋Œ€๋น„ ํŽธ์ฐจ๋Š” โ€“60 % ~ +90 % ์ •๋„๋กœ ๋ถ„์„๋˜์—ˆ๊ณ , ๊ณผ๊ฑฐ๊ธฐ๊ฐ„๋ถ€ํ„ฐ ์ ์ฐจ ๋ฏธ๋ž˜ ํ›„๋ฐ˜๊ธฐ๋กœ ๊ฐˆ์ˆ˜๋ก ์œ ์ถœ๋Ÿ‰์ด ์ฆ๊ฐ€ํ•˜๋Š” ์ถ”์„ธ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

Figure_KSCE_40_01_14_F10.jpg
Fig. 10.

Annual Runoff for Past and Future Periods

Fig. 11์€ GCM์— ๋”ฐ๋ผ ๋„์ถœ๋œ ์—ฐ ์œ ์ถœ๋Ÿ‰์— ๋Œ€ํ•œ ๋น„๊ต ๊ฒฐ๊ณผ์ด๋‹ค. ์•ž์„œ ์‚ดํŽด๋ณธ ๊ฐ•์ˆ˜๋Ÿ‰์˜ ์ฆ๊ฐ€๋กœ ์ธํ•ด ๊ณผ๊ฑฐ๋ณด๋‹ค ๋ฏธ๋ž˜์˜ ์œ ์ถœ๋Ÿ‰์ด ์ฆ๊ฐ€ํ•˜๊ณ , ๋ฏธ๋ž˜ ํ›„๋ฐ˜๊ธฐ๋กœ ๊ฐˆ์ˆ˜๋ก ๋” ๋งŽ์ด ์ฆ๊ฐ€ํ•  ๊ฒƒ์œผ๋กœ ์ „๋ง๋˜์—ˆ์œผ๋ฉฐ, RCP 8.5์—์„œ GCM์— ๋”ฐ๋ฅธ ๋ณ€๋™์„ฑ ๋ฐ ๊ณผ๊ฑฐ๋Œ€๋น„ ์ฆ๊ฐ€ํญ์ด ๋” ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

Figure_KSCE_40_01_14_F11.jpg
Fig. 11.

Annual Runoff by GCMs for Future Climate Change Scenarios of RCP 4.5 and RCP 8.5

Fig. 12์— ๋‚˜ํƒ€๋‚œ ๋ฐ”์™€ ๊ฐ™์ด ์›”๋ณ„ ์œ ์ถœ๋Ÿ‰์˜ ๋ณ€ํ™” ๋˜ํ•œ ์—ฌ๋ฆ„์ฒ  ๊ฐ•์ˆ˜๋Ÿ‰์˜ ์ฆ๊ฐ€๋กœ ์ธํ•ด 8์›”๊ณผ 9์›”์˜ ์œ ์ถœ๋Ÿ‰์ด ํฐ ํญ์œผ๋กœ ์ฆ๊ฐ€ํ•  ๊ฒƒ์œผ๋กœ ์ „๋ง๋˜์—ˆ๋‹ค. 7์›”์˜ ๊ฒฝ์šฐ ๋ฏธ๋ž˜ ์ „๋ฐ˜๊ธฐ ๋ฐ ์ค‘๋ฐ˜๊ธฐ์— ์ผ๋ถ€ ๊ฐ์†Œ๋  ๊ฒƒ์œผ๋กœ ์ „๋ง๋˜๊ธฐ๋„ ํ•˜์ง€๋งŒ ํ›„๋ฐ˜๊ธฐ์—๋Š” ๋Œ€์ฒด๋กœ ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์ „๋ง๋˜์—ˆ์œผ๋ฉฐ, GCM์— ๋”ฐ๋ผ 7~9์›”์˜ ๋ณ€๋™์„ฑ์ด ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

Figure_KSCE_40_01_14_F12.jpg
Fig. 12.

Monthly Variation in Runoff with Future Periods for RCP 4.5 and RCP 8.5

4. ๊ฒฐ ๋ก 

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ฒฝ์•ˆ์ฒœ ์œ ์—ญ์„ ๋Œ€์ƒ์œผ๋กœ ๋ฏธ๋ž˜ ๊ธฐํ›„๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์ฃผ์š” ์ˆ˜๋ฌธ์„ฑ๋ถ„์˜ ๋ณ€ํ™”๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. GCM์— ๋”ฐ๋ฅธ ๋ฏธ๋ž˜ ๊ธฐํ›„์ž๋ฃŒ์˜ ๋ถˆํ™•์‹ค์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ ๊ธฐ์กด ํƒ€ ์—ฐ๊ตฌ์—์„œ ๋ถ„์„ํ•œ ๋ถˆํ™•์‹ค์„ฑ ๊ฒฐ๊ณผ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฏธ๋ž˜๊ธฐํ›„์ž๋ฃŒ์˜ ์žฌํ˜„์„ฑ์ด ์šฐ์ˆ˜ํ•œ 16๊ฐœ GCMs๊ณผ SQM ์ƒ์„ธํ™” ๊ธฐ๋ฒ•์„ ๋ถ„์„์— ํ™œ์šฉํ•˜์˜€๋‹ค. ๋˜ํ•œ SWAT ์œ ์—ญ๋ชจํ˜•์„ ์ด์šฉํ•˜์—ฌ ๋ฏธ๋ž˜ ๊ธฐํ›„์ž๋ฃŒ๋กœ๋ถ€ํ„ฐ ๋ฏธ๋ž˜์˜ ์œ ์ถœ๋Ÿ‰์„ ๋„์ถœํ•˜์˜€๋‹ค.

๋ถˆํ™•์‹ค์„ฑ ๋ถ„์„์„ ํ†ตํ•ด ์„ ์ •๋œ GCM์„ ์ ์šฉํ–ˆ์Œ์—๋„ ๋ณธ๋ฌธ์˜ ๋ถ„์„ ๊ฒฐ๊ณผ์—์„œ ๋‚˜ํƒ€๋‚œ ๋ฐ”์™€ ๊ฐ™์ด GCM์— ๋”ฐ๋ผ ์—ฐ๊ฐ„ ๊ฐ•์ˆ˜๋Ÿ‰์€ 1,500 mm, ์ฆ๋ฐœ์‚ฐ๋Ÿ‰์€ 150 mm, ์œ ์ถœ๋Ÿ‰์€ 1,380 mm์˜ ํŽธ์ฐจ๋ฅผ ๋ณด์ด๊ณ , ํ‰๊ท ๊ฐ’ ๋Œ€๋น„ ๊ฐ•์ˆ˜๋Ÿ‰์€ โ€“40 % ~ +60 %, ์ฆ๋ฐœ์‚ฐ๋Ÿ‰์€ ยฑ15 %, ์œ ์ถœ๋Ÿ‰์€ โ€“60 % ~ +90 %๋กœ์„œ GCM์— ๋”ฐ๋ฅธ ๋ณ€๋™์„ฑ์ด ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋ฏธ๋ž˜๊ธฐ๊ฐ„์„ 3๊ฐœ ๊ธฐ๊ฐ„์œผ๋กœ ๊ตฌ๋ถ„ํ•˜์—ฌ ๊ธฐ๊ฐ„๋ณ„ ๊ธฐํ›„๋ณ€ํ™” ์˜ํ–ฅ์„ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, ๊ฐ•์ˆ˜๋Ÿ‰, ์ฆ๋ฐœ์‚ฐ๋Ÿ‰, ์œ ์ถœ๋Ÿ‰ ๋ชจ๋‘ ๋ฏธ๋ž˜ ํ›„๋ฐ˜๊ธฐ(2070~2099๋…„)๋กœ ๊ฐˆ์ˆ˜๋ก ์ ์ฐจ ์ฆ๊ฐ€ํ•˜๋ฉฐ, RCP 8.5 ์‹œ๋‚˜๋ฆฌ์˜ค ํ•˜์—์„œ ์ƒ๋Œ€์ ์œผ๋กœ ๋” ํฌ๊ฒŒ ์ฆ๊ฐ€ํ•  ๊ฒƒ์œผ๋กœ ์ „๋ง๋˜์—ˆ๋‹ค. ์›”๋ณ„๋กœ๋Š” ๋ฏธ๋ž˜ ํ›„๋ฐ˜๊ธฐ๋กœ ๊ฐˆ์ˆ˜๋ก 7~9์›”์„ ์ค‘์‹ฌ์œผ๋กœ ๊ฐ•์ˆ˜๋Ÿ‰๊ณผ ์œ ์ถœ๋Ÿ‰์ด ์ฆ๊ฐ€ํ•˜๋Š” ๋ฐ˜๋ฉด, ์ฆ๋ฐœ์‚ฐ๋Ÿ‰์€ 7์›”๊ณผ 8์›”์— ๊ฐ์†Œํ•˜๊ณ  9์›”๊ณผ 10์›”์— ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋ถ„์„๋˜์—ˆ๋‹ค.

๊ฒฝ์•ˆ์ฒœ ์œ ์—ญ์— ๋Œ€ํ•œ ๊ธฐ์กด์˜ ๊ธฐํ›„๋ณ€ํ™” ์—ฐ๊ตฌ์™€ ๋น„๊ตํ•ด๋ณด๋ฉด, ๋Œ€์ฒด๋กœ ๊ฐ•์ˆ˜๋Ÿ‰๊ณผ ์œ ์ถœ๋Ÿ‰์ด ๊ฐ์†Œํ•  ๊ฒƒ์œผ๋กœ ์ „๋งํ•˜๊ณ  ์žˆ์œผ๋ฉฐ(Bae et al., 2007; Kim et al., 2010; Woo et al., 2018), ๋ณธ ์—ฐ๊ตฌ๊ฒฐ๊ณผ์™€๋Š” ๋ฐ˜๋Œ€๋กœ ์—ฌ๋ฆ„์ฒ ์„ ์ œ์™ธํ•œ ๋ชจ๋“  ๊ณ„์ ˆ์—์„œ ๊ฐ•์ˆ˜๋Ÿ‰์ด ์ฆ๊ฐ€ํ•  ๊ฒƒ์œผ๋กœ ์ „๋งํ•œ ์—ฐ๊ตฌ(Ahn et al., 2009)๋„ ์žˆ๋‹ค. ๋ฐ˜๋ฉด, ๊ฒฝ์•ˆ์ฒœ ์œ ์—ญ์„ ํฌํ•จํ•œ ํ•œ๊ฐ•์œ ์—ญ ์ „์ฒด๋ฅผ ๋Œ€์ƒ์œผ๋กœ ํ•œ ๊ธฐํ›„๋ณ€ํ™” ์—ฐ๊ตฌ๊ฒฐ๊ณผ๋ฅผ ๋ณด๋ฉด, ๋Œ€์ฒด๋กœ ๊ฐ•์ˆ˜๋Ÿ‰๊ณผ ์œ ์ถœ๋Ÿ‰์ด ์ฆ๊ฐ€ํ•  ๊ฒƒ์œผ๋กœ ์ „๋งํ•˜๊ณ  ์žˆ๋‹ค(Bae et al., 2007; Jung et al., 2013; Korea Environment Institute, 2012, Do and Kim, 2017). ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ๋“ค์€ ๋‹จ์ผ ๋˜๋Š” ์†Œ์ˆ˜์˜ GCM์„ ์ ์šฉํ•˜๊ฑฐ๋‚˜ ๊ณผ๊ฑฐ์˜ SRES ๊ธฐํ›„๋ณ€ํ™” ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ถ„์„ํ•˜๊ณ  ์žˆ์–ด ๋ณธ ์—ฐ๊ตฌ๊ฒฐ๊ณผ์™€ ์ฐจ์ด๊ฐ€ ์žˆ์„ ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ๋ณธ๋ฌธ์—์„œ ๋ถ„์„ํ•œ ๋ฐ”์™€ ๊ฐ™์ด GCM์— ๋”ฐ๋ผ ์ƒ์ดํ•œ ๊ธฐํ›„์˜ํ–ฅ์„ ๋„์ถœํ•  ๊ฐ€๋Šฅ์„ฑ๋„ ์žˆ๋‹ค.

์ผ๋ฐ˜์ ์œผ๋กœ ๋ฏธ๋ž˜ ์ˆ˜์‹ญ๋…„ ์ด์ƒ์˜ ๊ธฐ๊ฐ„์— ๋Œ€ํ•œ ์žฅ๊ธฐ๊ฐ„์˜ ๊ธฐํ›„๋ณ€ํ™” ์˜ํ–ฅ์€ ์‹ค์ œ์˜ ๊ธฐํ›„ํ˜„์ƒ์„ ๋ชจ์˜ํ•˜์—ฌ ๋ถ„์„ํ•œ ๊ฒƒ์ด ์•„๋‹ˆ๋ผ ๊ณผ๊ฑฐ์˜ ๊ด€์ธก์น˜๋ฅผ ๊ธฐ์ค€์œผ๋กœ ๋ฏธ๋ž˜์— ๋ฐœ์ƒ๊ฐ€๋Šฅํ•œ ๋Œ€ํ‘œ์ ์ธ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์ˆ˜๋ฆฝํ•œ ํ›„ ๋ฏธ๋ž˜์˜ ๋ถˆํ™•์‹ค์„ฑ์„ ์˜ˆ์ธกํ•˜๊ณ  ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ, ์‹œ๋‚˜๋ฆฌ์˜ค์— ๋”ฐ๋ฅธ ๋‹ค์–‘ํ•œ ๊ฐ€๋Šฅ์„ฑ์„ ์—ผ๋‘์— ๋‘๊ณ  ๋‹ค์–‘ํ•œ ๋ถ„์„๋ฐฉ๋ฒ•์— ๋”ฐ๋ผ ๋ฏธ๋ž˜์˜ ๋ณ€ํ™”๋ฅผ ํŒ๋‹จํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์‹œํ•˜๋Š” ๊ฒฐ๊ณผ๋Š” ๊ทธ๋Ÿฌํ•œ ๋‹ค์–‘ํ•œ ๊ฐ€๋Šฅ์„ฑ ์ค‘์˜ ํ•˜๋‚˜๋กœ์„œ ๋ฏธ๋ž˜์˜ ๊ธฐํ›„๋ณ€ํ™” ์˜ํ–ฅ์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ํŠนํžˆ GCM ์ž๋ฃŒ์— ๋”ฐ๋ฅธ ๊ฒฐ๊ณผ์˜ ๋ถˆํ™•์‹ค์„ฑ์„ ์ดํ•ดํ•˜๋Š”๋ฐ ๋„์›€์ด ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€ํ•œ๋‹ค.

Acknowledgements

๋ณธ ์—ฐ๊ตฌ๋Š” ํ•œ๊ตญ๊ฑด์„ค๊ธฐ์ˆ ์—ฐ๊ตฌ์› ์ฃผ์š”์‚ฌ์—… โ€œ๊ฐ€๋ญ„๋Œ€์‘ ์ค‘์†Œํ•˜์ฒœ ๋ฌผ๋ถ€์กฑ ์œ„ํ—˜๋„ ํ‰๊ฐ€ ๋ฐ ๋ฌผ ํ™•๋ณด ๊ธฐ์ˆ  ๊ฐœ๋ฐœโ€ ๊ณผ์ œ์˜ ์—ฐ๊ตฌ๋น„ ์ง€์›์— ์˜ํ•ด ์ˆ˜ํ–‰๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

๋ณธ ๋…ผ๋ฌธ์€ 2019 CONVENTION ๋…ผ๋ฌธ์„ ์ˆ˜์ •ยท๋ณด์™„ํ•˜์—ฌ ์ž‘์„ฑ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

References

1 
Ahn, S. R., Lee, Y. J., Park, G. A. and Kim, S. J. (2008). "Analysis of future land use and climate change impact on stream discharge." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 28, No. 2B, pp. 215-224 (in Korean).
2 
Ahn, S. R., Park, M. J., Park, G. A. and Kim, S. J. (2009). "Assessing future climate change impact on hydrologic components of Gyeongancheon watershed." Journal of Korea Water Resources Association, KWRA, Vol. 42, No. 1, pp. 33-50 (in Korean).DOI
3 
Bae, D. H., Jung, I. W. and Han, H. J. (2007). "Climate change impact assessment and adaptation strategy on water resources in the Han River basin." GRI Review, Gyeonggi Research Institute, Vol. 9, No. 4, pp. 95-115 (in Korean).
4 
Cho, J., Cho, W. and Jung, I. (2018a). rSQM: Statistical downscaling toolkit for climate change scenario using non parametric quantile mapping [Internet]. [place unknown]. Available at: https://cran.r- project.org/web/packages/rSQM/index.html (Accessed: February 24, 2018]).
5 
Cho, J., Jung, I., Cho, W. and Hwang, S. (2018b). "User-centered climate change scenarios technique development and application of Korean Peninsula." Journal of Climate Change Research, Vol. 9, No. 1, pp. 13-29 (in Korean).DOI
6 
Cho, Y. M. (2012). "Gyeongan-cheon where humans and nature coexist." River and Culture, Vol. 8. No. 2, pp. 22-28 (in Korean).
7 
Do, Y. and Kim, G. (2017). "Analysis of hydrological components changes in Soyanggang Dam watershed according to RCP emission scenarios." Proceedings of the KSCE Conference, pp. 78-79 (in Korean).
8 
Jung, C. G., M oon, J. W., Jang, C. H. and Lee, D. R. (2013). "A ssessing of climate change impacts on hydrology and snowmelt by applying RCP scenarios using SWAT model for Hanriver watersheds." Journal of the Korean Society of Agricultural Engineers, KSAE, Vol. 55, No. 5, pp. 37-48 (in Korean).DOI
9 
Kay, A. L., Davies, H. N., Bell, V.A. and Jones, R. G. (2009). "Comparison of uncertainty sources for climate change impacts: flood frequency in England." Climatic Change, Vol. 92, No. 1-2, pp. 41-63.DOI
10 
Kim, C. G. Kim, N. W. and Lee, J. E. (2014). "Assessing the effect of upstream dam outflows and river water uses on the inflows to the Paldang Dam." Journal of Korea Water Resources Association, KWRA, Vol. 47, No. 11, pp. 1017-1026 (in Korean).DOI
11 
Kim, C. G., Park, J. and Cho. J. (2018). "Future climate change impact assessment of Chungju Dam inflow considering selection of GCMs and downscaling technique." Journal of Climate Change Research, Vol. 9, No. 1, pp. 47-58 (in Korean).DOI
12 
Kim, S. J., Kim, B. S., Jun, H. D. and Kim, H. S. (2010). "The evaluation of climate change impacts on the water scarcity of the Han River basin in South Korea using high resolution RCM data." Journal of Korea Water Resources Association, KWRA, Vol. 43, No. 3, pp. 295-308 (in Korean).DOI
13 
Korea Environment Institute (2012). Risk management policy for water security in a changing climate, KEI 2012-08 (in Korean).
14 
Lee J. K. (2014). Scenario selection and uncertainty quantification for climate change impact assessments in water resource, Ph.D. Dissertation, Seoul National University, Seoul, Korea (in Korean).
15 
Moriasi, D. N., Arnold, J. G., Liew, M. W., Bingner, R. L., Harmel, R. D. and Veith, T. L. (2007). "Model evaluation guidelines for systematic quantification of accuracy in watershed simulations." Transactions of the ASABE, Vol. 50, No. 3, pp. 885-900.DOI
16 
Wilby, R. L. and Harris, I. (2006). "A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the River Thames, UK." Water Resources Research, Vol. 42, No. 2, W02419, DOI
17 
Woo, S. Y., Jung, C. G., Kim, J. U. and Kim, S. J. (2018). "Assessment of climate change impact on aquatic ecology health indices in Han River basin using SWAT and random forest." Journal of Korea Water Resources Association, KWRA, Vol. 51, No. 10, pp. 863-874 (in Korean).