Mobile QR Code QR CODE : Journal of the Korean Society of Civil Engineers

  1. ์ •ํšŒ์›โ€ค์•„์ฃผ๋Œ€ํ•™๊ต ๊ตํ†ต๊ณตํ•™๊ณผ ๋ฐ•์‚ฌ๊ณผ์ • (Ajou Universityโ€คinsik@ajou.ac.kr)
  2. ์ข…์‹ ํšŒ์›โ€ค๊ต์‹ ์ €์žโ€ค์•„์ฃผ๋Œ€ํ•™๊ต TOD๊ธฐ๋ฐ˜ ์ง€์†๊ฐ€๋Šฅ ๋„์‹œ๊ตํ†ต์—ฐ๊ตฌ์„ผํ„ฐ ์—ฐ๊ตฌ๊ต์ˆ˜ (Corresponding Authorโ€คAjou Universityโ€คazang@ajou.ac.kr)
  3. ํ•œ๊ตญ๋„๋กœ๊ณต์‚ฌ ๋„๋กœ๊ตํ†ต์›๊ตฌ์› ์ˆ˜์„์—ฐ๊ตฌ์› (Korea Expressway Corporation Research Instituteโ€คwonwoo.lee@ex.co.kr)
  4. ์•„์ฃผ๋Œ€ํ•™๊ต ๊ตํ†ต๊ณตํ•™๊ณผ ๋ฐ•์‚ฌ๊ณผ์ • (Ajou Universityโ€คecruiser@ajou.ac.kr)



์ดํ•ญ ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋ถ„์„, ์šด์ „์ ์ˆ˜, ์ธ์„ผํ‹ฐ๋ธŒ, ์•ˆ์ „/ํ™˜๊ฒฝ์  ์šด
Binomial logistic regression, Driving score, Incentive, Safe/environmental driving

1. ์„œ ๋ก 

๊ตํ†ต ์ฒด์ฆ, ์ถœํ‡ด๊ทผ ์‹œ๊ฐ„ ๊ตํ†ต ํ˜ผ์žก, ๊ตํ†ต์‚ฌ๊ณ  ์ฆ๋Œ€ ๋“ฑ์˜ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ๋‹ค์–‘ํ•œ ์ ‘๊ทผ๋ฒ•์ด ์žˆ๋‹ค. ๊ทธ์ค‘ ํ•˜๋‚˜๋กœ ์‹ค์‹œ๊ฐ„ ๊ตํ†ต์ •๋ณด ์ œ๊ณต์„ ํ†ตํ•ด ์šด์ „์ž์˜ ํšจ์œจ์  ์šด์ „ ์˜์‚ฌ๊ฒฐ์ •์„ ์ง€์›ํ•˜์—ฌ ๊ตํ†ต ํ˜ผ์žก ๊ฐœ์„ ์„ ์œ ๋„ํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์‹ค์‹œ๊ฐ„ ๊ตํ†ต์ •๋ณด๋Š” ๋น ๋ฅธ ๊ธธ ์•ˆ๋‚ด ์„œ๋น„์Šค ์™ธ๋กœ ๋ฏผ๊ฐ„ ๊ตํ†ต์ •๋ณด ๋ฐ ๋ณดํ—˜ํšŒ์‚ฌ์—์„œ๋Š” ์ฃผํ–‰ ์•ˆ์ „์ ์ˆ˜์™€ ์šดํ–‰ ํŒจํ„ด์— ๋Œ€ํ•œ ์ •๋ณด๋กœ ํ™œ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ๋ฏผ๊ฐ„์—์„œ๋Š” ์ฃผํ–‰ ์•ˆ์ „์ ์ˆ˜์— ๋Œ€ํ•œ ์šด์ „์ž ๋ณด์ƒ(์ธ์„ผํ‹ฐ๋ธŒ)์œผ๋กœ ๋ณดํ—˜๋ฃŒ ํ• ์ธ ๋“ฑ์˜ ์ •์ฑ…์„ ํŽผ์น˜๊ณ  ์žˆ๋‹ค.

๊ตญ๋‚ดยท์™ธ ์—ฌ๋Ÿฌ ๊ธฐ๊ด€์—์„œ ์ธ์„ผํ‹ฐ๋ธŒ ์ œ๊ณต์„ ํ†ตํ•ด ์•ˆ์ „์ /ํ™˜๊ฒฝ์ ์ธ ์ฃผํ–‰์ด ๊ฐ€๋Šฅํ•˜๋„๋ก ์œ ๋„ํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌํ•œ ์‚ฌ๋ก€๊ฐ€ ๊ตญ๋‚ด์—์„œ๋Š” ์šด์ „๋ฉดํ—ˆ์ฆ์„ ๋ณด์œ ํ•œ ์šด์ „์ž๊ฐ€ ๋ฌด์œ„๋ฐ˜ยท๋ฌด์‚ฌ๊ณ  ์ค€์ˆ˜ ์„œ์•ฝ์„œ๋ฅผ ์ ‘์ˆ˜ํ•œ ๋’ค 1๋…„๊ฐ„ ์„œ์•ฝ ๋‚ด์šฉ์„ ์ค€์ˆ˜ํ•  ๊ฒฝ์šฐ ๋งˆ์ผ๋ฆฌ์ง€๋ฅผ ์ ๋ฆฝํ•ด์ฃผ๋Š” ์ฐฉํ•œ ์šด์ „ ๋งˆ์ผ๋ฆฌ์ง€(Korean National Police Agency, 2021), ํ™”๋ฌผ์ฐจ ์šด์ „์ž๊ฐ€ ๊ณ ์†๋„๋กœ ํœด๊ฒŒ์†Œ ๋˜๋Š” ์กธ์Œ์‰ผํ„ฐ์—์„œ ํœด์‹์„ ์ธ์ฆํ•˜๋ฉด ํšŸ์ˆ˜์— ๋”ฐ๋ผ ์ƒํ’ˆ๊ถŒ์„ ์ง€๊ธ‰ํ•˜๋Š” ํ™”๋ฌผ์ฐจ ํœด์‹-์ธ์„ผํ‹ฐ๋ธŒ ์ œ๋„(Korea Expressway Corporation, 2022), ๋Œ€์ค‘๊ตํ†ต์„ ์ด์šฉํ•˜๊ธฐ ์œ„ํ•ด ๊ฑท๊ฑฐ๋‚˜ ์ž์ „๊ฑฐ๋กœ ์ด๋™ํ•œ ๊ฑฐ๋ฆฌ๋งŒํผ ๋งˆ์ผ๋ฆฌ์ง€๋ฅผ ์ ๋ฆฝํ•ด์ฃผ๋Š” ์•Œ๋œฐ๊ตํ†ต์นด๋“œ(Metropolitan Transport Commission, 2020) ๋“ฑ์˜ ์ธ์„ผํ‹ฐ๋ธŒ ์ œ๋„๊ฐ€ ์‹œํ–‰๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ์•ˆ์ „์  ์ธ์„ผํ‹ฐ๋ธŒ ์„œ๋น„์Šค ์ œ๋„์—๋Š” ๋ฉดํ—ˆ์ •์ง€ ์ผ์ˆ˜ ๊ฐ๊ฒฝ, ์ƒํ’ˆ๊ถŒ ๋“ฑ ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ๋ฐฉ์‹์œผ๋กœ ์ง€๊ธ‰ํ•˜๊ณ  ์žˆ๊ณ , ํ™˜๊ฒฝ์  ์ธ์„ผํ‹ฐ๋ธŒ ์„œ๋น„์Šค ์ œ๋„๋Š” ๊ตํ†ต๋น„ ํ• ์ธ, ๋งˆ์ผ๋ฆฌ์ง€, ๊ตํ†ต์นด๋“œ ๋“ฑ ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ๋ฐฉ์‹์œผ๋กœ ์ง€๊ธ‰ํ•˜๊ณ  ์žˆ๋‹ค.

๊ตญ์™ธ์—์„œ๋Š” ์•ˆ์ „์šด์ „ ์ ์ˆ˜๋ฅผ ํ†ตํ•ด ์ž๋™์ฐจ ๋ณดํ—˜๋ฃŒ๋ฅผ ํ• ์ธํ•˜๋Š” ์ œ๋„์ธ Signal(Farmers Insurance Group, 2019), ๊ฐ€์ • ์—๋„ˆ์ง€ ์†Œ๋น„ ์ ˆ์•ฝ์— ๋”ฐ๋ผ ์ฒญ๊ตฌ์„œ ๋‹น 200ํฌ์ธํŠธ๋ฅผ ์ง€๊ธ‰ํ•˜๊ณ  ํ•ด๋‹น ํฌ์ธํŠธ๋ฅผ ํ†ตํ•ด ์‹ํ’ˆ, ๊ฐ€์ „์ œํ’ˆ, ์ „์ž์ƒํ’ˆ๊ถŒ ๋“ฑ์„ ๊ตฌ๋งคํ•  ์ˆ˜ ์žˆ๋Š” ์ œ๋„์ธ Eco Point(CLP Power Hong Kong Limited, 2023) ๋“ฑ์˜ ์ธ์„ผํ‹ฐ๋ธŒ ์ œ๋„๊ฐ€ ์‹œํ–‰๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ์•ˆ์ „์  ์ธ์„ผํ‹ฐ๋ธŒ ์„œ๋น„์Šค ์ œ๋„์—๋Š” ๋ณดํ—˜์‚ฌ ์—ฐ๊ณ„ ํ• ์ธ์ด ์ฃผ๋ฅผ ์ด๋ฃจ๊ณ  ์žˆ๊ณ , ํ™˜๊ฒฝ์  ์ธ์„ผํ‹ฐ๋ธŒ ์„œ๋น„์Šค ์ œ๋„๋Š” ๊ธฐํ”„ํŠธ ์นด๋“œ, ์ „๊ธฐ์„ธ ํ• ์ธ ๋“ฑ ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ๋ฐฉ์‹์œผ๋กœ ์ธ์„ผํ‹ฐ๋ธŒ๋ฅผ ์ง€๊ธ‰ํ•˜๊ณ  ์žˆ๋‹ค.

์ด์ฒ˜๋Ÿผ ์•ˆ์ „/ํ™˜๊ฒฝ์  ์ฃผํ–‰์— ๋Œ€ํ•œ ์ธ์„ผํ‹ฐ๋ธŒ ์ •์ฑ…๊ณผ ๊ด€๋ จ๋œ ๋‹ค์–‘ํ•œ ์„ ์ˆœํ™˜์ ์ธ ๋Œ€์•ˆ๋“ค์ด ๋Œ€๋‘๋˜๊ณ  ์žˆ์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์•ˆ์ „/ํ™˜๊ฒฝ ์šด์ „ ์‹œ ์–ด๋Š ์ •๋„ ๊ทœ๋ชจ์˜ ์ธ์„ผํ‹ฐ๋ธŒ ์ง€๊ธ‰์ด ์ ์ •ํ•œ์ง€์™€ ๊ด€๋ จ๋œ ์—ฐ๊ตฌ๋Š” ๋ถ€์กฑํ•œ ์‹ค์ •์ด๋‹ค. ๋˜ํ•œ, ์•ˆ์ „/ํ™˜๊ฒฝ ์ธ์„ผํ‹ฐ๋ธŒ ์„œ๋น„์Šค์™€ ๊ด€๋ จํ•˜์—ฌ ํƒ„์†Œ ํฌ์ธํŠธ์ œ ๋“ฑ๊ณผ ๊ฐ™์€ ์ •์ฑ…์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ์ง„ํ–‰๋˜์—ˆ์ง€๋งŒ, ํ†ตํ–‰ํ–‰ํƒœ, ์ฃผํ–‰ ๋“ฑ๊ณผ ๊ด€๋ จ๋œ ์•ˆ์ „/ํ™˜๊ฒฝ ์ธ์„ผํ‹ฐ๋ธŒ ์„œ๋น„์Šค ์—ฐ๊ตฌ๋Š” ๋ฏธํกํ•œ ์ƒํ™ฉ์ด๋‹ค.

์ด์— ๋ณธ ์—ฐ๊ตฌ๋Š” 2์žฅ์—์„œ ๊ด€๋ จ ์—ฐ๊ตฌ ๊ณ ์ฐฐ, 3์žฅ์—์„œ๋Š” ์„ค๋ฌธ ๊ธฐ๋ฐ˜ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘, 4์žฅ์—์„œ ์ดํ•ญ ๋กœ์ง€์Šคํ‹ฑ ๋ชจ๋ธ ์ ์šฉ, 5์žฅ ๊ฒฐ๋ก ์„ ์‚ดํŽด๋ณด์•˜๋‹ค. ๋จผ์ €, ์„ค๋ฌธ ๊ธฐ๋ฐ˜ ํ˜•ํƒœ๋กœ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•˜๊ณ  ์ดํ•ญ ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋ชจํ˜•์„ ํ™œ์šฉํ•˜์—ฌ ์ธ์„ผํ‹ฐ๋ธŒ ์ง€๊ธ‰ ์ ์ • ๊ทœ๋ชจ๋ฅผ ๋ถ„์„ํ•œ๋‹ค. ์•ˆ์ „/ํ™˜๊ฒฝ ์šด์ „์„ ์œ ๋„ํ•˜๊ธฐ ์œ„ํ•ด ์•ˆ์ „/ํ™˜๊ฒฝ ์šด์ „์ ์ˆ˜๊ฐ€ ์ฃผํ–‰์†๋„๋กœ๋งŒ ์ธก์ •๋œ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜์—ฌ ๊ฐ์† ์‹œ ์ ์ˆ˜๊ฐ€ ์ƒ์Šนํ•˜๊ณ  ์ด๋•Œ ์ด์šฉ์ž์—๊ฒŒ ์ธ์„ผํ‹ฐ๋ธŒ๊ฐ€ ์ง€๊ธ‰๋˜๋Š” ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์„ค์ •ํ•˜์—ฌ ์„ค๋ฌธ์„ ์‹ค์‹œํ•˜์˜€๋‹ค. ์ด ์„ค๋ฌธ์„ ํ†ตํ•ด ์–ด๋– ํ•œ ์š”์ธ๋“ค์ด ์ธ์„ผํ‹ฐ๋ธŒ ๊ทœ๋ชจ ๋งŒ์กฑ ์—ฌ๋ถ€์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋ฉฐ, ์•ˆ์ „/ํ™˜๊ฒฝ ์šด์ „์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ์ธ์„ผํ‹ฐ๋ธŒ ์ ์ • ๊ทœ๋ชจ๋ฅผ ํ†ต๊ณ„ ํ”„๋กœ๊ทธ๋žจ SPSS๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ฃผ์š” ์—ฐ๊ตฌ์˜ ๊ณผ์ •์€ Fig. 1๊ณผ ๊ฐ™๋‹ค.

Fig. 1. Procedure for Carrying Out the Study
../../Resources/KSCE/Ksce.2023.43.4.0485/fig1.png

2. ๊ด€๋ จ ์—ฐ๊ตฌ ๊ณ ์ฐฐ

2.1 ์ธ์„ผํ‹ฐ๋ธŒ ๊ด€๋ จ ์—ฐ๊ตฌ

Bae and Jeon(2005)์€ PAYD ํ”„๋กœ๊ทธ๋žจ(Pay-As-You-Drive Automobile Insurance Incentive Program)์˜ ๋„์ž…๋ฐฐ๊ฒฝ๊ณผ ์‹œ๋ฒ”์ ์šฉ ์‚ฌ๋ก€ ๋ฐ ์ ์šฉ์˜ ๋ฌธ์ œ์  ๋“ฑ์„ ๊ณ ์ฐฐํ•˜์˜€๋‹ค. ๊ทธ๋“ค์€ ๊ตํ†ต์ˆ˜์š” ๊ด€๋ฆฌ ์ธก๋ฉด์—์„œ ํšจ๊ณผ์  ๊ธฐ๋ฒ•์ด ๋  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ํŒ๋‹จํ•˜์˜€๋‹ค. ์„ฑ๊ณต์  ๋„์ž…์„ ์œ„ํ•ด์„œ๋Š” ๋ณดํ—˜ํšŒ์‚ฌ๋“ค์˜ ์ ๊ทน์ ์ธ ์ฐธ์—ฌ๋ฅผ ์œ ๋„ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์šด์ „์ž ํŠน์„ฑ(์—ฐ๋ น, ์„ฑ๋ณ„, ์†Œ๋“์ˆ˜์ค€ ๋“ฑ)์— ๋”ฐ๋ฅธ ํ†ตํ–‰ํ–‰ํƒœ๋ฅผ ๊ณ ๋ คํ•œ ๋ณดํ—˜๋ฃŒ์˜ ์ฐจ๋“ฑ ์ง•์ˆ˜๋ฅผ ์œ„ํ•œ ํ•ฉ๋ฆฌ์ ์ธ ๊ธฐ์ค€์ด ํ•„์š”ํ•˜๋ฉฐ, ๊ฐœ๋ณ„ ์šด์ „์ž๋“ค์˜ ์šดํ–‰์ •๋ณด๋ฅผ ์ทจ๋“ํ•˜๊ธฐ ์œ„ํ•œ ํ•ฉ๋ฆฌ์ ์ธ ๋ฐฉ๋ฒ• ๋“ฑ์ด ํ•„์š”ํ•œ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

Byun et al.(2014)์€ ์ „๊ตญ 14๊ฐœ ์‹œยท๋„ ํƒ„์†Œํฌ์ธํŠธ์ œ ๊ฐ€์ž…์„ธ๋Œ€์— ๋Œ€ํ•ด ํŠน์„ฑ๋ถ„์„ ๋ฐ ํฌ์ธํŠธ ์ง€๊ธ‰๊ธฐ์ค€์„ ์‹œ๋‚˜๋ฆฌ์˜ค๋กœ ์ œ์‹œํ•˜์—ฌ, ์ ์ ˆํ•œ ํฌ์ธํŠธ ์ง€๊ธ‰๊ธฐ์ค€์„ ์ œ์‹œํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ๊ธฐ์กด์˜ ์˜จ์‹ค๊ฐ€์Šค ๊ฐ์ถ•๋Ÿ‰์˜ 1/10๋กœ ํฌ์ธํŠธ๋ฅผ ์ง€๊ธ‰ํ•˜๋˜ ๋ฐฉ๋ฒ•๊ณผ ์—ฌ๋Ÿฌ ์‹œ๋‚˜๋ฆฌ์˜ค ์ค‘ 2% ๋‹จ์œ„๋กœ 6๊ฐœ์˜ ๊ฐ์ถ•๋ฅ  ๊ตฌ๊ฐ„(2% ๋ฏธ๋งŒ, 2% ์ด์ƒ, 4% ์ด์ƒ, 6% ์ด์ƒ, 8% ์ด์ƒ, 10% ์ด์ƒ)์„ ์„ค์ •ํ•œ ์‹œ๋‚˜๋ฆฌ์˜ค๊ฐ€ ๊ฐ€์žฅ ๋ฐ”๋žŒ์งํ•œ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

Jeong(2016)์€ โ€˜์ฐฉํ•œ ๋งˆ์ผ๋ฆฌ์ง€โ€™๋ผ๋Š” ์ธ์„ผํ‹ฐ๋ธŒ ์ •์ฑ…์ด ์˜๋ฌด์ดํ–‰ ํ™•๋ณด์˜ ํšจ๊ณผ๊ฐ€ ์žˆ๋Š”์ง€์— ๋Œ€ํ•œ ์‹ค์ฆ์ ์ธ ๊ฒ€์ฆ์„ ํ†ตํ•ด ์ธ์„ผํ‹ฐ๋ธŒ ์ •์ฑ… ๋„์ž… ํ™•๋Œ€์— ๋…ผ๋ฆฌ์  ๋ฐ ์‹ค์ฆ์  ๊ธฐ์ดˆ ์ž๋ฃŒ๋ฅผ ์ œ๊ณตํ•˜์˜€๋‹ค. ์„œ์šธ 4๊ฐœ ๊ฒฝ์ฐฐ์„œ ๊ด€ํ• ์— ๊ฑฐ์ฃผํ•˜๋Š” ์šด์ „์ž๋“ค์„ ๋ณธ ์ •์ฑ… ํ˜œํƒ์— ์‹ ์ฒญ์ง‘๋‹จ๊ณผ ๋ฏธ์‹ ์ฒญ์ง‘๋‹จ์œผ๋กœ ๊ตฌ๋ถ„ํ•˜์—ฌ ์šด์ „ ํƒœ๋„๋ฅผ ๋ฒ•๊ทœ์œ„๋ฐ˜ ๋น„์œจ ๊ธฐ์ค€ ํฌ์•„์†ก ํšŒ๊ท€๋ถ„์„, ์Œ์ดํ•ญ ํšŒ๊ท€๋ถ„์„, ๊ณต๋ถ„์‚ฐ ๋ถ„์„๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ๋น„๊ตํ•œ ๊ฒฐ๊ณผ, โ€˜์ฐฉํ•œ ๋งˆ์ผ๋ฆฌ์ง€โ€™ ์ œ๋„๋Š” ๋ฒ•๊ทœ์œ„๋ฐ˜ ๋น„์œจ์„ ๊ฐ์†Œ์‹œํ‚ค๋Š” ํšจ๊ณผ๊ฐ€ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

Loumidi et al.(2011)์€ ์ƒŒํ”„๋ž€์‹œ์Šค์ฝ” ๋งŒ ์ง€์—ญ ์ฃผ๋ฏผ๋“ค์„ ์ค‘์‹ฌ์œผ๋กœ ์ผ์ƒ, ์šด์ „์Šต๊ด€ ๋“ฑ ๋‹ค์–‘ํ•œ ๊ด€์ ์—์„œ ์นœํ™˜๊ฒฝ์„ฑ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋…ธ๋…„์ธต๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๊ณ ๋“ฑ๊ต์œก์„ ๋ฐ›์€ ์‚ฌ๋žŒ๋“ค์€ ๋” ์นœํ™˜๊ฒฝ์ ์ด๋ผ๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๊ณ , ์ฐจ๋Ÿ‰์˜ ์—ฐ๋ฃŒ ์†Œ๋น„๋Ÿ‰ ๋ฐ ์—ฐ๋น„ ์ •๋ณด๋ฅผ ํ‘œ์‹œํ•˜๊ธฐ ์œ„ํ•œ ์‹œ๊ฐํ™” ๋ฐ ์„ ํ˜ธํ•˜๋Š” ์œ ํ˜• ์ •๋ณด๋Š” ๊ฒŒ์ด์ง€ ๋‹ค์ด์–ผ, ์ˆ˜ํ‰ ๋ง‰๋Œ€ ๋ฐ ํ…์ŠคํŠธ ์ •๋ณด์ด๋ฉฐ, ์ธ์„ผํ‹ฐ๋ธŒ๋กœ ๋ณด์ƒ๋ฐ›๊ณ  ์‹ถ์–ดํ•˜๋Š” ์ƒ์œ„ ์„ธ ๊ฐ€์ง€๋Š” ํ˜„๊ธˆ, ํŽธ๋ฆฌํ•จ, ์ฆ๊ฑฐ์›€์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

2.2 ์ดํ•ญ ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋ถ„์„ ๊ด€๋ จ ์—ฐ๊ตฌ

Jeong(2007)์€ ๊ณ ์†๋„๋กœ ๊ตํ†ต์‚ฌ๊ณ ์˜ ์ธ์ ์š”์ธ ์ค‘ ์กธ์Œ์šด์ „์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์š”์†Œ๋ฅผ ๊ณ ์ฐฐํ•˜๊ณ ์ž 2004๋…„ ๊ตญ๋‚ด ๊ณ ์†๋„๋กœ 24๊ฐœ ๋…ธ์„ ์—์„œ ๋ฐœ์ƒํ•œ ๊ตํ†ต์‚ฌ๊ณ ๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์ดํ•ญ ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋ถ„์„์„ ํ™œ์šฉํ•œ ๊ฒฐ๊ณผ, ์š”์ผ๋ณ„๋กœ๋Š” ์›”์š”์ผ, ์ˆ˜์š”์ผ, ๊ธˆ์š”์ผ, ์‹œ๊ฐ„๋Œ€๋ณ„๋กœ๋Š” ์ƒˆ๋ฒฝ์‹œ๊ฐ„๋Œ€์— ์กธ์Œ์šด์ „์„ ๋งŽ์ด ํ•˜๋ฉฐ, ๊ธฐ์ƒ์ƒํƒœ๋ณ„๋กœ๋Š” ๋น„, ๋ˆˆ, ๊ด‘ํ’ ์ƒํ™ฉ์—์„œ ์ฃผ์˜ ์šด์ „์„ ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋˜ํ•œ, ์ฃผ๊ฐ„๋ณด๋‹ค ์•ผ๊ฐ„, ๊ธฐํƒ€ ์ฐจ๋Ÿ‰ ์šด์ „์ž๋ณด๋‹ค ํ™”๋ฌผ์ฐจ ์šด์ „์ž, ์—ฌ์„ฑ๋ณด๋‹ค ๋‚จ์„ฑ, 20๋Œ€์™€ 30๋Œ€, ์žฅ๊ฑฐ๋ฆฌ ์šดํ–‰ ์‹œ ์กธ์Œ์šด์ „์„ ํ•  ํ™•๋ฅ ์ด ๋†’์€ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

Ntanos et al.(2018)์€ ์žฌ์ƒ์—๋„ˆ์ง€์›์— ๋Œ€ํ•œ ์—ฌ๋ก ์„ ํ˜•์„ฑํ•˜๋Š” ์š”์ธ์„ ๋ฐœ๊ตดํ•˜๊ณ , ์ „๊ธฐ๋ฏน์Šค์˜ ์žฌ์ƒ์—๋„ˆ์ง€์› ํ™•๋Œ€์— ๋Œ€ํ•œ ์ง€๋ถˆ์˜์‚ฌ๊ธˆ์•ก์„ ์กฐ์‚ฌํ•˜๊ธฐ ์œ„ํ•ด ๊ทธ๋ฆฌ์Šค ๋„์‹œ ์ž์น˜์ฒด์ธ ๋‹ˆ์นด์ด์•„์—์„œ ์žฌ์ƒ ์—๋„ˆ์ง€ ์‹œ์Šคํ…œ ๊ด€๋ จ ์„ค๋ฌธ์„ ํ†ตํ•ด ์ „๊ธฐ ํ˜ผํ•ฉ๋ฌผ์— RES(Renewable Energy Sources)๋ฅผ ๋” ๋„“๊ฒŒ ์นจํˆฌ์‹œํ‚ค๋Š” ๋ฐ์— ๋Œ€ํ•œ ์ง€๋ถˆ์˜์‚ฌ๊ธˆ์•ก์€ ์ „๊ธฐ ์š”๊ธˆ ๋‹น 26.6์œ ๋กœ๋กœ ์ถ”์ •๋˜์—ˆ๋‹ค. ๋˜ํ•œ, ์ดํ•ญ ๋กœ์ง€์Šคํ‹ฑ ๋ชจํ˜•์„ ์ด์šฉํ•˜์—ฌ ์ง€๋ถˆ์˜์‚ฌ๊ธˆ์•ก์€ ๊ต์œก, ์—๋„ˆ์ง€๋ณด์กฐ๊ธˆ, ๊ตญ๊ฐ€์ง€์› ๋“ฑ๊ณผ ์–‘์˜ ์—ฐ๊ด€์ด ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

Kim and Jeong(2018)์€ ์ „๊ธฐ์ฐจ ๊ตฌ๋งค์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ ์š”์ธ์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด ์ดํ•ญ ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€ ๋ชจํ˜•์„ ๊ตฌ์ถ•ํ•˜์—ฌ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, ์ฐจ๋Ÿ‰๋ณด์œ ๋Œ€์ˆ˜, ์„ฑ๋ณ„, ๋‚˜์ด๋Š” ์œ ์˜ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น˜์ง€ ์•Š์•˜์œผ๋ฉฐ, ์ฐจ๋Ÿ‰ ๊ฐ€๊ฒฉ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๋ณ€์ˆ˜, ์ „๊ธฐ์ฐจ ์ถฉ์ „๊ณผ ๊ด€๋ จ๋œ ๋ณ€์ˆ˜, ์ „๊ธฐ์ฐจ ์ •์ฑ… ๋ฐ ์‹œ์Šน์ •๋ณด ์ œ๊ณต ๋ถ€์กฑ ๋ณ€์ˆ˜๋Š” ์œ ์˜ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ „๊ธฐ์ฐจ ๋ณด๊ธ‰๊ณผ ๊ด€๋ จ๋œ ์ •์ฑ… ์ž…์•ˆ ์‹œ ์ „๊ธฐ์ฐจ ๊ฐ€๊ฒฉ ๊ฒฐ์ • ๋ฐ ์ฐพ์•„๊ฐ€๋Š” ์ „๊ธฐ์ฐจ ์ถฉ์ „ ์„œ๋น„์Šค ์šด์˜ ๋“ฑ ์ถฉ์ „ ๋ถˆํŽธ ํ•ด์†Œ ๋ฐฉ์•ˆ, ์ „๊ธฐ์ฐจ์— ๋Œ€ํ•œ ์ •๋ณด ์ œ๊ณต ๋ฐ ์‹œ์Šน๊ธฐํšŒ ํ™•๋Œ€ ๋“ฑ ์ •์ฑ…์„ ์ถ”์ง„ํ•˜๋Š” ๊ฒƒ์ด ๋ฐ”๋žŒ์งํ•  ๊ฒƒ์œผ๋กœ ํŒ๋‹จํ•˜์˜€๋‹ค.

Kim et al.(2019)์€ ์ฒญ์†Œ๋…„ ์Œ์ฃผํ–‰์œ„์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์š”์ธ์„ ์‚ดํŽด๋ณด๊ธฐ ์œ„ํ•ด ํ•œ๊ตญ ์•„๋™ยท์ฒญ์†Œ๋…„ ํŒจ๋„์กฐ์‚ฌ(KCYS)์˜ ์ค‘1 ํŒจ๋„๋ฐ์ดํ„ฐ๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์ดํ•ญ ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€ ๋ชจํ˜•์„ ํ™œ์šฉํ•˜์—ฌ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, ์„ฑ๋ณ„, ์ง€๋‚œ 1๋…„๊ฐ„ ํก์—ฐ ๊ฒฝํ—˜, ์„ฑ์  ๋งŒ์กฑ๋„, ์‚ฌ์ด๋ฒ„ ๋น„ํ–‰, ์ž์•„์กด์ค‘๊ฐ, ๋ถ€๋ชจํ•™๋Œ€, ๋˜๋ž˜์‹ ๋ขฐ์™€ ์œ ์˜๋ฏธํ•œ ๊ด€๋ จ์ด ์žˆ๊ณ , ํ•™๊ต ์ ์‘ ์š”์ธ์€ ์—ฐ๊ด€์„ฑ์ด ํ™•์ธ๋˜์ง€ ์•Š๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Š” ์ฒญ์†Œ๋…„๋“ค์˜ ์Œ์ฃผํ–‰์œ„๋ฅผ ์ค‘์žฌํ•˜๊ณ  ๊ฐ์†Œ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๊ฐœ์ธ, ๊ฐ€์กฑ, ์ง€์—ญ์‚ฌํšŒ ๋“ฑ ๋‹ค๊ฐ์ ์ธ ๋…ธ๋ ฅ์ด ํ•„์š”ํ•˜๋‹ค๋Š” ๊ฒƒ์„ ์‹œ์‚ฌํ•˜๊ณ  ์žˆ๋‹ค.

Mehrolia et al.(2021)์€ ์ธ๋„ COVID-19๋กœ ์ธํ•ด ์˜จ๋ผ์ธ ์Œ์‹๋ฐฐ๋‹ฌ์„œ๋น„์Šค(OFDs, Online Food Delivery services)๋ฅผ ํ†ตํ•ด ์Œ์‹์„ ์ฃผ๋ฌธํ•œ ๊ณ ๊ฐ๊ณผ ์ฃผ๋ฌธํ•˜์ง€ ์•Š์€ ๊ณ ๊ฐ์˜ ์ฐจ์ด์ ์„ ์‚ดํŽด๋ณด๊ธฐ ์œ„ํ•ด 462๊ฐœ์˜ OFD ๊ณ ๊ฐ ๋ฐ์ดํ„ฐ๋กœ ์ดํ•ญ ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋ถ„์„์„ ํ™œ์šฉํ•˜์—ฌ ๋‘ ๋ฒ”์ฃผ์˜ ๊ณ ๊ฐ ๊ฐ„ ์ฐจ์ด๋ฅผ ์กฐ์‚ฌํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ํŠน์ • ์งˆ๋ณ‘์— ๋Œ€ํ•œ ๋†’์€ ์ˆ˜์ค€์˜ ๋ถˆ์•ˆ๊ฐ, OFD์— ๋Œ€ํ•ด ๋‚ฎ์€ ํ˜ธ๊ฐ๋„, ์˜จ๋ผ์ธ ์Œ์‹ ์ฃผ๋ฌธ ๋นˆ๋„๊ฐ€ ๋‚ฎ์€ ์‘๋‹ต์ž ๋“ฑ์ด OFD๋ฅผ ํ†ตํ•ด ์Œ์‹์„ ์ฃผ๋ฌธํ•  ๊ฐ€๋Šฅ์„ฑ์ด ๋‚ฎ๋‹ค๋Š” ๊ฒฐ๋ก ์ด ๋‚˜ํƒ€๋‚ฌ๋‹ค.

Tamakloe et al.(2022)์€ ๊ฐ€๋‚˜์—์„œ ์ธ๊ตฌ ๋ฐ€๋„๊ฐ€ ๊ฐ€์žฅ ๋†’์€ ์ง€์—ญ์ธ ์•„ํฌ๋ผ์˜ ์‹ ํ˜ธ ๊ต์ฐจ๋กœ์™€ ๋น„์‹ ํ˜ธ ๊ต์ฐจ๋กœ์˜ ์˜คํ† ๋ฐ”์ด ์ถฉ๋Œ ์‚ฌ์ƒ์ž ์‹ฌ๊ฐ๋„ ๊ฒฐ๊ณผ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด ๋ฐ์ดํ„ฐ ๋งˆ์ด๋‹๊ณผ ์ดํ•ญ ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋ถ„์„์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๋ถ„์„ ๊ฒฐ๊ณผ, ์šด์ „๋ฉดํ—ˆ ์†Œ์ง€, ์ฃผ๊ฐ„ ์กฐ๋ช…, ๊ธธ์–ด๊นจ ์กด์žฌ๋Š” ์‹ ํ˜ธ ๊ต์ฐจ๋กœ์—์„œ์˜ ์น˜๋ช…์ƒ ์œ„ํ—˜์„ ์ฆ๊ฐ€์‹œ์ผฐ๊ณ , ๋ถ€์ฃผ์˜, ์–‘ํ˜ธํ•œ ๋…ธ๋ฉด, ์•ผ๊ฐ„, ๊ธธ์–ด๊นจ ๋ถ€์žฌ, ์ Š์€ ์šด์ „์ž์™€ ๊ฐ™์€ ์š”์ธ์€ ๋น„์‹ ํ˜ธ ๊ต์ฐจ๋กœ์—์„œ ์‚ฌ๋ง์ž๋ฅผ ์ฆ๊ฐ€์‹œํ‚ฌ ๊ฐ€๋Šฅ์„ฑ์ด ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Š” ์˜คํ† ๋ฐ”์ด ์•ˆ์ „์„ ๊ฐœ์„ ํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋˜๋Š” ๊ต์œก์ด๋‚˜ ๊ถŒ์žฅ ์‚ฌํ•ญ์„ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋‹ค.

2.3 ๊ธฐ์กด ์—ฐ๊ตฌ์™€์˜ ์ฐจ๋ณ„์„ฑ

๊ธฐ์กด ์ธ์„ผํ‹ฐ๋ธŒ ๊ด€๋ จ ์—ฐ๊ตฌ๋Š” ๋ณดํ—˜๋ฃŒ ์ฐจ๋“ฑ ์ง•์ˆ˜๋ฅผ ์œ„ํ•œ ํ•ฉ๋ฆฌ์ ์ธ ๊ธฐ์ค€์˜ ํ•„์š”์„ฑ์„ ์ œ์‹œํ•˜๊ณ , ์ธ์„ผํ‹ฐ๋ธŒ๋กœ ๋ณด์ƒ๋ฐ›๊ณ  ์‹ถ์–ดํ•˜๋Š” ์œ ํ˜•์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ธ์„ผํ‹ฐ๋ธŒ ์ง€๊ธ‰์˜ ์ ์ • ๊ทœ๋ชจ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ๋ฏธํกํ•œ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋˜ํ•œ, ์ดํ•ญ ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋ถ„์„ ๊ด€๋ จ ์—ฐ๊ตฌ๋Š” ๊ตํ†ต์‚ฌ๊ณ  ๋ถ„์„, ์ง€๋ถˆ์˜์‚ฌ๊ธˆ์•ก ๋ถ„์„, ์ „๊ธฐ์ฐจ ๊ตฌ๋งค ์˜ํ–ฅ ๋ถ„์„, ์ฒญ์†Œ๋…„ ์Œ์ฃผํ–‰์œ„ ์˜ํ–ฅ ์š”์ธ ๋ถ„์„, COVID-19๋กœ ์ธํ•œ ์Œ์‹๋ฐฐ๋‹ฌ ์„œ๋น„์Šค ์ด์šฉ ์—ฌ๋ถ€ ๋ถ„์„ ๋“ฑ์ด ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ง€๋ถˆ์˜์‚ฌ๊ธˆ์•ก ๋ถ„์„๊ณผ ์œ ์‚ฌํ•œ ํ˜•ํƒœ์ธ ์ธ์„ผํ‹ฐ๋ธŒ ์ˆ˜๋ น์˜์‚ฌ๊ธˆ์•ก ๋ถ„์„์€ ๋ฏธํกํ•œ ์‹ค์ •์ด์—ˆ๋‹ค.

์ด์— ๋ณธ ์—ฐ๊ตฌ๋Š” ์•ˆ์ „/ํ™˜๊ฒฝ ์šด์ „์„ ์œ ๋„ํ•˜๊ธฐ ์œ„ํ•ด ์šด์ „์ž์—๊ฒŒ ์ธ์„ผํ‹ฐ๋ธŒ๋ฅผ ์ง€๊ธ‰ํ•˜๋Š”๋ฐ ์ด๋•Œ ์ธ์„ผํ‹ฐ๋ธŒ ์ง€๊ธ‰ ์ ์ • ๊ทœ๋ชจ๋ฅผ ์‚ฐ์ •ํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ดํ•ญ ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋ชจํ˜•์€ ํ™•๋ฅ  $p$์˜ ํ•จ์ˆ˜๋กœ ์žฌ๊ตฌ์„ฑํ•  ์ˆ˜ ์žˆ๋Š”๋ฐ, ์ด๋Ÿฌํ•œ ํ˜•ํƒœ์—์„œ ์ธ์„ผํ‹ฐ๋ธŒ ์ง€๊ธ‰ ์ ์ • ๊ทœ๋ชจ๋ฅผ ์‚ฐ์ •ํ•  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ ์ดํ•ญ ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋ชจํ˜•์„ ํ™œ์šฉํ•˜์—ฌ ๋ถ„์„ํ•˜๊ณ ์ž ํ•œ๋‹ค. ๋˜ํ•œ, ๋ณธ ์—ฐ๊ตฌ๋Š” ์ข…์†๋ณ€์ˆ˜๊ฐ€ ์กฐ๊ฑด์— ๋”ฐ๋ผ Yes ๋˜๋Š” No ๋“ฑ์œผ๋กœ ์ดํ•ญํ˜•์ด๋ฏ€๋กœ ์„ ํ˜•ํšŒ๊ท€๋ฅผ ์ ์šฉํ•  ์ˆ˜ ์—†๊ธฐ ๋•Œ๋ฌธ์— ์ดํ•ญ ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋ชจํ˜•์„ ํ™œ์šฉํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๊ฐ€ ์•ˆ์ „/ํ™˜๊ฒฝ ์šด์ „์„ ์ œ๊ณ ํ•˜๋Š” ์„ ์ˆœํ™˜์  ๋Œ€์•ˆ์ด ๋  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์—์„œ ์ฐจ๋ณ„์„ฑ์„ ๊ฐ–๋Š”๋‹ค๊ณ  ๋ณผ ์ˆ˜ ์žˆ๋‹ค.

3. ์„ค๋ฌธ ๊ธฐ๋ฐ˜ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘

3.1 ์„ค๋ฌธ ๋ฐ์ดํ„ฐ ๊ตฌ์„ฑ

๋ณธ ์—ฐ๊ตฌ๋Š” ์šด์ „๋ฉดํ—ˆ ์†Œ์ง€์ž ๋ฐ ๊ณ ์†๋„๋กœ ํ†ต๊ทผ์ž 200๋ช…์„ ๋Œ€์ƒ์œผ๋กœ ์„ค๋ฌธ์„ ์‹ค์‹œํ•œ ํ›„, ๊ฒฐ์ธก๋œ ๋ฌธํ•ญ ๋ฐ ์ผ๊ด€๋˜์ง€ ์•Š์€ ์‘๋‹ต์ž๋ฅผ ์ œ์™ธํ•˜๊ณ  ์ด 117๊ฑด์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์„ ๋ณ„ํ•˜์˜€๋‹ค. ์•ˆ์ „/ํ™˜๊ฒฝ ์šด์ „์ ์ˆ˜๊ฐ€ ์ฃผํ–‰์†๋„๋กœ๋งŒ ์ธก์ •๋œ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜๊ณ  ์ฃผํ–‰์†๋„ ๊ฐ์† ์‹œ ์•ˆ์ „/ํ™˜๊ฒฝ ์šด์ „์ ์ˆ˜๊ฐ€ ์ƒ์Šนํ•˜๋ฉฐ ์ด๋•Œ ์šด์ „์ž์—๊ฒŒ ์ธ์„ผํ‹ฐ๋ธŒ๊ฐ€ ์ง€๊ธ‰๋˜๋Š”๋ฐ, ์„œ์šธ ๊ฐ•๋‚จ์—ญ์—์„œ ์ˆ˜์›์‹œ์ฒญ๊นŒ์ง€ ์ฃผํ–‰ ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ ํ†ตํ–‰๋ฃŒ 2,100์›์˜ ๋ช‡ ํผ์„ผํŠธ ์ธ์„ผํ‹ฐ๋ธŒ๋ฅผ ์ˆ˜๋ น๋ฐ›๊ธฐ ์›ํ•˜๋Š”์ง€ ์„ค๋ฌธ์„ ์‹ค์‹œํ•˜์˜€๋‹ค. ์šด์ „์ ์ˆ˜๋Š” Table 1๊ณผ ๊ฐ™์ด 50์ ๋Œ€๋ถ€ํ„ฐ ์‹œ์ž‘์œผ๋กœ ์šด์ „์ ์ˆ˜ ์ƒ์Šน ๋น„์œจ์„ ํ†ตํ–‰๋ฃŒ๋กœ ํ™˜์‚ฐํ•˜์—ฌ ์ธ์„ผํ‹ฐ๋ธŒ(1%)๋ฅผ ์‚ฐ์ •ํ•˜์˜€๋‹ค. ํ‹ฐ๋งต ์•ˆ์ „์šด์ „ ํ• ์ธ ํŠน์•ฝ์„ ์ œ๊ณตํ•˜๋Š” ๋ณดํ—˜์‚ฌ ์ค‘ ์ตœ์†Œ 60์ ๋Œ€๋ถ€ํ„ฐ ํ• ์ธ ํŠน์•ฝ์ด ์ ์šฉ๋˜๊ณ  ์žˆ๋Š” ๋ณดํ—˜์‚ฌ๋ฅผ ์ฐธ๊ณ ํ•˜์—ฌ ๊ทธ๋ฃน ๋ถ„๋ฅ˜ ๊ธฐ์ค€์„ 50์ ๋Œ€์—์„œ ์ƒ์Šนํ•˜๋Š” ์‹œ๋‚˜๋ฆฌ์˜ค๋กœ ์„ค์ •ํ•˜์˜€์œผ๋ฉฐ, ๊ตญ๋‚ด ๋Œ€๊ฐœ ์นด๋“œ์‚ฌ์—์„œ 0.5~1.5%์˜ ํฌ์ธํŠธ ์ ๋ฆฝ์ด ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋Š” ๊ฒƒ์„ ์ฐธ๊ณ ํ•˜์—ฌ ์ค‘์•™๊ฐ’์ธ 1%๋ฅผ ์ ์šฉํ•˜์˜€๋‹ค. ๋˜ํ•œ, ์„ค๋ฌธ ๋‚ด ์ œ์‹œ๋œ ์ธ์„ผํ‹ฐ๋ธŒ๋ฅผ ๋งŒ์กฑํ•˜์ง€ ์•Š์„ ์‹œ ์ œ์‹œ๋œ ์ธ์„ผํ‹ฐ๋ธŒ์˜ 3๋ฐฐ ์ดํ•˜๊นŒ์ง€ ๋งŒ์กฑ๊ฐ’์„ ์‘๋‹ตํ•˜๋„๋ก ์„ค์ •ํ•˜์˜€๋‹ค.

์„ค๋ฌธ์กฐ์‚ฌ ๋ฐ์ดํ„ฐ์˜ ๋ฒ”์ฃผํ˜• ์š”์ธ์œผ๋กœ๋Š” ๋‚จ์„ฑ, ์—ฌ์„ฑ์œผ๋กœ ๋‚˜๋‰˜๋Š” โ€˜์„ฑ๋ณ„(gender)โ€™, ๋งŒ 20~29์„ธ, ๋งŒ 30~39์„ธ, ๋งŒ 40~49์„ธ, ๋งŒ 50~59์„ธ, ๋งŒ 60~69์„ธ๋กœ ๋‚˜๋‰˜๋Š” โ€˜์—ฐ๋ น๋Œ€(age)โ€™, 20์ ์ฐจ๋Š” 50์ ๋Œ€์—์„œ 70์ ๋Œ€, 60์ ๋Œ€์—์„œ 80์ ๋Œ€, 70์ ๋Œ€์—์„œ 90์ ๋Œ€ ์ƒ์Šน, 30์ ์ฐจ๋Š” 50์ ๋Œ€์—์„œ 80์ ๋Œ€, 60์ ๋Œ€์—์„œ 90์ ๋Œ€ ์ƒ์Šน์œผ๋กœ ๋‚˜๋‰˜๋Š” ์ ์ˆ˜๋ ˆ๋ฒจ(score level)โ€™, ์—ฐ์†ํ˜• ์š”์ธ์œผ๋กœ๋Š” โ€˜์ธ์„ผํ‹ฐ๋ธŒ(์›) (incentive)โ€™ ๋“ฑ์ด ํฌํ•จ๋œ๋‹ค. โ€˜์ ์ˆ˜๋ ˆ๋ฒจโ€™์€ ๊ฐ ์šด์ „์ ์ˆ˜ ์ƒ์Šนํญ๋งˆ๋‹ค ๊ธฐ์กด ์ ์ˆ˜์™€ ์ƒ์Šน ์ ์ˆ˜์˜ ์ˆ˜์ค€์„ ์˜๋ฏธํ•œ๋‹ค. ํ†ตํ–‰์š”๊ธˆ 2,100์›์œผ๋กœ ๊ฐ€์ • ํ›„ Fig. 2์™€ ๊ฐ™์ด ์„ค๋ฌธ์กฐ์‚ฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค.

Table 1. Incentive Calculation Method by Driving Score Increase Width

Score Level

Driving Score

Rate of Increase in Score

Toll Conversion

Incentives

20 Points Difference

50 โ†’ 70

0.4

๏ฟฆ840

๏ฟฆ8.4

60 โ†’ 80

0.3

๏ฟฆ700

๏ฟฆ7.0

70 โ†’ 90

0.3

๏ฟฆ600

๏ฟฆ6.0

30 Points Difference

50 โ†’ 80

0.6

๏ฟฆ1,260

๏ฟฆ12.6

60 โ†’ 90

0.5

๏ฟฆ1,050

๏ฟฆ10.5

Fig. 2. Incentive Service Survey Based on Safe Driving Scores (Partial)
../../Resources/KSCE/Ksce.2023.43.4.0485/fig2.png

3.2 ๊ธฐ์ดˆ ํ†ต๊ณ„ ๋ถ„์„

์„ค๋ฌธ ๋ฐ์ดํ„ฐ์˜ ๊ธฐ์ดˆ ํ†ต๊ณ„๋ฅผ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ๋Š” Table 2์™€ ๊ฐ™๋‹ค. ์ข…์†๋ณ€์ˆ˜์ธ ์„ค๋ฌธ ๋‚ด ์ง€์ •๋œ ์ธ์„ผํ‹ฐ๋ธŒ ๊ฐ’(incentive value satisfied)์€ ์ ์ˆ˜ ์ƒ์Šนํญ 20์ ์ฐจ์—์„œ 8.4์›์„ ๋งŒ์กฑํ•˜๋Š” ์‘๋‹ต์ž๋Š” 33.3%, ๋ถˆ๋งŒ์กฑํ•˜๋Š” ์‘๋‹ต์ž๋Š” 66.7%, 7.0์›์„ ๋งŒ์กฑํ•˜๋Š” ์‘๋‹ต์ž๋Š” 27.4%, ๋ถˆ๋งŒ์กฑํ•˜๋Š” ์‘๋‹ต์ž๋Š” 72.6%, 6.0์›์„ ๋งŒ์กฑํ•˜๋Š” ์‘๋‹ต์ž๋Š” 16.2%, ๋ถˆ๋งŒ์กฑํ•˜๋Š” ์‘๋‹ต์ž๋Š” 83.8%๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, ์ ์ˆ˜ ์ƒ์Šนํญ 30์ ์ฐจ์—์„œ 12.6์›์„ ๋งŒ์กฑํ•˜๋Š” ์‘๋‹ต์ž๋Š” 35.9%, ๋ถˆ๋งŒ์กฑํ•˜๋Š” ์‘๋‹ต์ž๋Š” 64.1%, 10.5์›์„ ๋งŒ์กฑํ•˜๋Š” ์‘๋‹ต์ž๋Š” 26.5%, ๋ถˆ๋งŒ์กฑํ•˜๋Š” ์‘๋‹ต์ž๋Š” 73.5%๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋…๋ฆฝ๋ณ€์ˆ˜์ธ ์„ฑ๋ณ„(gender)์€ ๋‚จ์„ฑ์ด 45.3%, ์—ฌ์„ฑ์ด 54.7%๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, ์—ฐ๋ น๋Œ€(age)๋Š” ๋งŒ 40~49์„ธ๊ฐ€ 29.9%๋กœ ๊ฐ€์žฅ ๋†’์€ ๋น„์œจ์„ ์ฐจ์ง€ํ•˜์˜€๊ณ , ๋งŒ 30~39์„ธ์™€ ๋งŒ 50~59์„ธ๊ฐ€ 22.2%๋กœ ๊ทธ๋‹ค์Œ, ๋งŒ 60~69์„ธ, ๋งŒ 20~29์„ธ ์ˆœ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์‘๋‹ต์ž๋“ค์ด ์ˆ˜๋ น๋ฐ›๊ณ  ์‹ถ์–ดํ•˜๋Š” ์ธ์„ผํ‹ฐ๋ธŒ(incentive)๋Š” ์ ์ˆ˜ ์ƒ์Šนํญ 20์ ์ฐจ์—์„œ๋Š” ํ‰๊ท  14.0์›, ์ ์ˆ˜ ์ƒ์Šนํญ 30์ ์ฐจ์—์„œ๋Š” 22.1์›์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ ์ˆ˜๋ ˆ๋ฒจ(score level)์€ ๋‚ฎ์€ ์ ์ˆ˜๋ถ€ํ„ฐ ์‹œ์ž‘ํ•˜๋Š” ๊ฒƒ์„ ๊ฐ€์žฅ ๋‚ฎ์€ ๋‹จ๊ณ„๋กœ ์„ค์ •ํ•˜์—ฌ, ์ ์ˆ˜ ์ƒ์Šนํญ 20์ ์ฐจ๋Š” ์ด 3๋‹จ๊ณ„, ์ ์ˆ˜ ์ƒ์Šนํญ 30์ ์ฐจ๋Š” ์ด 2๋‹จ๊ณ„๋กœ ๋ถ„๋ฅ˜ํ•˜์˜€๋‹ค.

Table 2. Basic Statistical Analysis

Variable

N

Mean

%

Dependent Variable

Incentive Value Satisfied

20 Points Difference

๏ฟฆ8.4

Yes

39

-

33.3

No

78

-

66.7

๏ฟฆ7.0

Yes

32

-

27.4

No

85

-

72.6

๏ฟฆ6.0

Yes

19

-

16.2

No

98

-

83.8

30 Points Difference

๏ฟฆ12.6

Yes

42

-

35.9

No

75

-

64.1

๏ฟฆ10.5

Yes

31

-

26.5

No

86

-

73.5

Independent Variables

Gender

Male

53

-

45.3

Female

64

-

54.7

Age

20~29 years old

13

-

11.1

30~39 years old

26

-

22.2

40~49 years old

35

-

29.9

50~59 years old

26

-

22.2

60~69 years old

17

-

14.5

Incentive

20 Points Difference

-

-

14.0

-

30 Points Difference

-

-

22.1

-

Score Level

20 Points Difference

50 โ†’ 70

Level 1

117

-

100

60 โ†’ 80

Level 2

117

-

100

70 โ†’ 90

Level 3

117

-

100

30 Points Difference

50 โ†’ 80

Level 1

117

-

100

60 โ†’ 90

Level 2

117

-

100

4. ์ดํ•ญ ๋กœ์ง€์Šคํ‹ฑ ๋ชจ๋ธ ์ ์šฉ

4.1 ์ดํ•ญ ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋ถ„์„ ์ •์˜

์ดํ•ญ ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋ถ„์„์€ ์งˆ์  ๋˜๋Š” ์–‘์  ๋…๋ฆฝ๋ณ€์ˆ˜๋ฅผ ์ด์šฉํ•˜์—ฌ ์ดํ•ญํ˜•์ธ ๋ฐ˜์‘๋ณ€์ˆ˜๋ฅผ ์„ค๋ช…ํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ, ์˜ค์ฆˆ(odds)์— ๋กœ๊ทธ๋ฅผ ์ทจํ•œ ๊ฐ’์„ ์ข…์†๋ณ€์ˆ˜๋กœ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ, Eq. (1)๊ณผ ๊ฐ™์ด ํ‘œํ˜„๋œ๋‹ค.

(1)
$\log(\dfrac{p}{1-p})=\beta_{0}+\beta_{1}x_{1}+\beta_{2}x_{2}+\cdots +\beta_{q}x_{q}$

์—ฌ๊ธฐ์„œ ์˜ค์ฆˆ๋Š” ์ข…์†๋ณ€์ˆ˜๊ฐ€ ๋ฐœ์ƒํ•  ํ™•๋ฅ ($p$)๊ณผ ๋ฐœ์ƒํ•˜์ง€ ์•Š์„ ํ™•๋ฅ ($1-p$)์˜ ๋น„์œจ์ธ $p/(1-p)$๋ฅผ ์˜๋ฏธํ•œ๋‹ค. ์ข…์†๋ณ€์ˆ˜์˜ ๋ฒ”์ฃผ๊ฐ€ 1์„ ๊ฐ€์ง„ ํ™•๋ฅ ๋กœ ์ „ํ™˜ํ•œ ์‹์€ Eq. (2)์™€ ๊ฐ™์œผ๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ์ข…์†๋ณ€์ˆ˜์˜ ํŠน์ • ์‚ฌ๊ฑด์ด ๋ฐœ์ƒํ•  ๊ฐ€๋Šฅ์„ฑ $P(y=1vert x_{1},\: x_{2},\: \cdots ,\: x_{n})$๋ฅผ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ๋‹ค.

(2)
$P(y=1vert x_{1},\: x_{2},\: \cdots x_{n})=\dfrac{1}{1+e^{-(\beta_{0}+\beta_{1}x_{1}+\beta_{2}x_{2}+\cdots +\beta_{n}x_{n})}}$

์กฐ๊ฑด๋ถ€ ํ™•๋ฅ ์˜ ๋กœ์ง“๋ณ€ํ™˜ $f(x)=\log(x/(1-x))$๊ฐ€ ๋…๋ฆฝ๋ณ€์ˆ˜๋“ค์˜ ์„ ํ˜•๊ฒฐํ•ฉ ํ˜•ํƒœ๋ฅผ ๊ฐ€์ •ํ•œ๋‹ค. ์ดํ•ญ ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋ชจํ˜•์€ ํ™•๋ฅ  $p$์˜ ํ•จ์ˆ˜๋กœ ์žฌ๊ตฌ์„ฑํ•  ์ˆ˜ ์žˆ๋Š”๋ฐ, ์ด๋Ÿฌํ•œ ํ˜•ํƒœ์˜ ๋ฐฉ์ •์‹์„ Eq. (3)๊ณผ ๊ฐ™์ด ํ‘œํ˜„ํ•œ๋‹ค.

(3)
$p=\dfrac{e^{\beta_{0}+\sum\beta_{i}x_{i}}}{1+e^{\beta_{0}+\sum\beta_{i}x_{i}}}$

๋กœ์ง“๋ชจํ˜•์€ ํ”„๋กœ๋น— ๋ชจํ˜•์— ๋น„ํ•ด ์ƒ๋Œ€์ ์œผ๋กœ ์ ํ•ฉ๋„๊ฐ€ ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚˜๋ฉฐ, ์ง€๋ถˆ์˜์‚ฌ๊ธˆ์•ก์˜ ์‚ฐ์ถœ์ด ํŽธ๋ฆฌํ•˜๋‹ค๋Š” ์žฅ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฏ€๋กœ ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ธ์„ผํ‹ฐ๋ธŒ ์ˆ˜๋ น์˜์‚ฌ๊ธˆ์•ก ์‚ฐ์ถœ์„ ์œ„ํ•ด ์ดํ•ญ ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋ชจํ˜•์„ ์ ์šฉํ•œ๋‹ค.

4.2 ์ดํ•ญ ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋ถ„์„ ๊ฒฐ๊ณผ

๋ณธ ์—ฐ๊ตฌ์—์„œ ๋…๋ฆฝ๋ณ€์ˆ˜๋Š” ์„ฑ๋ณ„, ์—ฐ๋ น๋Œ€, ์ธ์„ผํ‹ฐ๋ธŒ, ์ ์ˆ˜๋ ˆ๋ฒจ๋กœ ์„ค์ •ํ•˜์˜€๊ณ , ์ข…์†๋ณ€์ˆ˜๋Š” ์„ค๋ฌธ ๋‚ด ์ง€์ •๋œ ์ธ์„ผํ‹ฐ๋ธŒ๊ฐ’ ๋งŒ์กฑ ์—ฌ๋ถ€๋กœ ์„ค์ •ํ•˜์˜€๋‹ค. ๋…๋ฆฝ๋ณ€์ˆ˜ ์ค‘ ์ ์ˆ˜๋ ˆ๋ฒจ์€ ์ ์ˆ˜ ์ƒ์Šนํญ 20์ ์ฐจ์—์„œ๋Š” โ€˜50์ ๋Œ€โ†’70์ ๋Œ€โ€™, โ€˜60์ ๋Œ€โ†’80์ ๋Œ€โ€™, โ€˜70์ ๋Œ€โ†’90์ ๋Œ€โ€™, ์ ์ˆ˜ ์ƒ์Šนํญ 30์ ์ฐจ์—์„œ๋Š” โ€˜50์ ๋Œ€โ†’80์ ๋Œ€โ€™, โ€˜60์ ๋Œ€โ†’90์ ๋Œ€โ€™๋กœ ์„ค์ •ํ•œ๋‹ค. Hosmer & Lemeshow์˜ ์ ํ•ฉ๋„ ๊ฒ€์ •์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ชจํ˜•์˜ ์„ค๋ช…๋ ฅ์„ ํ™•์ธํ•œ ๊ฒฐ๊ณผ, Table 3 ๋ฐ Table 5์™€ ๊ฐ™์ด ์œ ์˜ํ™•๋ฅ ์ด 0.05๋ณด๋‹ค ๋†’์€ P๊ฐ’์ด ๋„์ถœ๋˜์—ˆ๊ธฐ ๋•Œ๋ฌธ์— ๋…๋ฆฝ๋ณ€์ˆ˜์™€ ์ข…์†๋ณ€์ˆ˜์˜ ๊ด€๊ณ„๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ๋ณธ ๋ชจํ˜•์€ ํ†ต๊ณ„์ ์œผ๋กœ ์ ํ•ฉํ•˜๋‹ค๊ณ  ํŒ๋‹จ๋œ๋‹ค. Table 4 ๋ฐ Table 6์—์„œ๋Š” ์ดํ•ญ ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋ถ„์„ ๊ฒฐ๊ณผ, ๋ถ„์„๋ชจํ˜•๊ณผ ๊ธฐ์ €๋ชจํ˜• ์‚ฌ์ด์— -2 Log ์šฐ๋„๊ฐ’์ด ์œ ์˜๋ฏธํ•œ ์ฐจ์ด๊ฐ€ ์žˆ๋‹ค๊ณ  ๋‚˜ํƒ€๋‚˜ ์šด์ „์ ์ˆ˜ ์ƒ์Šนํญ 20์ ์ฐจ, 30์ ์ฐจ๋กœ ๊ทธ๋ฃน์„ ๋ถ„๋ฅ˜ํ•˜์—ฌ ์ดํ•ญ ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋ถ„์„์„ ์‹ค์‹œํ•˜์˜€๋‹ค. ๋˜ํ•œ, Cox & Snell R2 ๋ฐ Nagelkerke R2์€ ๋ชจํ˜•์˜ ์„ค๋ช…๋ ฅ์„ ๋‚˜ํƒ€๋‚ด๊ณ  ์šด์ „์ ์ˆ˜ ์ƒ์Šนํญ 20์ ์ฐจ์—์„œ๋Š” ๊ฐ๊ฐ 0.546๊ณผ 0.803, ์šด์ „์ ์ˆ˜ ์ƒ์Šนํญ 30์ ์ฐจ์—์„œ๋Š” ๊ฐ๊ฐ 0.569, 0.800์œผ๋กœ ๋‚˜ํƒ€๋‚˜๊ณ  ์žˆ๋‹ค. ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋ชจํ˜•์€ Cox & Snell R2์˜ ์ตœ๋Œ“๊ฐ’์ด 1์ด๋ผ๊ณ  ๋ณด์žฅํ•˜์ง€ ๋ชปํ•˜๋Š” ๋ฌธ์ œ์ ์„ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•ด Nagelkerke R2์„ ํ•จ๊ป˜ ํ‘œํ˜„ํ•˜์˜€๋‹ค.

์šด์ „์ ์ˆ˜ ์ƒ์Šนํญ 20์ ์ฐจ ์ดํ•ญ ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋ถ„์„ ๊ฒฐ๊ณผ 99% ์‹ ๋ขฐ๋„๋ฅผ ๊ธฐ์ค€์œผ๋กœ ์œ ์˜๋ฏธํ•œ ๋ณ€์ˆ˜๋Š” โ€˜์—ฐ๋ น๋Œ€(age)โ€™, โ€˜์ธ์„ผํ‹ฐ๋ธŒ(incentive)โ€™, โ€˜์ ์ˆ˜๋ ˆ๋ฒจ(score level)โ€™, โ€˜์ƒ์ˆ˜ํ•ญ(constant)โ€™ ๋“ฑ์ด ์žˆ๋‹ค. ์„ฑ๋ณ„์€ ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•˜์ง€ ์•Š์œผ๋ฉฐ ์•ˆ์ „์šด์ „์— ๋”ฐ๋ฅธ ์ธ์„ผํ‹ฐ๋ธŒ์— ๋Œ€ํ•œ ์„ ํ˜ธ๋„ ๋ถ„์„์ด๋ฏ€๋กœ ์„ฑ๋ณ„์— ๋”ฐ๋ผ ๋‹ค๋ฅธ ํŠน์„ฑ์ด ๋ณด์ด์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์— ์œ ์˜๋ฏธํ•˜์ง€ ์•Š์€ ๊ฒฐ๊ณผ๊ฐ€ ๋„์ถœ๋˜์—ˆ๋‹ค๊ณ  ํŒ๋‹จ๋œ๋‹ค. ์—ฐ๋ น๋Œ€๋Š” ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•œ ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ ์—ฐ๋ น๋Œ€์˜ ๋‚˜์ด๋Œ€๊ฐ€ ํ•œ ๋‹จ๊ณ„์”ฉ ์˜ฌ๋ผ๊ฐˆ์ˆ˜๋ก ์ œ์‹œ๋œ ์ธ์„ผํ‹ฐ๋ธŒ ๊ฐ’์„ ๋งŒ์กฑํ•  ํ™•๋ฅ ์ด 0.592๋ฐฐ ๊ฐ์†Œํ•œ๋‹ค. ์ธ์„ผํ‹ฐ๋ธŒ๋Š” ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•œ ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ ์ธ์„ผํ‹ฐ๋ธŒ๊ฐ€ 1์›์”ฉ ์ฆ๊ฐ€ํ•  ๋•Œ๋งˆ๋‹ค ์‘๋‹ต์ž๋“ค์ด ์ œ์‹œ๋œ ์ธ์„ผํ‹ฐ๋ธŒ๊ฐ’์„ ๋งŒ์กฑํ•  ํ™•๋ฅ ์ด 3.991๋ฐฐ ์ฆ๊ฐ€ํ•œ๋‹ค. ์ด๋Š” ํ†ต์ƒ์ ์œผ๋กœ ์ œ๊ณต๋ฐ›์„ ์ˆ˜ ์žˆ๋Š” ์ธ์„ผํ‹ฐ๋ธŒ๊ฐ’์ด ๋†’์€ ๊ฒƒ์„ ์„ ํ˜ธํ•˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ๊ธฐ ๋•Œ๋ฌธ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ์ ์ˆ˜๋ ˆ๋ฒจ์€ ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•œ ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ ์ ์ˆ˜๋ ˆ๋ฒจ์ด ํ•œ ๋‹จ๊ณ„์”ฉ ๋†’์•„์ง์— ๋”ฐ๋ผ ์ œ์‹œ๋œ ์ธ์„ผํ‹ฐ๋ธŒ๊ฐ’์„ ๋งŒ์กฑํ•  ํ™•๋ฅ ์ด 4.950๋ฐฐ ์ฆ๊ฐ€ํ•œ๋‹ค.

์šด์ „์ ์ˆ˜ ์ƒ์Šนํญ 30์ ์ฐจ ์ดํ•ญ ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋ถ„์„ ๊ฒฐ๊ณผ 99% ์‹ ๋ขฐ๋„๋ฅผ ๊ธฐ์ค€์œผ๋กœ ์œ ์˜๋ฏธํ•œ ๋ณ€์ˆ˜๋Š” โ€˜์ธ์„ผํ‹ฐ๋ธŒ(incentive)โ€™, โ€˜์ ์ˆ˜๋ ˆ๋ฒจ(score level)โ€™, โ€˜์ƒ์ˆ˜ํ•ญ(constant)โ€™ ๋“ฑ์ด ์žˆ๋‹ค. ์„ฑ๋ณ„ ๋ฐ ์—ฐ๋ น๋Œ€๋Š” ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•˜์ง€ ์•Š์œผ๋ฉฐ ๋ณธ ์—ฐ๊ตฌ๋Š” ์•ˆ์ „์šด์ „์— ๋”ฐ๋ฅธ ์ธ์„ผํ‹ฐ๋ธŒ์— ๋Œ€ํ•œ ์„ ํ˜ธ๋„ ๋ถ„์„์œผ๋กœ ์„ฑ๋ณ„๊ณผ ์—ฐ๋ น๋Œ€์— ๋”ฐ๋ผ ๋‹ค๋ฅธ ํŠน์„ฑ์ด ๋ณด์ด์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์— ์œ ์˜๋ฏธํ•˜์ง€ ์•Š์€ ๊ฒฐ๊ณผ๊ฐ€ ๋„์ถœ๋˜์—ˆ๋‹ค๊ณ  ํŒ๋‹จ๋œ๋‹ค. ์ธ์„ผํ‹ฐ๋ธŒ๋Š” ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•œ ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ ์ธ์„ผํ‹ฐ๋ธŒ๊ฐ€ 1์›์”ฉ ์ฆ๊ฐ€ํ•  ๋•Œ๋งˆ๋‹ค ์‘๋‹ต์ž๋“ค์ด ์ œ์‹œ๋œ ์ธ์„ผํ‹ฐ๋ธŒ ๊ฐ’์„ ๋งŒ์กฑํ•  ํ™•๋ฅ ์ด 2.398๋ฐฐ ์ฆ๊ฐ€ํ•œ๋‹ค. ์ด๋Š” ํ†ต์ƒ์ ์œผ๋กœ ์ œ๊ณต๋ฐ›์„ ์ˆ˜ ์žˆ๋Š” ์ธ์„ผํ‹ฐ๋ธŒ ๊ฐ’์ด ๋†’์€ ๊ฒƒ์„ ์„ ํ˜ธํ•˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ๊ธฐ ๋•Œ๋ฌธ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ์ ์ˆ˜๋ ˆ๋ฒจ์€ ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•œ ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ ์ ์ˆ˜๋ ˆ๋ฒจ์ด ํ•œ ๋‹จ๊ณ„์”ฉ ๋†’์•„์ง์— ๋”ฐ๋ผ ์ œ์‹œ๋œ ์ธ์„ผํ‹ฐ๋ธŒ ๊ฐ’์„ ๋งŒ์กฑํ•  ํ™•๋ฅ ์ด 5.302๋ฐฐ ์ฆ๊ฐ€ํ•œ๋‹ค.

์šด์ „์ ์ˆ˜ ์ƒ์Šนํญ๋ณ„ ์ดํ•ญ ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋ถ„์„์˜ ์ถ”์ •๊ณ„์ˆ˜๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์‘๋‹ต์ž๋“ค์˜ ์ธ์„ผํ‹ฐ๋ธŒ ์ˆ˜๋ น์˜์‚ฌ๊ธˆ์•ก์„ ๋„์ถœํ•œ ๊ฒฐ๊ณผ, ์šด์ „์ ์ˆ˜ ์ƒ์Šนํญ 20์ ์ฐจ๋Š” ํ†ตํ–‰๋ฃŒ 2,100์› ๋‹น ์ธ์„ผํ‹ฐ๋ธŒ 8.0์›์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ ์šด์ „์ ์ˆ˜ ์ƒ์Šนํญ 30์ ์ฐจ๋Š” ํ†ตํ–‰๋ฃŒ 2,100์› ๋‹น 10.1์›์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Ÿฌํ•œ ์ด์œ ๋กœ ์ ์ˆ˜ ์ƒ์Šนํญ 30์ ์ฐจ์—์„œ๋Š” ์ˆ˜๋ น ์˜์‚ฌ ์ธ์„ผํ‹ฐ๋ธŒ๊ฐ’๋ณด๋‹ค ์„ค๋ฌธ ๋‚ด ์ธ์„ผํ‹ฐ๋ธŒ๊ฐ’์„ ๋†’๊ฒŒ ์„ค์ •ํ•จ์œผ๋กœ์จ ์ ์ˆ˜ ์ƒ์Šนํญ 20์ ์ฐจ์™€ ๋‹ค๋ฅด๊ฒŒ ์—ฐ๋ น๋Œ€๋ณ„๋กœ ์œ ์˜๋ฏธํ•˜์ง€ ์•Š์€ ๊ฒฐ๊ณผ๊ฐ€ ๋„์ถœ๋œ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค. ์ฆ‰, ์ธ์„ผํ‹ฐ๋ธŒ ์ ์ • ์ง€๊ธ‰ ๊ทœ๋ชจ๋Š” ์šด์ „์ ์ˆ˜ ์ƒ์Šนํญ 20์ ์ฐจ์ผ ๋•Œ ํ†ตํ–‰๋ฃŒ์˜ 0.4%, ์šด์ „์ ์ˆ˜ ์ƒ์Šนํญ 30์ ์ฐจ์ผ ๋•Œ ํ†ตํ–‰๋ฃŒ์˜ 0.5%์ž„์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ์šด์ „์ ์ˆ˜ ์ƒ์Šนํญ์ด ์ปค์ง์— ๋”ฐ๋ผ ์‘๋‹ต์ž๋“ค์ด ๋” ๋†’์€ ์ธ์„ผํ‹ฐ๋ธŒ๋ฅผ ์ง€๊ธ‰๋ฐ›๊ธฐ ์›ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

Table 3. Hosmer & Lemeshow Model Fit Test Result of Binary Logistic Regression with 20 Points Difference in Score Increase

X2

Degree of Freedom

P-Value

14.316

8

0.074

Table 4. Results of Binary Logistic Regression Analysis with 20 Points Difference in Driving Score Increase

Independent Variables

B

Standard Error

Wald

Degree of Freedom

P-Value

Exp(B)

gender

0.062

0.479

0.017

1

0.898

1.064

age

-0.0524

0.187

7.898

1

0.005***

0.592

incentive

1.384

0.213

42.382

1

0.000***

3.991

score level

1.599

0.347

21.274

1

0.000***

4.950

constant

-19.584

3.412

32.949

1

0.000***

0.000

-2 log

122.347

Cox & Snell R2

0.546

Nagelkerke R2

0.803

*** p<0.01
Table 5. Hosmer & Lemeshow Model Fit Test Result of Binary Logistic Regression with 30 Points Difference in Score Increase

X2

Degree of Freedom

P-Value

12.444

8

0.132

Table 6. Results of Binary Logistic Regression Analysis with 30 Points Difference in Driving Score Increase

Independent Variables

B

Standard Error

Wald

Degree of Freedom

P-Value

Exp(B)

gender

0.490

0.552

0.787

1

0.375

1.632

age

-0.352

0.210

2.798

1

0.094

0.703

incentive

0.875

0.157

30.926

1

0.000***

2.398

score level

1.668

0.573

8.468

1

0.004***

5.302

constant

-25.752

6.006

18.362

1

0.000***

0.000

-2 log

93.569

Cox & Snell R2

0.569

Nagelkerke R2

0.800

*** p<0.01

5. ๊ฒฐ ๋ก 

์šด์ „๋ฉดํ—ˆ ์†Œ์ง€์ž ๋ฐ ๊ณ ์†๋„๋กœ ํ†ต๊ทผ์ž ๋Œ€์ƒ์œผ๋กœ ์ธ์„ผํ‹ฐ๋ธŒ ์„ค๋ฌธ์กฐ์‚ฌํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ๊ทผ๊ฐ„์œผ๋กœ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€์œผ๋ฉฐ, ์ดํ•ญ ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋ชจํ˜•์„ ํ™œ์šฉํ•˜์—ฌ ์•ˆ์ „/ํ™˜๊ฒฝ ์šด์ „์ ์ˆ˜ ์ƒ์Šน ์‹œ ์ธ์„ผํ‹ฐ๋ธŒ ์ ์ • ์ง€๊ธ‰ ๊ทœ๋ชจ๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ์—ฐ์†ํ˜• ์š”์ธ์œผ๋กœ๋Š” ์ธ์„ผํ‹ฐ๋ธŒ(incentive), ๋ฒ”์ฃผํ˜• ์š”์ธ์œผ๋กœ๋Š” ์„ฑ๋ณ„(gender), ์ ์ˆ˜๋ ˆ๋ฒจ(score level)๋กœ ์„ค์ •ํ•œ ํ›„, ์ข…์†๋ณ€์ˆ˜๋กœ ์ œ์‹œ๋œ ์ธ์„ผํ‹ฐ๋ธŒ๊ฐ’ ๋งŒ์กฑ ์—ฌ๋ถ€๋กœ ์„ค์ •ํ•˜์—ฌ ์ดํ•ญ ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋ถ„์„์„ ์‹ค์‹œํ•˜์˜€๋‹ค. ์šด์ „์ ์ˆ˜ ์ƒ์Šนํญ๋ณ„ ์ ์ • ์ง€๊ธ‰ ๊ทœ๋ชจ์˜ ์ธ์„ผํ‹ฐ๋ธŒ ๊ฐ’์„ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, ์ ์ˆ˜ ์ƒ์Šนํญ 20์ ์ฐจ๋Š” ํ†ตํ–‰๋ฃŒ์˜ 0.4%, ์ ์ˆ˜ ์ƒ์Šนํญ 30์ ์ฐจ๋Š” ํ†ตํ–‰๋ฃŒ์˜ 0.5%๋กœ ๋„์ถœ๋˜์—ˆ๋‹ค. ์šด์ „์ ์ˆ˜ ์ƒ์Šนํญ์ด ์ปค์ง์— ๋”ฐ๋ผ ์‘๋‹ต์ž๋“ค์ด ๋” ๋†’์€ ์ธ์„ผํ‹ฐ๋ธŒ๋ฅผ ์ง€๊ธ‰๋ฐ›๊ธฐ ์›ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ํ•ด์„ํ•  ์ˆ˜ ์žˆ๋‹ค.

์•ˆ์ „/ํ™˜๊ฒฝ ์šด์ „์— ๋”ฐ๋ฅธ ์ธ์„ผํ‹ฐ๋ธŒ ์ œ๊ณต์€ ์šด์ „์ž์˜ ์•ˆ์ „/ํ™˜๊ฒฝ ์šด์ „์„ ์œ ๋„ํ•˜์—ฌ ์œ„ํ—˜ ์šด์ „์ด ๊ฐ์†Œํ•  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด๋Š” ๋” ๋‚˜์•„๊ฐ€ ์‚ฌ๊ณ  ์œ„ํ—˜์ด๋‚˜ ์†์‹ค์˜ ๊ฐ์†Œ๋กœ ์‚ฌํšŒ์  ๋น„์šฉ์˜ ์ •๋Ÿ‰ํ™” ๋˜ํ•œ ๊ฐ€๋Šฅํ•  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ์ด์šฉ์ž์˜ ์ •๋ณด ๊ณต์œ  ๋ฐ ์šด์ „์ ์ˆ˜ ์ƒ์Šน์— ๋Œ€ํ•œ ์ ์ • ์ธ์„ผํ‹ฐ๋ธŒ ์ง€๊ธ‰ ๊ทœ๋ชจ ์‚ฐ์ •์„ ํ†ตํ•ด ์ธ์„ผํ‹ฐ๋ธŒ ์ตœ์ ํ™”๊ฐ€ ๊ฐ€๋Šฅํ•  ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ๋˜ํ•œ, ์ธ์„ผํ‹ฐ๋ธŒ ์ œ๋„์˜ ์šด์˜์ž ์ธก๋ฉด์—์„œ๋„ ์ธ์„ผํ‹ฐ๋ธŒ ์ง€๊ธ‰์„ ์œ„ํ•œ ํ•„์š” ์žฌ์› ๊ทœ๋ชจ๋ฅผ ์‚ฐ์ •ํ•จ์œผ๋กœ์จ ์ธ์„ผํ‹ฐ๋ธŒ ์ œ๋„ ์‹คํ–‰ ๋ฐฉ์•ˆ ๋งˆ๋ จ์— ๋„์›€์ด ๋  ๊ฒƒ์œผ๋กœ ์‚ฌ๋ฃŒ๋œ๋‹ค.

๊ทธ๋Ÿฌ๋‚˜, ๋ณธ ์—ฐ๊ตฌ๋Š” ์†Œ๊ทœ๋ชจ ์„ค๋ฌธ์„ ํ†ตํ•ด ์ธ์„ผํ‹ฐ๋ธŒ ์ ์ • ์ง€๊ธ‰ ๊ทœ๋ชจ๋ฅผ ์‚ฐ์ •ํ•˜์˜€๊ธฐ ๋•Œ๋ฌธ์— ๋ณด๋‹ค ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•œ ๋ถ„์„์„ ๊ณ ๋ คํ•ด์•ผ ํ•  ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค. ๋˜ํ•œ, ์ ์ˆ˜ ์ƒ์Šนํญ 20์ ์ฐจ์™€ 30์ ์ฐจ์ผ ๋•Œ์— ๊ตญํ•œ๋˜์–ด ์—ฐ๊ตฌํ•˜์˜€์œผ๋ฏ€๋กœ ํ–ฅํ›„ ์—ฐ๊ตฌ ์‹œ ๋ณด๋‹ค ์„ธ๋ถ€์ ์ธ ์ ์ˆ˜ ์ƒ์Šนํญ์„ ๊ณ ๋ คํ•ด์•ผ ํ•˜๋ฉฐ ์•ˆ์ „/ํ™˜๊ฒฝ ์šด์ „์ ์ˆ˜ ์ธก์ • ๋ณ€์ธ์„ ๋ณด๋‹ค ๋‹ค์–‘ํ•˜๊ฒŒ ์„ค์ •ํ•˜์—ฌ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•ด์•ผ ํ•  ํ•„์š”์„ฑ์ด ๋ณด์ธ๋‹ค.

๊ฐ์‚ฌ์˜ ๊ธ€

๋ณธ ์—ฐ๊ตฌ๋Š” ๊ตญํ† ๊ตํ†ต๋ถ€/๊ตญํ† ๊ตํ†ต๊ณผํ•™๊ธฐ์ˆ ์ง„ํฅ์›์˜ ์ง€์›(๊ณผ์ œ๋ฒˆํ˜ธ RS-2022-00142565)์œผ๋กœ ์ˆ˜ํ–‰๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

References

1 
"Bae, G. M. and Jeon, J. U. (2005). โ€œA study on the insurance premium incentive system considering driver's traffic behavior.โ€ Transportation Technology and Policy, KST, Vol. 2, No. 2, pp. 204-222 (in Korean)."URL
2 
"Byun, B. S., Chae, E. J. and Pak, S. Y. (2014). โ€œAn analysis on the characteristics of energy consumption from the households in carbon point program and adequacy in standards for incentive offerings.โ€ Journal of Environmental Policy and Administration, KEI, Vol. 22, No. 1, pp. 95-112, https://doi.org/10.15301/jepa. 2014.22.1.95 (in Korean)."DOI
3 
"CLP Power HongKong Limited. (Accessed Jan. 4, 2023). Eco points, Hong Kong, Available at: https://www.clp.com.hk/en/ residential/power-connect/earn-eco-points-rewards (Acccessed: December 27, 2022)."URL
4 
"Farmers Insurance Group. (2019). Getting Started with Signalยฎ, United States of America, Available at: https://www.youtube. com/watch?v=Se2Qumfn6gU (Acccessed: December 27, 2022)."URL
5 
"Jeong, C. W. (2007). โ€œA study on the influence factors of drowsiness driving through binary logistic regression analysis.โ€ The Journal of Police Policies, PSI, Vol. 21, pp. 46-69 (in Korean)."URL
6 
"Jeong, C. W. (2016). โ€œA study on the administrative goal performance of incentive policy in traffic order administration.โ€ The Journal of Police Science, KNPU, Vol. 16, No. 3, pp. 125-139, https://doi.org/10.22816/polsci.2016.16.3.005 (in Korean)."DOI
7 
"Kim, E. J., Bang, S. A. and Seo, E. S. (2019). โ€œA study on factors influencing youth drinking using binomial logistic regression.โ€ Journal of the Korea Society of Computer and Information, KSCI, Vol. 24, No. 12, pp. 167-174, https://doi.org/10.9708/jksci.2019.24.12.167 (in Korean)."DOI
8 
"Kim, S. H. and Jeong, G. H. (2018). โ€œAn analysis for influencing factors in purchasing electric vehicle using a binomial logistic regression model.โ€ KSCE Journal of Civil and Environmental Engineering Research, KSCE, Vol. 38, No. 6, pp. 887-894, https://doi.org/10.12652/Ksce.2018.38.6.0887 (in Korean)."DOI
9 
"Korea Expressway Corporation. (2022). Truck rest-mileage system, Available at: https://www.ex.co.kr/site/com/pageProcess.do (Accessed: December 27, 2022) (in Korean)."URL
10 
"Korean National Police Agency. (2021). Good driving mileage, Available at: https://www.gov.kr/portal/service/serviceInfo/ PTR000050215 (Acccessed: December 27, 2022) (in Korean)."DOI
11 
"Loumidi, A. K., Mittag, S., Lathrop, W. B. and Althoff, F. (2011). โ€œEco-driving incentives in the North American market.โ€ Proceedings of the 3rd International Conference on Automotive User Interfaces and Interactive Vehicular Applications, ACM, Salzburg, Austria, pp. 185-192, https://doi.org/10.1145/ 2381416. 2381446."DOI
12 
"Mehrolia, S., Alagarsamy, S. and Solaikutty, V. M. (2021). โ€œCustomers response to online food delivery services during COVID-19 outbreak using binary logistic regression.โ€ International Journal of Consumer Studies, Wiley, Vol. 45, No. 3, pp. 396-408, https://doi.org/10.1111/ijcs.12630."DOI
13 
"Metropolitan Transport Commission. (2020). Wide-area affordable transportation card, Available at: http://www.molit.go.kr/ mtc/USR/BORD0201/m_36981/DTL.jsp?id=mtc0301&mode=view&idx=45 (Acccessed: December 27, 2022) (in Korean)."URL
14 
"Ntanos, S., Kyriakopoulos, G., Chalikias, M., Arabatzis, G. and Skordoulis, M. (2018). โ€œPublic perceptions and willingness to pay for renewable energy: a case study from Greece.โ€ Sustainability, MDPI, Vol. 10, No. 3, p. 687, https://doi.org/10.3390/su10030687."DOI
15 
"Tamakloe, R., Das, S., Aidoo, E. N. and Park, D. (2022). โ€œFactors affecting motorcycle crash casualty severity at signalized and non-signalized intersections in Ghana: insights from a data mining and binary logit regression approach.โ€ Accident Analysis & Prevention, Elsevier, Vol. 165, 106517, https://doi.org/10.1016/j.aap.2021.106517."DOI