Mobile QR Code QR CODE : Journal of the Korean Society of Civil Engineers

  1. ๊ต์‹ ์ €์ž โ€ค ํ•˜์กด์ด์•ค์”จ(์ฃผ) ๊ธฐ์—…๋ถ€์„ค์—ฐ๊ตฌ์†Œ ๋ถ€์†Œ์žฅ/๋ถ€์žฅ (Corresponding Author โ€ค Hajon Engineers and Consultants Co., Ltd. โ€ค arz6oiof@naver.com)
  2. ํ•œ๊ตญ๊ฑด์„ค๊ธฐ์ˆ ์—ฐ๊ตฌ์› ์ˆ˜์ž์›ํ•˜์ฒœ์—ฐ๊ตฌ๋ณธ๋ถ€ ์—ฐ๊ตฌ์œ„์› (Korea Institute of Civil Engineering and Building Technology โ€ค sukany@kict.re.kr)
  3. ํ•˜์กด์ด์•ค์”จ(์ฃผ) ๋Œ€ํ‘œ์ด์‚ฌ (Hajon Engineers and Consultants Co., Ltd. โ€ค jhwater@hotmail.com)



ํ™์ˆ˜, ํ™์ˆ˜์ง€๋„, HEC-RAS, RAS Mapper, ์ธ๊ณต์ง€๋Šฅ
Flood, Flood map, HEC-RAS, RAS mapper, AI

1. ์„œ ๋ก 

์ตœ๊ทผ ํ™์ˆ˜์˜ˆ์ธก์— ๊ด€ํ•œ ์—ฐ๊ตฌ์—์„œ ๊ฐ•์šฐ-์œ ์ถœ ํ•ด์„์„ ์œ„ํ•œ ๋ฌผ๋ฆฌ๋ชจํ˜•(physically-based models)์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๊ตฌ๋™ํ•˜๋Š” ์ „ํ†ต์  ๋ฐฉ๋ฒ• ๋Œ€์‹ ์— ๊ธฐ๊ณ„ํ•™์Šต๊ณผ ๊ฐ™์€ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฒ•์„ ์ด์šฉํ•œ ๋ฐ์ดํ„ฐ๋ชจํ˜•(data-driven models)์˜ ํ™œ์šฉ์ด ํ™œ๋ฐœํ•˜๋‹ค(e.g., Berkhahn et al., 2019; Ivanov et al., 2021; Guo et al., 2022). ํ™์ˆ˜์˜ˆ์ธก์— ๋Œ€ํ‘œ์ ์ธ ์ˆ˜๋ฆฌ๏ฝฅ์ˆ˜๋ฌธํ•™์  ๋ชจํ˜•์ธ HEC-RAS(Brunner, 1995), SWMM (Rossman, 2010), InfoWorks(Innovyze, 2012), MIKE SHE (DHI, 2003), Delft3D(Muรฑoz et al., 2022)๋Š” ์ง€ํ˜•์ž๋ฃŒ์˜ ๊ณต๊ฐ„ํ•ด์ƒ๋„๊ฐ€ ๋†’์•„์ง์— ๋”ฐ๋ผ ๋ชจ์˜์— ์†Œ์š”๋˜๋Š” ์‹œ๊ฐ„์ด ์ฆ๊ฐ€ํ•˜๊ณ , ๊ฒฐ๊ณผ์ ์œผ๋กœ ๋‹จ๊ธฐ๊ฐ„ ์˜ˆ๋ณด ์ธก๋ฉด์—์„œ ํ™œ์šฉ๋„๊ฐ€ ๋‚ฎ์•„์ง€๊ณ  ์žˆ๋‹ค(Ivanov et al., 2021; Lรถwe et al., 2021; Qi et al., 2021; Saha et al., 2021; Guo et al., 2022; Burrichter et al., 2023). ๋˜ํ•œ, ๋ฏธ๊ณ„์ธก์œ ์—ญ๊ณผ ๊ฐ™์ด ๊ฐ€์šฉ์ž๋ฃŒ๊ฐ€ ๋ถ€์กฑํ•œ ๊ฒฝ์šฐ ๋ฌผ๋ฆฌ๋ชจํ˜• ์ ์šฉ ๊ฒฐ๊ณผ์˜ ๋ถˆํ™•์‹ค์„ฑ์ด ์ปค์ง„๋‹ค๋Š” ๋ช…ํ™•ํ•œ ํ•œ๊ณ„๊ฐ€ ์กด์žฌํ•œ๋‹ค(Piadeh et al., 2022; Zhang et al., 2022).

๋Œ€์•ˆ์œผ๋กœ ๋ณ‘๋ ฌ ์—ฐ์‚ฐ์„ ํ†ตํ•œ ๊ณ ์„ฑ๋Šฅ ์—ฐ์‚ฐ์ฒ˜๋ฆฌ๋‚˜(Petaccia et al., 2013; Hu et al., 2022), ๊ณ„์‚ฐ ์ž‘์—… ๊ฐ„์†Œํ™”(Bates and De Roo, 2000; Bates et al., 2010; Jamali et al., 2018) ๋“ฑ ๋ฌผ๋ฆฌ๋ชจํ˜• ํ™œ์šฉ์˜ ๊ฐœ์„  ๋ฐฉ์•ˆ์ด ์ œ์‹œ๋˜์—ˆ๋‹ค. ๊ทธ ์™ธ์—๋„ ๋ฌผ๋ฆฌ์  ํŠน์„ฑ์„ ๋ฐฐ์ œํ•˜๊ณ  ๊ฐ„๋‹จํžˆ ๊ฒฉ์ž๋‚ด ๋ฌผ์„ ์žฌ๋ถ„๋ฐฐํ•˜๋Š” cellular automata ๊ธฐ๋ฐ˜์˜ ๋ฐฉ๋ฒ•(Dottori and Todini, 2011; Ghimire et al., 2013; Guidolin et al., 2016; Jamali et al., 2019) ๋“ฑ์ด ์‹œ๋„๋˜์—ˆ์ง€๋งŒ, ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•๋“ค ๋ชจ๋‘ ๊ณ ํ•ด์ƒ๋„ ์ž๋ฃŒ๊ฐ€ ๋Š์ž„์—†์ด ์ƒ์‚ฐ๋˜๋Š” ์ตœ๊ทผ ์ƒํ™ฉ์„ ๊ณ ๋ คํ•  ๋•Œ, ๊ทผ๋ณธ์ ์ธ ํ•ด๊ฒฐ์ฑ…์€ ์•„๋‹ˆ๋‹ค(Guo et al., 2022).

๋ฐ˜๋ฉด, ๋ฐ์ดํ„ฐ๋ชจํ˜•(He and Wang, 2007; Kia et al., 2012; Rezaeianzadeh et al., 2014; Chen et al., 2020; Islam et al., 2021; Kumar et al., 2022)์€ ์ง€์†ํ•ด์„œ ์ถ•์ ๋œ ์ž๋ฃŒ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋ฏธ๋ฆฌ ํ•™์Šต๋œ ์ •๋ณด๋ฅผ ํ™œ์šฉํ•œ๋‹ค๋Š” ์ ์—์„œ ๋ชจ์˜์— ์†Œ์š”๋˜๋Š” ์‹œ๊ฐ„์„ ํฌ๊ฒŒ ๋‹จ์ถ•ํ•  ์ˆ˜ ์žˆ๋‹ค(Kabir et al., 2023; Sun et al., 2023). ๊ทธ๋Ÿฌ๋‚˜ ๋ฐ์ดํ„ฐ๋ชจํ˜•์˜ ์‚ฌ์ „ํ•™์Šต์„ ์œ„ํ•ด์„œ๋Š” ๋งŽ์€ ์–‘์˜ ์นจ์ˆ˜์ž๋ฃŒ๊ฐ€ ํ•„์š”ํ•˜์ง€๋งŒ(Kabir et al., 2020), ์ ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์‹ค์ธก์ž๋ฃŒ๊ฐ€ ๋ถ€์กฑํ•œ ๊ฒƒ์ด ํ˜„์‹ค์ด๋‹ค. ๋Œ€์•ˆ์œผ๋กœ ๋งค๊ฐœ๋ณ€์ˆ˜๊ฐ€ ๊ฒ€์ •๋œ ๋ฌผ๋ฆฌ๋ชจํ˜•์˜ ๋ชจ์˜ ๊ฒฐ๊ณผ๋ฅผ ์‹ค์ธก์ž๋ฃŒ์™€ ํ•จ๊ป˜ ํ•™์Šต์ž๋ฃŒ๋กœ ํ™œ์šฉํ•˜๊ณ  ์žˆ๋‹ค(Lee and Kim, 2021; Sun et al., 2023).

๊ตญ๋‚ด์—์„œ๋„ ํ†ต๊ณ„๊ธฐ๋ฐ˜์˜ ๋ฐ์ดํ„ฐ๋ชจํ˜•(Jeong and Lee, 2010; Lee and Kim, 2021) ๋ฐ ๊ธฐ๊ณ„ํ•™์Šต ๊ธฐ๋ฐ˜์˜ ๋ฐ์ดํ„ฐ๋ชจํ˜•(e.g., Kang and Lee, 2015; Kim et al., 2020; Kim et al., 2021)์„ ํ™œ์šฉํ•œ ํ™์ˆ˜์˜ˆ์ธก ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ์ด์™€ ๊ด€๋ จ๋œ ๊ตญ๋‚ด ์—ฐ๊ตฌ ๋™ํ–ฅ์— ๊ด€ํ•œ ์ž์„ธํ•œ ๋‚ด์šฉ์€ ๋ฐ์ดํ„ฐ๋ชจํ˜•์„ ์ด์šฉํ•œ ํ™์ˆ˜์˜ˆ์ธก์— ๊ด€ํ•œ ๊ณ ์ฐฐ ๋…ผ๋ฌธ์—์„œ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค(Lee et al., 2022).

๋ฐ์ดํ„ฐ๋ชจํ˜•์˜ ์„ฑ๋Šฅ์„ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ถฉ๋ถ„ํ•œ ์ˆ˜์˜ ํ•™์Šต์ž๋ฃŒ๊ฐ€ ํ•„์š”ํ•˜๋ฉฐ, ๊ทธ ๊ธฐ์ค€์„ ๊ตฌ์ฒด์ ์œผ๋กœ ์ •๋Ÿ‰ํ™”ํ•˜๊ธฐ๋Š” ์–ด๋ ต์ง€๋งŒ ํ™์ˆ˜์˜ˆ์ธก ๊ด€๋ จ ์„ ํ–‰์—ฐ๊ตฌ์—์„œ๋Š” ํšจ๊ณผ์ ์ธ ํ•™์Šต์„ ์œ„ํ•˜์—ฌ ์ˆ˜๋ฐฑโˆผ์ˆ˜๋งŒ๊ฐœ์˜ ์ž…๋ ฅ์ž๋ฃŒ๊ฐ€ ์‚ฌ์šฉ๋˜๋Š” ๊ฒƒ์ด ์ผ๋ฐ˜์ ์ด๋‹ค(e.g., Gude et al., 2020; Lรถwe et al., 2021). ํ•™์Šต์— ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์‹ค์ธก์ž๋ฃŒ๊ฐ€ ์ถฉ๋ถ„ํ•˜์ง€ ์•Š์€ ์ƒํ™ฉ์—์„œ, ๋ฌผ๋ฆฌ๋ชจํ˜•์„ ๋ฐ˜๋ณต์ ์œผ๋กœ ๋ชจ์˜ํ•จ์œผ๋กœ์จ ๋‹ค์ˆ˜์˜ ํ•™์Šต์ž๋ฃŒ๋ฅผ ์ƒ์„ฑํ•˜๊ณ  ๋ฐ์ดํ„ฐ๋ชจํ˜•์— ํ™œ์šฉํ•˜๋Š” ๊ฒƒ์ด ํ˜„์‹ค์ ์ธ ๋Œ€์•ˆ์ด๋‹ค. ํŠนํžˆ, ๋ฏธ๊ณ„์ธก ์œ ์—ญ์œผ๋กœ์˜ ์ ์šฉ์„ฑ ํ™•๋ณด๋ฅผ ์œ„ํ•œ ๋ฐ์ดํ„ฐ๋ชจํ˜•์˜ ์‹œ๏ฝฅ๊ณต๊ฐ„์  ์ผ๋ฐ˜ํ™”(generalization)๊นŒ์ง€ ๊ณ ๋ คํ•œ๋‹ค๋ฉด(Guo et al., 2022), ํ•™์Šต๋Œ€์ƒ์˜ ๊ฐœ์†Œ์ˆ˜๊ฐ€ ํฌ๊ฒŒ ์ฆ๊ฐ€ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ํ•™์Šต์ž๋ฃŒ ์ƒ์„ฑ์— ๋งŽ์€ ๋…ธ๋ ฅ๊ณผ ์‹œ๊ฐ„์ด ํ•„์š”ํ•˜๋‹ค.

์ด๋Ÿฌํ•œ ๋ฐฐ๊ฒฝ์—์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ™์ˆ˜์˜ˆ์ธก์„ ์œ„ํ•œ ํ•™์Šต์ž๋ฃŒ๋กœ ํ™์ˆ˜๋ฒ”๋žŒ์ง€๋„๋ฅผ ๋ฐ˜๋ณต ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋Š” ์—‘์…€๋Ÿฌ๋ ˆ์ดํ„ฐ๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์ด ์—‘์…€๋Ÿฌ๋ ˆ์ดํ„ฐ๋Š” ํ™์ˆ˜๋ฒ”๋žŒ์ง€๋„ ์ž‘์„ฑ ๊ธฐ์ค€(ME, 2020; MOIS 2020)์„ ์ค€์šฉํ•˜์—ฌ ์นจ์ˆ˜์˜ˆ์ƒ๋„๋ฅผ ์ƒ์„ฑํ•œ๋‹ค. ํŠนํžˆ, ๏ฝข์†Œํ•˜์ฒœ ํ•˜๋„๊ณ„ํš ํ”„๋กœ๊ทธ๋žจ(SCDP, Stream Channel Design Program)๏ฝฃ (Kim and Jeong, 2019)์˜ ์ฃผ์š” ๋ชจ๋“ˆ์„ ์žฌ๊ตฌ์„ฑํ•˜์—ฌ ๋ฏธ๊ตญ ๊ณต๋ณ‘๋‹จ์—์„œ ๊ฐœ๋ฐœํ•œ HEC-1(HEC-HMS), HEC-RAS, RAS Mapper ๋ถ„์„ ์—”์ง„(์ดํ•˜ HEC ์†Œํ”„ํŠธ์›จ์–ด)๊ณผ ์—ฐ๊ณ„๋˜๋„๋ก ํ•˜์˜€๋‹ค. ํ™์ˆ˜๋ฒ”๋žŒ์ง€๋„ ์ž‘์„ฑ์˜ ์ผ๋ จ์˜ ๊ณผ์ •์„ ์ผ๊ด„๋กœ ์ง„ํ–‰ํ•  ์ˆ˜ ์žˆ๊ณ , ๋ชจํ˜• ์‚ฌ์ด์— ์ž…๏ฝฅ์ถœ๋ ฅ ์ž๋ฃŒ์˜ ํ˜•์‹์„ ๋ณ€ํ™˜ํ•˜๋Š” ๋“ฑ์˜ ์ „๏ฝฅํ›„์ฒ˜๋ฆฌ๋ฅผ ์ตœ์†Œํ™”์˜€๋‹ค. ๋˜ํ•œ, ์‚ฌ์šฉ์ž๊ฐ€ ์ˆ˜๋™์œผ๋กœ ๊ฐœ์ž…ํ•˜์—ฌ์•ผ ํ•˜๋Š” ์ƒํ™ฉ์„ ์ตœ์†Œํ™”ํ•˜์—ฌ ๋ถ„์„ ๊ณผ์ •์˜ ์ผ๊ด€์„ฑ์„ ํ™•๋ณดํ•˜๊ณ  ๋ถ„์„์˜ ์ •ํ™•๋„๋ฅผ ๋†’์˜€๋‹ค. ๊ฐœ๋ฐœ๋œ ์—‘์…€๋Ÿฌ๋ ˆ์ดํ„ฐ๋ฅผ ๊ตญ๋‚ด 10์—ฌ๊ฐœ์†Œ์˜ ํ…Œ์ŠคํŠธ๋ฒ ๋“œ์— ์ ์šฉํ•˜์—ฌ ํ™์ˆ˜๋ฒ”๋žŒ์ง€๋„๋ฅผ ์ž‘์„ฑํ•œ ๊ฒฐ๊ณผ๋ฅผ ํ™˜๊ฒฝ๋ถ€์˜ ํ™์ˆ˜์œ„ํ—˜์ง€๋„ ์ •๋ณด์‹œ์Šคํ…œ์—์„œ ์ œ๊ณตํ•˜๋Š” ํ™์ˆ˜์œ„ํ—˜์ง€๋„์™€ ๋น„๊ตํ•จ์œผ๋กœ์จ ์‹ค๋ฌด์ ์šฉ์„ฑ์„ ์ž…์ฆํ•˜์˜€๋‹ค.

์ด์–ด์ง€๋Š” 2์žฅ์—์„œ๋Š” HEC ์†Œํ”„ํŠธ์›จ์–ด ๊ธฐ๋ฐ˜ ํ™์ˆ˜๋ฒ”๋žŒ์ง€๋„ ์—‘์…€๋Ÿฌ๋ ˆ์ดํ„ฐ์˜ ๊ฐœ๋ฐœ ๋ฐฐ๊ฒฝ, ๊ตฌ์กฐ ๋ฐ ๊ธฐ๋Šฅ์„ ์ž์„ธํžˆ ์„ค๋ช…ํ•˜๊ณ , 3์žฅ์—์„œ๋Š” 25,000์—ฌ๊ฐœ์˜ ๊ฐ•์šฐ์‹œ๋‚˜๋ฆฌ์˜ค์— ๋Œ€ํ•œ ํ…Œ์ŠคํŠธ๋ฒ ๋“œ ์ ์šฉ ์‚ฌ๋ก€๋ฅผ ๊ฒ€ํ† ํ•œ๋‹ค. ๋์œผ๋กœ ์š”์•ฝ ๋ฐ ๊ฒฐ๋ก ์„ 4์žฅ์—์„œ ์ œ์‹œํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚จ์€ ๋ณธ๊ณ ๋ฅผ ๊ตฌ์„ฑํ•˜๊ณ ์ž ํ•œ๋‹ค.

2. HEC ์†Œํ”„ํŠธ์›จ์–ด ๊ธฐ๋ฐ˜ ํ™์ˆ˜๋ฒ”๋žŒ์ง€๋„ ์—‘์…€๋Ÿฌ๋ ˆ์ดํ„ฐ

2.1 ํ™์ˆ˜๋ฒ”๋žŒ์ง€๋„ ์ž‘์„ฑ ๊ณผ์ •

์ผ๋ฐ˜์ ์ธ ํ•˜์ฒœ ํ™์ˆ˜๋ฒ”๋žŒ์ง€๋„ ์ž‘์„ฑ์€ โ‘  ๊ฐ•์šฐ ๋ถ„์„์„ ํ†ตํ•œ ์„ค๊ณ„๊ฐ•์šฐ ์‚ฐ์ •, โ‘ก ์„ค๊ณ„๊ฐ•์šฐ์— ๋Œ€ํ•œ ํ™์ˆ˜๋Ÿ‰ ์‚ฐ์ •, โ‘ข ํ™์ˆ˜๋Ÿ‰์„ ๊ฒฝ๊ณ„์กฐ๊ฑด์œผ๋กœ ์„ค์ •ํ•˜์—ฌ ํ•˜์ฒœ ํ™์ˆ˜์œ„ ๊ณ„์‚ฐ, โ‘ฃ ํ•˜์ฒœ ์ œ๋ฐฉ ๋ฐ ์ œ๋‚ด์ง€ ์ง€ํ˜•์„ ๊ณ ๋ คํ•œ ํ•˜์ฒœ๋ฒ”๋žŒ ๋ชจ์˜ ๋ฐ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์นจ์ˆ˜์˜ˆ์ƒ๋„๋ฅผ ์ถœ๋ ฅํ•˜๋Š” ์ˆœ์„œ๋กœ ์ง„ํ–‰๋œ๋‹ค(Fig. 1). ์ด๋•Œ, ์ œ๋ฐฉ์˜ ์›”๋ฅ˜ ๋˜๋Š” ๋ถ•๊ดด ์‹œ๋‚˜๋ฆฌ์˜ค์— ๋”ฐ๋ผ์„œ ์œ ํ•˜ํ˜• ๋ฒ”๋žŒ, ์ €๋ฅ˜ํ˜• ๋ฒ”๋žŒ, ํ™•์‚ฐํ˜• ๋ฒ”๋žŒ์œผ๋กœ ๋ถ„๋ฅ˜ํ•˜๊ณ , ๊ฐ๊ฐ ์„œ๋กœ ๋‹ค๋ฅธ ๋ชจ์˜ ๋ฐฉ๋ฒ•์„ ์ ์šฉํ•œ๋‹ค(ME, 2020). ํ•˜์ฒœ๊ณผ ์ œ๋‚ด์ง€๋ฅผ ๋Œ€์ƒ์œผ๋กœ 2์ฐจ์› ๋ถ€์ •๋ฅ˜ ์กฐ๊ฑด์œผ๋กœ ๋ชจ์˜ํ•˜๋Š” ๊ฒƒ์ด ์ด์ƒ์ ์ด๋‚˜, ๊ณ„์‚ฐ์‹œ๊ฐ„์„ ๋‹จ์ถ•ํ•˜๊ณ  ์„ค๊ณ„์•ˆ์ „ ์ธก๋ฉด์—์„œ ์นจ์ˆ˜์‹ฌ๊ณผ ์นจ์ˆ˜๋ฉด์ ์ด ํฌ๊ฒŒ ์‚ฐ์ •ํ•˜๋ ค๋Š” ๋ชฉ์ ์œผ๋กœ ๋ถ€๋“ฑ๋ฅ˜ ์กฐ๊ฑด์—์„œ ์œ ํ•˜ํ˜• ๋˜๋Š” ํ™•์‚ฐํ˜• ๋ฒ”๋žŒ์„ ๊ฐ€์ •ํ•˜๊ณ  ๋ชจ์˜ํ•˜๋Š” ๊ฒƒ์ด ์ผ๋ฐ˜์ ์ด๋‹ค(ME, 2020).

Fig. 1. Process Diagram for Generating a River Flooding Map
../../Resources/KSCE/Ksce.2024.44.2.0173/fig1.png

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ™์ˆ˜์˜ˆ์ธก์„ ์œ„ํ•œ ํ•™์Šต์ž๋ฃŒ๋กœ ํ™œ์šฉํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋‹ค์ˆ˜์˜ ํ™์ˆ˜๋ฒ”๋žŒ์ง€๋„๋ฅผ ์ž‘์„ฑํ•˜๋Š” ๊ฒƒ์ด ๋ชฉ์ ์ด๋ฏ€๋กœ โ‘ ๋ฒˆ ๊ณผ์ •์€ ํŠน์ • ์žฌํ˜„๊ธฐ๊ฐ„์— ๋Œ€ํ•œ ์„ค๊ณ„๊ฐ•์šฐ ๋Œ€์‹ ์— ๋‹ค์–‘ํ•œ ๊ฐ•์šฐ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์ ์šฉํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋Œ€์ฒด๋˜์—ˆ๋‹ค(Fig. 1). ์‹ค๋ฌด์—์„œ๋Š” ์ฃผ๋กœ HEC-1(๋˜๋Š” HEC-HMS)์„ ์ด์šฉํ•˜์—ฌ ํ™์ˆ˜๋Ÿ‰์„ ์‚ฐ์ •ํ•˜๊ณ (โ‘ก๋ฒˆ ๊ณผ์ •), HEC-RAS๋ฅผ ์ด์šฉํ•˜์—ฌ ํ•˜์ฒœ์˜ ํ™์ˆ˜์œ„๋ฅผ ๊ณ„์‚ฐํ•œ๋‹ค(โ‘ข๋ฒˆ ๊ณผ์ •). ๋˜ํ•œ, RAS Mapper๋ฅผ ์ด์šฉํ•˜์—ฌ ํ•˜์ฒœ๋ฒ”๋žŒ์„ ๋ชจ์˜ํ•˜๊ณ  ์นจ์ˆ˜์˜ˆ์ƒ๋„๋ฅผ ๊ณต๊ฐ„์ •๋ณด ์ž๋ฃŒ ํ˜•์‹(**.asc ๋˜๋Š” **.geotiff)์œผ๋กœ ์ถ”์ถœํ•œ๋‹ค(โ‘ฃ๋ฒˆ ๊ณผ์ •). ๋”ฐ๋ผ์„œ HEC-1, HEC-RAS, RAS Mapper์˜ ๋ถ„์„ ์—”์ง„์„ ํ™œ์šฉํ•˜์—ฌ ํ™์ˆ˜๋ฒ”๋žŒ์ง€๋„ ์ž‘์„ฑ ๊ณผ์ •์„ ์ž๋™ํ™”ํ•˜์—ฌ ์ˆ˜๋ฐฑ์—์„œ ์ˆ˜์‹ญ๋งŒ๊ฑด์˜ ๊ฐ•์šฐ์‹œ๋‚˜๋ฆฌ์˜ค์— ๋Œ€ํ•œ ์นจ์ˆ˜์˜ˆ์ƒ๋„๋ฅผ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šคํ™”ํ•˜๋Š” ๊ฒƒ์ด ํ•ต์‹ฌ์ด๋‹ค.

2.2 ์—‘์…€๋Ÿฌ๋ ˆ์ดํ„ฐ ๊ธฐ๋Šฅ ๋ฐ ํŠน์ง•

์—‘์…€๋Ÿฌ๋ ˆ์ดํ„ฐ๋Š” ์‚ฌ์šฉ์ž ํŽธ์˜๋ฅผ ์œ„ํ•˜์—ฌ ๋…๋ฆฝํ˜• ์‹คํ–‰ํ”„๋กœ๊ทธ๋žจ์œผ๋กœ ๊ฐœ๋ฐœ๋˜์—ˆ๋‹ค. ์ฃผ์š” ๋ชจ๋“ˆ ๊ฐœ๋ฐœ์—๋Š” Fortran(๊ฐ•์šฐ ๋ถ„์„), Python(๊ฐ์ข… API ํ˜ธ์ถœ), C(ํ™์ˆ˜๋Ÿ‰ ์‚ฐ์ •) ๋“ฑ ๋‹ค์–‘ํ•œ ์ปดํ“จํ„ฐ ์–ธ์–ด์˜ ์žฅ์ ์„ ๊ณ ๋ คํ•˜์—ฌ ์ข…ํ•ฉ์ ์œผ๋กœ ์‚ฌ์šฉ๋˜์—ˆ์œผ๋ฉฐ, GUI๋Š” Matlab์œผ๋กœ ๊ฐœ๋ฐœ๋˜์—ˆ๋‹ค. ๋ฐฐํฌ์— ์šฉ์ดํ•˜๋„๋ก Matlab Application Compiler๋ฅผ ์ด์šฉํ•˜์—ฌ ์‹คํ–‰ํŒŒ์ผ๋กœ ์ปดํŒŒ์ผํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ์‚ฌ์šฉ์ž๋Š” Mathworks์—์„œ ๋ฌด๋ฃŒ๋กœ ๋ฐฐํฌํ•˜๋Š” Matlab Compiler Runtime๋งŒ ์„ค์น˜ํ•˜๋ฉด Windows OS์—์„œ ์ž์œ ๋กญ๊ฒŒ ์—‘์…€๋Ÿฌ๋ ˆ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค.

์—‘์…€๋Ÿฌ๋ ˆ์ดํ„ฐ๋Š” ๋Œ€๋ถ€๋ถ„ ์—ฐ์‚ฐ์—์„œ HEC ์†Œํ”„ํŠธ์›จ์–ด์˜ ๋ถ„์„ ์—”์ง„์„ ์‚ฌ์šฉํ•œ๋‹ค. HEC-1์˜ ๊ฒฝ์šฐ ์ปดํŒŒ์ผ๋œ ์‘์šฉํ”„๋กœ๊ทธ๋žจ์ด ํ•จ๊ป˜ ์ œ๊ณต๋˜๋ฏ€๋กœ ๋ณ„๋„์˜ ์„ค์น˜๊ฐ€ ํ•„์š”ํ•˜์ง€ ์•Š์ง€๋งŒ, HEC-RAS๋Š” ๋™์  ๋งํฌ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ(DLL)๋ฅผ ํ˜ธ์ถœํ•˜์—ฌ ์‚ฌ์šฉํ•˜๋Š” ํ˜•์‹์œผ๋กœ HEC-RAS ํ”„๋กœ๊ทธ๋žจ์ด ๋ฏธ๋ฆฌ ์„ค์น˜๋˜์–ด ์žˆ์–ด์•ผ ํ•œ๋‹ค. ๋˜ํ•œ, ๋ถ„์„ ๊ฒฐ๊ณผ ๋Œ€๋ถ€๋ถ„์ด Excel ํŒŒ์ผ๋กœ ์ถœ๋ ฅ๋˜๊ธฐ ๋•Œ๋ฌธ์— MS Office ์„ค์น˜๊ฐ€ ํ•„์š”ํ•˜๋‹ค.

์—‘์…€๋Ÿฌ๋ ˆ์ดํ„ฐ์˜ ๋“œ๋กญ๋‹ค์šด ๋ฉ”๋‰ด๋Š” ๊ฐ•์šฐ ๋ถ„์„, ํ™์ˆ˜๋Ÿ‰ ์‚ฐ์ •, ํ™์ˆ˜์œ„ ์‚ฐ์ •, ํ•˜์ฒœ๋ฒ”๋žŒ ๋ชจ์˜์˜ ํ™์ˆ˜๋ฒ”๋žŒ์ง€๋„ ์ž‘์„ฑ ์ˆœ์„œ์— ๋งž๊ฒŒ ๊ตฌ์„ฑํ•˜์˜€๋‹ค(Fig. 2). File ๋ฉ”๋‰ด๋Š” ํ”„๋กœ์ ํŠธ ๋‹จ์œ„๋กœ ๊ด€๋ จ ์ž…๋ ฅ๏ฝฅ์ถœ๋ ฅ ์ž๋ฃŒ๋ฅผ ๊ด€๋ฆฌํ•˜๊ณ , ๋‹ค์ˆ˜์˜ ์‚ฌ์šฉ์ž๊ฐ€ ์ž‘์—…ํ•œ ๊ฒฐ๊ณผ๋ฅผ ์‰ฝ๊ฒŒ ์ทจํ•ฉํ•  ์ˆ˜ ์žˆ๋Š” ํŽธ์˜ ๊ธฐ๋Šฅ์„ ํฌํ•จํ•˜๊ณ  ์žˆ๋‹ค. Storm & Flood ๋ฉ”๋‰ด์—์„œ๋Š” Huff(1967)์˜ ๋ฌด์ฐจ์› ๋ˆ„๊ฐ€๊ฐ•์šฐ๊ณก์„  ํ˜•์‹์˜ ๊ฐ•์šฐ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๊ฐ•์šฐ์ฃผ์ƒ๋„๋ฅผ ์ž‘์„ฑํ•˜๊ณ , ์‹œ๋‚˜๋ฆฌ์˜ค๋ณ„ ํ™์ˆ˜๋Ÿ‰์„ ์‚ฐ์ •ํ•  ์ˆ˜ ์žˆ๋‹ค. ํ™์ˆ˜๋Ÿ‰ ์‚ฐ์ •์— ๋‹ค์ˆ˜์˜ ๊ฐ•์šฐ์ง€์†๊ธฐ๊ฐ„์„ ํฌํ•จ์‹œํ‚ค๊ธฐ ์œ„ํ•˜์—ฌ ๋ฌด์ฐจ์› ๋ˆ„๊ฐ€๊ฐ•์šฐ๊ณก์„ ์˜ ํšŒ๊ท€์‹์ด ํ•„์š”ํ•˜๋‹ค. ์ด๋•Œ, ๊ฐ ์ •์  ์‚ฌ์ด๋ฅผ ์„œ๋กœ ๋‹ค๋ฅธ 3์ฐจ ๋‹คํ•ญ์‹์œผ๋กœ ํšŒ๊ท€ํ•˜๋Š” cubic spline ๋ฐฉ๋ฒ•์„ ๋„์ž…ํ•˜์—ฌ ๊ธฐ์กด์˜ 5โˆผ7์ฐจ ๋‹คํ•ญ์‹์„ ์ ์šฉํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ๋ˆ„๊ฐ€๊ฐ•์šฐ๊ฐ€ ์—ญ์ „๋˜๋Š” ๋ฌธ์ œ๋‚˜ ๊ฐ•์šฐ์ง€์†๊ธฐ๊ฐ„์ด ์™œ๊ณก๋˜๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜์˜€๋‹ค. ๋˜ํ•œ, ์„ค๊ณ„ํ™์ˆ˜๋Ÿ‰ ์‚ฐ์ •์š”๋ น(MLTMA, 2012), ํ™์ˆ˜๋Ÿ‰ ์‚ฐ์ • ํ‘œ์ค€์ง€์นจ(ME, 2019) ๊ธฐ์ค€์— ๋”ฐ๋ฅธ ๋ช…ํ™•ํ•œ ํ™์ˆ˜๋Ÿ‰ ์‚ฐ์ • ์ ˆ์ฐจ์™€ ์ง๊ด€์ ์ธ GUI๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์‚ฌ์šฉ์ž๊ฐ€ ํŽธ๋ฆฌํ•˜๊ฒŒ ํ™์ˆ˜๋Ÿ‰์„ ์‚ฐ์ •ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์ด ํŠน์ง•์ด๋‹ค(Fig. 3).

Fig. 2. Main Page and Drop-down Menu of Flood Mapping Accelerator Based on HEC-softwares
../../Resources/KSCE/Ksce.2024.44.2.0173/fig2.png
Fig. 3. GUI for Flood Discharges Estimation
../../Resources/KSCE/Ksce.2024.44.2.0173/fig3.png

HWL & Mapping ๋ฉ”๋‰ด๋Š” ์‹œ๋‚˜๋ฆฌ์˜ค๋ณ„ ํ™์ˆ˜๋Ÿ‰ ์‚ฐ์ • ๊ฒฐ๊ณผ๋ฅผ HEC-RAS flow ํŒŒ์ผ(**.f\#\#)์— ์ž…๋ ฅํ•˜์—ฌ HEC-RAS ๋ถ€๋“ฑ๋ฅ˜ ๋ชจ์˜๋ฅผ ์œ„ํ•œ ํ™์ˆ˜๋Ÿ‰ ์กฐ๊ฑด์„ ์ผ๊ด„๋กœ ์„ค์ •ํ•˜๋Š” ๊ธฐ๋Šฅ, ์‚ฌ์šฉ์ž๊ฐ€ HEC-RAS๋ฅผ ์ง์ ‘ ์‹คํ–‰ํ•˜์ง€ ์•Š๊ณ  ์—‘์…€๋Ÿฌ๋ ˆ์ดํ„ฐ๊ฐ€ ๋ฐ˜๋ณต์ ์œผ๋กœ ํ™์ˆ˜์œ„๋ฅผ ๊ณ„์‚ฐํ•˜๋Š” ๊ธฐ๋Šฅ์„ ํฌํ•จํ•˜๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ, ๊ณ„์‚ฐ๋œ ํ™์ˆ˜์œ„๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์—‘์…€๋Ÿฌ๋ ˆ์ดํ„ฐ๊ฐ€ ์Šค์Šค๋กœ ํ•˜์ฒœ๋ฒ”๋žŒ์„ ๋ชจ์˜ํ•˜๊ณ  ์นจ์ˆ˜์˜ˆ์ƒ๋„๋ฅผ ์ถœ๋ ฅํ•˜๋„๋ก ํ•˜๋Š” RAS map ํŒŒ์ผ(**.rasmap)์„ ์ƒ์„ฑํ•˜๋Š” ๊ธฐ๋Šฅ๋„ ํฌํ•จ๋˜์–ด ์žˆ๋‹ค. ๋์œผ๋กœ Help ๋ฉ”๋‰ด์—์„œ๋Š” ์‚ฌ์šฉ์ž ๋งค๋‰ด์–ผ, ํ™œ์šฉ ์˜ˆ์ œ, ํ”„๋กœ๊ทธ๋žจ ์‚ฌ์šฉ์‹œ ๋ฐœ์ƒํ•˜๋Š” ์˜ค๋ฅ˜ ์ฝ”๋“œ ๊ด€๋ฆฌ ๋“ฑ ํŽธ์˜ ๊ธฐ๋Šฅ์„ ์ œ๊ณตํ•œ๋‹ค.

๊ฐœ๋ฐœ๋œ ์—‘์…€๋Ÿฌ๋ ˆ์ดํ„ฐ๋Š” ์ˆ˜๋ฐฑ์—์„œ ์ˆ˜์‹ญ๋งŒ๊ฑด์˜ ๊ฐ•์šฐ์‹œ๋‚˜๋ฆฌ์˜ค์— ๋Œ€ํ•œ ํ•˜์ฒœ ํ™์ˆ˜๋ฒ”๋žŒ์„ ๋ชจ์˜ํ•˜๊ณ  ์นจ์ˆ˜์˜ˆ์ƒ๋„๋ฅผ ์ž‘์„ฑํ•˜๋Š” ์ผ๋ จ์˜ ๋ฐ˜๋ณต๋œ ์ž‘์—…์„ ์ž๋™ํ™”ํ•จ์œผ๋กœ์จ ์ž๋ฃŒ ๊ตฌ์ถ•์— ์†Œ์š”๋˜๋Š” ๋…ธ๋ ฅ๊ณผ ์‹œ๊ฐ„์„ ์ ˆ๊ฐํ•˜์˜€๋‹ค. ํŠนํžˆ, ํ™์ˆ˜๋Ÿ‰ ์‚ฐ์ •์‹œ HEC-1 ๋ชจํ˜•์˜ ๋‹จ์ ์ธ ๋ณต์žกํ•œ ์ž…๋ ฅํŒŒ์ผ ์ƒ์„ฑ์„ ์—‘์…€๋Ÿฌ๋ ˆ์ดํ„ฐ๊ฐ€ ๋Œ€์‹ ํ•จ์œผ๋กœ์จ ๋ฐ˜๋ณต์ ์ธ ๋ชจ์˜ ๋“ฑ์—์„œ ๋ถˆ๋ฆฌํ•œ HEC-HMS์˜ ๋‹จ์ ์„ ํ•ด๊ฒฐํ•˜์—ฌ ์‹ค๋ฌด์ ์šฉ์„ฑ์„ ๊ทน๋Œ€ํ™”ํ•˜์˜€๋‹ค. ๊ธฐ์กด์˜ HEC-1, HEC-RAS ๋“ฑ ๊ฒ€์ฆ๋œ ๋ชจํ˜•์˜ ์—”์ง„์„ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ๋ชจ์˜ ๊ฒฐ๊ณผ์˜ ์‹ ๋ขฐ์„ฑ์„ ํ™•๋ณดํ•˜์˜€๋‹ค.

3. ํ…Œ์ŠคํŠธ๋ฒ ๋“œ๋ฅผ ํ†ตํ•œ ์‹ค๋ฌด์ ์šฉ์„ฑ ๊ฒ€ํ† 

3.1 ํ…Œ์ŠคํŠธ๋ฒ ๋“œ ๋ฐ ํ™œ์šฉ ์ž๋ฃŒ

์—‘์…€๋Ÿฌ๋ ˆ์ดํ„ฐ์˜ ์ ์šฉ์„ฑ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๊ตญ๋‚ด ์ง€๋ฐฉํ•˜์ฒœ ์ˆ˜๊ณ„(๋˜๋Š” ๊ถŒ์—ญ) 26๊ฐœ์†Œ๋ฅผ ํ…Œ์ŠคํŠธ๋ฒ ๋“œ๋กœ ์„ ์ •ํ•˜์˜€๋‹ค(Fig. 4). ํ…Œ์ŠคํŠธ๋ฒ ๋“œ๋Š” ๊ณผ๊ฑฐ ํ•˜์ฒœ๋ฒ”๋žŒ ํ”ผํ•ด๊ฐ€ ๋ฐœ์ƒํ•œ ์ง€์—ญ, ์ž์—ฐ์žฌํ•ด์ €๊ฐ ์ข…ํ•ฉ๊ณ„ํš์˜ ํ•˜์ฒœ์žฌํ•ด ์œ„ํ—˜์ง€๊ตฌ๋กœ ์„ ์ •๋˜๋Š” ๋“ฑ ํ•˜์ฒœ๋ฒ”๋žŒ ๋ฐœ์ƒ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์€ ์ง€์—ญ, ๋น„๊ต์  ์ตœ๊ทผ์— ํ•˜์ฒœ๊ธฐ๋ณธ๊ณ„ํš์ด ์ˆ˜๋ฆฝ๋˜์–ด ์ธก๋Ÿ‰์ž๋ฃŒ ์ˆ˜์ง‘์ด ์‰ฌ์šด ์ง€์—ญ, ํ™˜๊ฒฝ๋ถ€ ํ™์ˆ˜์œ„ํ—˜์ง€๋„ ์ •๋ณด์‹œ์Šคํ…œ์—์„œ ํ•˜์ฒœ๋ฒ”๋žŒ์ง€๋„๊ฐ€ ์ œ๊ณต๋˜์–ด ๋ชจ์˜ ๊ฒฐ๊ณผ์˜ ํƒ€๋‹น์„ฑ์„ ๊ฒ€ํ† ํ•  ์ˆ˜ ์žˆ๋Š” ์ง€์—ญ์„ ์ค‘์‹ฌ์œผ๋กœ ์„ ์ •ํ•˜์˜€๋‹ค. 26๊ฐœ์†Œ์˜ ์ˆ˜๊ณ„ ๋˜๋Š” ๊ถŒ์—ญ ๋‹จ์œ„ ํ…Œ์ŠคํŠธ๋ฒ ๋“œ ์ค‘์—์„œ ํ™ฉ๊ตฌ์ง€์ฒœ ์ƒ๋ฅ˜๊ถŒ์—ญ์€ ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ค‘์ ์ ์œผ๋กœ ๋‹ค๋ฃฌ ์ง€์—ญ์œผ๋กœ ๋‹ค์–‘ํ•œ ๊ทœ๋ชจ์˜ ์ง€๋ฐฉํ•˜์ฒœ 10๊ฐœ์†Œ๊ฐ€ ์œ„์น˜ํ•˜๊ณ  ์žˆ๋‹ค.

ํ™ฉ๊ตฌ์ง€์ฒœ ์ƒ๋ฅ˜๊ถŒ์—ญ์—๋Š” ํ™ฉ๊ตฌ์ง€์ฒœ, ๋ฐ˜์ •์ฒœ, ์›์ฒœ๋ฆฌ์ฒœ, ์ˆ˜์›์ฒœ, ๊ด‘๊ต์ฒœ, ์—ฌ์ฒœ, ์˜๋•์ฒœ, ๊ฐ€์‚ฐ์ฒœ, ์„œํ˜ธ์ฒœ, ์˜ํ™”์ฒœ์ด ์œ„์น˜ํ•˜๋ฉฐ, ํ•˜์ฒœ๋ณ„ ์œ ์—ญ๋ฉด์ ์€ 1.00 kmยฒ(๊ฐ€์‚ฐ์ฒœ)๋ถ€ํ„ฐ 84.75 kmยฒ(ํ™ฉ๊ตฌ์ง€์ฒœ)๊นŒ์ง€ ๋‹ค์–‘ํ•˜๋‹ค. ํ•˜์ฒœ๋ณ„ ์—ฐ์žฅ์€ 1.27 km(๊ด‘๊ต์ฒœ)โˆผ13.04 km(ํ™ฉ๊ตฌ์ง€์ฒœ) ๋ฒ”์œ„์ด๋‹ค. ์œ„์น˜๋Š” ํ–‰์ •๊ตฌ์—ญ์ƒ ๊ฒฝ๊ธฐ๋„ ์ˆ˜์›์‹œ์— ํ•ด๋‹นํ•˜๋ฉฐ, ์ˆ˜์›์‹œ ํ’์ˆ˜ํ•ด์ €๊ฐ์ข…ํ•ฉ๊ณ„ํš(Suwon City, 2014)์—์„œ ์„ ์ •ํ•œ ํ•˜์ฒœ์žฌํ•ด ์œ„ํ—˜์ง€๊ตฌ 6๊ฐœ์†Œ ์ค‘์—์„œ 4๊ฐœ์†Œ๊ฐ€ ํ™ฉ๊ตฌ์ง€์ฒœ ์ƒ๋ฅ˜๊ถŒ์—ญ์— ๋ฐ€์ง‘๋œ ํ•˜์ฒœ์žฌํ•ด ๋ฐœ์ƒ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์€ ์ง€์—ญ์ด๋‹ค. ๋˜ํ•œ, ์ง„์œ„์ฒœ๊ถŒ์—ญ ํ•˜์ฒœ๊ธฐ๋ณธ๊ณ„ํš(MOLIT, 2014)์—์„œ๋Š” ํ™ฉ๊ตฌ์ง€์ฒœ ์ƒ๋ฅ˜๊ถŒ์—ญ์˜ ํ•˜์ฒœ ๋Œ€๋ถ€๋ถ„ ๊ตฌ๊ฐ„์ด ์ œ๋ฐฉ๊ณ ์— ๋น„ํ•˜์—ฌ ๊ณ„ํšํ™์ˆ˜์œ„๊ฐ€ ๋†’์€ ๊ฒƒ์œผ๋กœ ๊ฒ€ํ† ๋˜์–ด ์ถ•์ œ, ๋ณด์ถ• ๋“ฑ ํ•˜์ฒœ์ •๋น„๊ณ„ํš์ด ๋‹ค์ˆ˜ ์ˆ˜๋ฆฝ๋œ ๋ฐ” ์žˆ๋‹ค.

Fig. 4. Location Map of Test-bed and Spatial Distribution of Flood Estimation Points
../../Resources/KSCE/Ksce.2024.44.2.0173/fig4.png

ํ™์ˆ˜๋Ÿ‰ ์‚ฐ์ •์„ ์œ„ํ•˜์—ฌ ํ•˜์ฒœ๊ธฐ๋ณธ๊ณ„ํš์—์„œ ์„ ์ •ํ•œ ํ™์ˆ˜๋Ÿ‰ ์‚ฐ์ •์ง€์  ์ค‘์—์„œ ๊ณ„ํšํ™์ˆ˜๋Ÿ‰์ด ๋ณ€๊ฒฝ๋˜๋Š” ์ง€์  45๊ฐœ์†Œ๋ฅผ ๊ธˆํšŒ ํ™์ˆ˜๋Ÿ‰ ์‚ฐ์ •์ง€์ ์œผ๋กœ ์„ ์ •ํ•˜์˜€๋‹ค. ์‚ฐ์ •์ง€์ ๋ณ„ ์œ ์—ญ๋ฉด์ , ์œ ๋กœ์—ฐ์žฅ, ์œ ๋กœ๊ฒฝ์‚ฌ, SCS(1956) CN ๋“ฑ ์œ ์—ญ ํŠน์„ฑ์ธ์ž์™€ Clark(1945) ๋‹จ์œ„๋„ ์ ์šฉ์— ํ•„์š”ํ•œ ๋„๋‹ฌ์‹œ๊ฐ„, ์ €๋ฅ˜์ƒ์ˆ˜ ๋“ฑ ๋ชจํ˜• ๋งค๊ฐœ๋ณ€์ˆ˜๋Š” ํ•˜์ฒœ๊ธฐ๋ณธ๊ณ„ํš์—์„œ ์‚ฐ์ •ํ•œ ๊ฐ’์„ ๊ทธ๋Œ€๋กœ ํ™œ์šฉํ•˜์˜€๋‹ค. ํ™์ˆ˜์œ„ ์‚ฐ์ •์„ ์œ„ํ•œ ํ•˜์ฒœ๋‹จ๋ฉด ๊ตฌ์ถ•๊ณผ ๊ตฌ์กฐ๋ฌผ ์ œ์› ์ž…๋ ฅ์€ ํ•˜์ฒœ๊ธฐ๋ณธ๊ณ„ํš์—์„œ ์‹ค์‹œํ•œ ์ธก๋Ÿ‰์„ฑ๊ณผ ์ž๋ฃŒ๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ํ•˜์ฒœ๋ฒ”๋žŒ ๋ชจ์˜๋ฅผ ์œ„ํ•œ ์ˆ˜์น˜ํ‘œ๊ณ ๋ชจํ˜•(DEMs)์€ ํ•˜์ฒœ๊ธฐ๋ณธ๊ณ„ํš์˜ ์ธก๋Ÿ‰์„ฑ๊ณผ์™€ ๊ตญํ† ์ง€๋ฆฌ์ •๋ณด์›์—์„œ ์ œ๊ณตํ•˜๋Š” 1:5,000๋„ ์ˆ˜์น˜์ง€๋„์˜ ๊ณ ๋„ ์ •๋ณด๋ฅผ ์ข…ํ•ฉํ•˜์—ฌ ์ž์—ฐ ์ด์›ƒ ๋ณด๊ฐ„(natural neighbor interpolation) ๋ฐฉ๋ฒ•์œผ๋กœ ์ƒ์„ฑํ•˜์˜€๋‹ค.

3.2 ๊ฐ•์šฐ์‹œ๋‚˜๋ฆฌ์˜ค

์žฌํ˜„์„ฑ์— ์ค‘์ ์„ ๋‘๊ณ ์ž ๊ธฐ์ƒ์ฒญ์˜ ๊ฐ•์šฐ ๊ด€์ธก์ž๋ฃŒ์™€ ๊ธฐํ›„๋ณ€ํ™” ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํ˜ธ์šฐ์˜ ์‹œ๏ฝฅ๊ณต๊ฐ„์  ๋ถ„ํฌ๋ฅผ ๊ณ ๋ คํ•œ ๋ฌด์ฐจ์› ๋ˆ„๊ฐ€๊ฐ•์šฐ๋ถ„ํฌ ํ˜•์‹์˜ ๊ฐ•์šฐ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์ž‘์„ฑํ•˜์˜€๋‹ค(Fig. 5). ๊ด€์ธก์ž๋ฃŒ์˜ ๊ฒฝ์šฐ ๊ธฐ์ƒ์ฒญ ์ข…๊ด€๊ธฐ์ƒ๊ด€์ธก์†Œ(ASOS)์˜ 1968๋…„๋ถ€ํ„ฐ 2022๋…„๊นŒ์ง€ ๊ด€์ธก๋œ ์ž๋ฃŒ ์ค‘์—์„œ 3์‹œ๊ฐ„ ์ด๊ฐ•์šฐ๋Ÿ‰์ด 60 mm ์ด์ƒ(3์‹œ๊ฐ„ ํ˜ธ์šฐ์ฃผ์˜๋ณด ๋ฐœ๋ น๊ธฐ์ค€)์ด๊ฑฐ๋‚˜, 1์‹œ๊ฐ„ ์ด๊ฐ•์šฐ๋Ÿ‰์ด 20 mm ์ด์ƒ(3์‹œ๊ฐ„ ํ˜ธ์šฐ์ฃผ์˜๋ณด ๋ฐœ๋ น๊ธฐ์ค€์„ 1์‹œ๊ฐ„์œผ๋กœ ํ™˜์‚ฐํ•œ ์ˆ˜์น˜)์ธ ํ˜ธ์šฐ ์‚ฌ์ƒ๋งŒ์„ ์ถ”์ถœํ•˜์˜€๋‹ค. 2022๋…„ ์„œ์šธ ๊ฐ•๋‚จ์ง€์—ญ์— ์นจ์ˆ˜๊ฐ€ ๋ฐœ์ƒํ•œ ๋‹น์‹œ ASOS ์„œ์šธ๊ด€์ธก์†Œ(108๋ฒˆ)์™€ AWS ๊ฐ•๋‚จ๊ด€์ธก์†Œ(400๋ฒˆ)์—์„œ ๊ด€์ธก๋œ ๊ฐ•์šฐ๋Ÿ‰ ๊ฐ’์ด ํฌ๊ฒŒ ์ฐจ์ด ๋‚˜๋Š” ๊ฒƒ๊ณผ ๊ฐ™์ด ๊ฐ•์šฐ์˜ ์ง€์—ญ์  ํŽธ์ฐจ๋ฅผ ๋ณด์™„ํ•˜๊ณ ์ž d4PDF(Database for Policy Decision making for Future climate change) ๊ธฐํ›„๋ณ€ํ™” ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ํ•จ๊ป˜ ํ™œ์šฉํ•˜์˜€๋‹ค. d4PDF๋Š” ๋ฏธ๋ž˜ ๊ธฐํ›„๋ณ€ํ™”์— ๋Œ€ํ•œ ์ •์ฑ…๊ฒฐ์ •์— ํ™œ์šฉํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ผ๋ณธ ๋ฌธ๋ถ€๊ณผํ•™์„ฑ์ด ๊ฐœ๋ฐœํ•œ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋กœ ๋‹ค์–‘ํ•œ ์•™์ƒ๋ธ” ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ๋ชจ์˜ํ•˜์—ฌ ์ œ๊ณตํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ณผ๊ฑฐ์˜ ๊ธฐํ›„ ์žฌํ˜„์„ฑ์„ ๊ฒ€ํ† ํ•˜์—ฌ ๋ณด์™„๋œ ๊ณผ๊ฑฐ ๋ชจ์˜์‹คํ—˜ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. d4PDF๋Š” 1์‹œ๊ฐ„ ๊ฐ„๊ฒฉ์œผ๋กœ 20 km ๊ณต๊ฐ„ํ•ด์ƒ๋„๋ฅผ ๊ฐ–๋Š” ๋ฐ”์ด๋„ˆ๋ฆฌ ํ˜•์‹์˜ ํŒŒ์ผ๋กœ ์ œ๊ณตํ•˜๊ณ  ์žˆ๋‹ค(https://diasjp.net). ๊ฐ•์šฐ์‹œ๋‚˜๋ฆฌ์˜ค๋Š” ๊ฐ•์šฐ์ง€์†๊ธฐ๊ฐ„ 6์‹œ๊ฐ„์„ ๊ธฐ์ค€์œผ๋กœ ๋‹จ๊ธฐ๊ฐ„(6์‹œ๊ฐ„ ๋ฏธ๋งŒ)๊ณผ ์ค‘๏ฝฅ์žฅ๊ธฐ๊ฐ„(6์‹œ๊ฐ„ ์ด์ƒ)์œผ๋กœ ๊ตฌ๋ถ„ํ•˜์—ฌ ๊ฐ๊ฐ 449๊ฐœ์™€ 5,789๊ฐœ์˜ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์ƒ์„ฑํ•˜์˜€๋‹ค(Table 1).

Fig. 5. Dimensionless Cumulative Rainfall Depth Curves Based on Rainfall Scenario: (a) Short-term, (b) Long-term
../../Resources/KSCE/Ksce.2024.44.2.0173/fig5.png
Table 1. Summary of Generated Rainfall Scenario

Rainfall duration

Short-term(less than 6hours)

Long-term(more than 6hours)

Data source

OBS

CCS

OBS

CCS

Number of scenario

34

415

42

5747

Note

Primarily used in stream or medium-sized rivers

Primarily used in regional -sized rivers or national rivers

ํ…Œ์ŠคํŠธ๋ฒ ๋“œ ํ•˜์ฒœ์˜ ์œ ์—ญ๋ฉด์ ์ด 1.00โˆผ84.75 kmยฒ ๊ทœ๋ชจ์ด๋ฏ€๋กœ ๋Œ€๋žต์ ์ธ ์ž„๊ณ„์ง€์†๊ธฐ๊ฐ„์ด 3โˆผ12์‹œ๊ฐ„ ๋ฒ”์œ„๋กœ ์˜ˆ์ƒ๋˜์–ด ๋‹จ๊ธฐ๊ฐ„๊ณผ ์ค‘๏ฝฅ์žฅ๊ธฐ๊ฐ„ ์‹œ๋‚˜๋ฆฌ์˜ค ๋ชจ๋‘๋ฅผ ๊ฒ€ํ†  ๋Œ€์ƒ์œผ๋กœ ์„ค์ •ํ•˜์˜€๋‹ค. ์ด๋•Œ, ์ตœ๊ทผ ํ™์ˆ˜ํ”ผํ•ด๋ฅผ ๋ฐœ์ƒ์‹œํ‚จ ๊ฐ•์šฐ๊ฐ€ ์ˆ˜์‹œ๊ฐ„์— ๊ฑธ์ณ ๋ฐœ์ƒํ•œ ์—ฐ์†๊ฐ•์šฐ์˜€๋‹ค๋Š” ์ ์—์„œ 6์‹œ๊ฐ„ ์ด์ƒ์˜ ๊ฐ•์šฐ์ง€์†๊ธฐ๊ฐ„์— ๋Œ€ํ•œ ๊ฒ€ํ† ๊ฐ€ ํ•„์š”ํ•œ ์ ๋„ ํ•จ๊ป˜ ๊ณ ๋ คํ•˜์˜€๋‹ค. ๋ฌด์ฐจ์› ๋ˆ„๊ฐ€๊ฐ•์šฐ๋ถ„ํฌ์˜ ๊ฐ•์šฐ์ด๋Ÿ‰์„ ๊ณ ๋ คํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ „๊ตญ์ ์œผ๋กœ 30๊ฐœ๋…„ ์ด์ƒ์˜ ์‹œ๊ฐ•์šฐ๋Ÿ‰์„ ๋ณด์œ ํ•œ ๊ธฐ์ƒ์ฒญ ์ข…๊ด€๊ธฐ์ƒ๊ด€์ธก์†Œ 68๊ฐœ์†Œ(MOIS, 2020)์˜ 50๋…„๋นˆ๋„, 80๋…„๋นˆ๋„, 100๋…„๋นˆ๋„์˜ ํ™•๋ฅ ๊ฐ•์šฐ๋Ÿ‰์„ ๊ฒ€ํ† ํ•˜์—ฌ 60๋ถ„, 120๋ถ„, 180๋ถ„, 360๋ถ„, 720๋ถ„ ๊ฐ•์šฐ์ง€์†๊ธฐ๊ฐ„์— ๋Œ€ํ•œ ํ™•๋ฅ ๊ฐ•์šฐ๋Ÿ‰์˜ ์ตœ์†Ÿ๊ฐ’(60.5โˆผ136.0 mm)๊ณผ ์ตœ๋Œ“๊ฐ’(138.5โˆผ403.4 mm)์„ ์ ์šฉํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ๋‹จ๊ธฐ๊ฐ„ ๊ฐ•์šฐ์ง€์†๊ธฐ๊ฐ„์˜ ๊ฒฝ์šฐ 450๊ฐœ ์‹œ๋‚˜๋ฆฌ์˜ค(OBS 34, CCS 415, ๊ธฐ์ค€ 1) ร— 2๊ฐœ ๊ฐ•์šฐ์ด๋Ÿ‰(์ตœ์†Œ, ์ตœ๋Œ€) ร— 3๊ฐœ ๊ฐ•์šฐ์ง€์†๊ธฐ๊ฐ„(60๋ถ„, 120๋ถ„, 180๋ถ„)์œผ๋กœ 2,700๊ฐœ ๊ฐ•์šฐ์ฃผ์ƒ๋„๋ฅผ ์ƒ์„ฑํ•˜์˜€๋‹ค. ์ค‘๏ฝฅ์žฅ๊ธฐ๊ฐ„ ๊ฐ•์šฐ์ง€์†๊ธฐ๊ฐ„์˜ ๊ฒฝ์šฐ 450๊ฐœ ์‹œ๋‚˜๋ฆฌ์˜ค(OBS 42, CCS 5,747, ๊ธฐ์ค€ 1) ร— 2๊ฐœ ๊ฐ•์šฐ์ด๋Ÿ‰ ร— 2๊ฐœ ๊ฐ•์šฐ์ง€์†๊ธฐ๊ฐ„(360๋ถ„, 720๋ถ„)์œผ๋กœ 23,160๊ฐœ ๊ฐ•์šฐ์ฃผ์ƒ๋„๋ฅผ ์ƒ์„ฑํ•˜์—ฌ ์ด 25,860๊ฐœ์˜ ๊ฐ•์šฐ์ฃผ์ƒ๋„๋ฅผ ์ƒ์„ฑํ•˜์˜€๋‹ค.

3.3 ์ ์šฉ ๊ฒฐ๊ณผ

์—‘์…€๋Ÿฌ๋ ˆ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ํ™์ˆ˜๋Ÿ‰ ์‚ฐ์ •์— ์•ž์„œ์„œ ๊ตฌ์ถ•๋œ ํ™์ˆ˜๋Ÿ‰ ์‚ฐ์ • ๋ชจํ˜•์˜ ํƒ€๋‹น์„ฑ์„ ์šฐ์„  ๊ฒ€ํ† ํ•˜์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•˜์—ฌ ์„ค๊ณ„๊ฐ•์šฐ๋ฅผ ์ž…๋ ฅํ•˜์—ฌ ์„ค๊ณ„ํ™์ˆ˜๋Ÿ‰์„ ์‚ฐ์ •ํ•˜๊ณ , ์ด๋ฅผ ํ•˜์ฒœ๊ธฐ๋ณธ๊ณ„ํš์˜ ๊ฒฐ๊ณผ์™€ ๋น„๊ตํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ๋™์ผํ•œ ์ž„๊ณ„์ง€์†๊ธฐ๊ฐ„๊ณผ ์ฒจ๋‘ํ™์ˆ˜๋Ÿ‰์ด ์‚ฐ์ •๋˜์–ด ์‚ฌ์šฉ๋œ ์œ ์—ญ ํŠน์„ฑ์ธ์ž ๋ฐ ๋ชจํ˜• ๋งค๊ฐœ๋ณ€์ˆ˜ ๋“ฑ์˜ ํƒ€๋‹น์„ฑ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ๊ฒ€์ฆ๋œ ๋ชจํ˜•์— ๋Œ€ํ•˜์—ฌ 25,860๊ฐœ(180๋ถ„ ์ดํ•˜: ๊ฐ 900๊ฐœ, 360๋ถ„ ์ด์ƒ: ๊ฐ 11,580๊ฐœ)์˜ ๊ฐ•์šฐ์ฃผ์ƒ๋„์— ๋Œ€ํ•˜์—ฌ ํ™์ˆ˜๋Ÿ‰์„ ๋ฐ˜๋ณต์ ์œผ๋กœ ๊ณ„์‚ฐํ•˜์˜€๋‹ค. ์ฃผ์š” ์‚ฐ์ •์ง€์ ์˜ ์ฒจ๋‘ํ™์ˆ˜๋Ÿ‰์„ ์ƒ์ž์ˆ˜์—ผ ๊ทธ๋ฆผ์œผ๋กœ ๋‚˜ํƒ€๋‚ธ ๊ฒฐ๊ณผ, ๊ฐ•์šฐ์‹œ๋‚˜๋ฆฌ์˜ค์— ๋”ฐ๋ผ์„œ ์ตœ๋Œ€ 9๋ฐฐ๊นŒ์ง€ ํ™์ˆ˜๋Ÿ‰์ด ์ฐจ์ด ๋‚˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค(Fig. 6). ์‚ฌ์šฉ๋œ ํ•™์Šต์ž๋ฃŒ์˜ ์ข…๋ฅ˜๊ฐ€ ๋‹ค์–‘ํ• ์ˆ˜๋ก ์ฆ‰, ๊ฐ•์šฐ๋Ÿ‰ ๋˜๋Š” ํ™์ˆ˜๋Ÿ‰์˜ ์ตœ์†Ÿ๊ฐ’๊ณผ ์ตœ๋Œ“๊ฐ’ ์ฐจ์ด๊ฐ€ ํด์ˆ˜๋ก ๋ฐ์ดํ„ฐ๋ชจํ˜•์˜ ํ•™์Šตํšจ๊ณผ๊ฐ€ ๋†’๋‹ค๋Š” ์ ์—์„œ ์ œ์‹œ๋œ ๊ฐ•์šฐ์‹œ๋‚˜๋ฆฌ์˜ค์˜ ์œ ํšจ์„ฑ์„ ๋‹ค์‹œ ํ•œ๋ฒˆ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค.

ํ•œํŽธ, WC0 ์ง€์ ์˜ ๊ฒฝ์šฐ ๊ฐ•์šฐ์ง€์†๊ธฐ๊ฐ„ 360๋ถ„์—์„œ ์ค‘๊ฐ„๊ฐ’๊ณผ ์ƒ์œ„ 25 %์˜ ์ฒจ๋‘ํ™์ˆ˜๋Ÿ‰์ด ๊ฐ€์žฅ ํฐ ๊ฒƒ์œผ๋กœ ๋ณผ ๋•Œ(Fig. 6a), ํ•ด๋‹น ์ง€์ ์˜ ์ž„๊ณ„์ง€์†๊ธฐ๊ฐ„์ด 360๋ถ„ ์ „๏ฝฅํ›„๋ผ๋Š” ์‚ฌ์‹ค์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ฒœ๊ธฐ๋ณธ๊ณ„ํš์—์„œ ์‚ฐ์ •๋œ ์„ค๊ณ„ํ™์ˆ˜๋Ÿ‰ 795 mยณ/s์€ 25,860๊ฐœ ์ฒจ๋‘ํ™์ˆ˜๋Ÿ‰์˜ ์ค‘๊ฐ„๊ฐ’ ์ •๋„์— ํ•ด๋‹นํ•œ๋‹ค. ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ HG6, SH4 ์ง€์ ์˜ ์ž„๊ณ„์ง€์†๊ธฐ๊ฐ„์ด 180๋ถ„ ์ „๏ฝฅํ›„, YD4 ์ง€์ ์˜ ์ž„๊ณ„์ง€์†๊ธฐ๊ฐ„์ด 60โˆผ120๋ถ„์— ํ•ด๋‹นํ•˜๋ฉฐ ๊ฐ ์ง€์ ๋ณ„ ์„ค๊ณ„ํ™์ˆ˜๋Ÿ‰์€ ์ฒจ๋‘ํ™์ˆ˜๋Ÿ‰ ๋ถ„ํฌ์˜ ์ค‘๊ฐ„์— ์œ„์น˜ํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค(Fig. 6). ์ „๊ตญ์ ์œผ๋กœ ์ง€์ ๋ณ„ ํ™•๋ฅ ๊ฐ•์šฐ๋Ÿ‰์˜ ์ฐจ์ด๊ฐ€ ์ตœ๋Œ€ 2๋ฐฐ ์ •๋„(MOIS, 2022)์ธ ์ ์„ ๊ฐ์•ˆํ•  ๋•Œ, ๋‹ค๋ฅธ ์กฐ๊ฑด์ด ๋™์ผํ•˜๋”๋ผ๋„ ๊ฐ•์šฐ์˜ ์‹œ๊ฐ„๋ถ„ํฌ์— ๋”ฐ๋ผ์„œ ์ฒจ๋‘ํ™์ˆ˜๋Ÿ‰์ด 2๋ฐฐ๊นŒ์ง€ ์ฐจ์ด๊ฐ€ ๋‚  ์ˆ˜ ์žˆ์Œ์„ ์˜๋ฏธํ•œ๋‹ค. ์ด ๊ฒฐ๊ณผ๋Š” ์ตœ๊ทผ ๊ธฐํ›„๋ณ€ํ™”๋ฅผ ์„ค๊ณ„ํ™์ˆ˜๋Ÿ‰ ์‚ฐ์ •์— ๋ฐ˜์˜ํ•˜๋ ค๋Š” ๋…ธ๋ ฅ์˜ ํ•˜๋‚˜๋กœ ํ™•๋ฅ ๊ฐ•์šฐ๋Ÿ‰์„ ๊ฐ•์ œ๋กœ ์ผ์ •๋ฅ  ์ฆ๊ฐ€์‹œํ‚ค๊ฑฐ๋‚˜ ์„ค๊ณ„๋นˆ๋„๋ฅผ ์ƒํ–ฅํ•˜๋Š” ๋ฐฉ์•ˆ ๋Œ€์‹ ์— ์„ค๊ณ„๊ฐ•์šฐ์˜ ์‹œ๊ฐ„๋ถ„ํฌ๋ฅผ ์กฐ์ •ํ•˜๋Š” ๋ฐฉ์•ˆ์„ ์ œ์•ˆํ•œ ์—ฐ๊ตฌ(Jeong and Kim, 2022)๋ฅผ ๋’ท๋ฐ›์นจํ•˜๋Š” ๊ฒฐ๊ณผ์ด๋‹ค. ๋˜ํ•œ, ๊ฐ•์šฐ์˜ˆ์ธก์‹œ ํ˜ธ์šฐ์‚ฌ์ƒ์˜ ์ฒจ๋‘๋ถ€์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์˜ค์ฐจ๋ฅผ ๋ณด์ •ํ•˜๋Š” ์—ฐ๊ตฌ, ์„ค๊ณ„๊ฐ•์šฐ์˜ ์‹œ๊ฐ„๋ถ„ํฌ ์‚ฐ์ • ๊ฐœ์„  ๋“ฑ์— ์‹œ์‚ฌํ•˜๋Š” ๋ฐ”๊ฐ€ ํฌ๋‹ค.

์—‘์…€๋Ÿฌ๋ ˆ์ดํ„ฐ๋Š” ํ™์ˆ˜๋Ÿ‰ ์‚ฐ์ • ๊ฒฐ๊ณผ๋ฅผ ๋ฐ˜์˜ํ•œ ๋ถ€๋“ฑ๋ฅ˜ ์กฐ๊ฑด์˜ HEC-RAS flow ํŒŒ์ผ์„ ์ƒ์„ฑํ•˜๊ณ , ์ž๋™์œผ๋กœ 25,860๊ฐ€์ง€ ๊ฒฝ์šฐ์˜ ์ˆ˜์— ๋Œ€ํ•œ ํ™์ˆ˜์œ„ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ด์–ด์„œ 25,860๊ฐ€์ง€ ํ™์ˆ˜์œ„์— ๋Œ€ํ•œ ํ•˜์ฒœ๋ฒ”๋žŒ ๋ชจ์˜๋ฅผ ๋ฐ˜๋ณตํ•˜๊ณ , ๊ฐ๊ฐ์˜ ์นจ์ˆ˜์˜ˆ์ƒ๋„๋ฅผ geotiff ํ˜•์‹์œผ๋กœ ์ถœ๋ ฅํ•˜์˜€๋‹ค(Fig. 7). ์ถœ๋ ฅ๋œ ์นจ์ˆ˜์˜ˆ์ƒ๋„๋Š” ํ™˜๊ฒฝ๋ถ€ ํ™์ˆ˜์œ„ํ—˜์ง€๋„ ์ •๋ณด์‹œ์Šคํ…œ์—์„œ ์ œ๊ณตํ•˜๋Š” ํ•˜์ฒœ๋ฒ”๋žŒ์ง€๋„์™€ ๋น„๊ตํ•˜์—ฌ ์ „๋ฐ˜์ ์ธ ๋ฒ”๋žŒ์œ„์น˜ ๋ฐ ๋ฒ”๋žŒ์–‘์ƒ ๋“ฑ์ด ์œ ์‚ฌํ•œ ๊ฒƒ์œผ๋กœ ํ™•์ธ๋˜์—ˆ๋‹ค.

๊ฐ•์šฐ์‹œ๋‚˜๋ฆฌ์˜ค์— ๋”ฐ๋ผ์„œ ์ตœ๋Œ€ 9๋ฐฐ๊นŒ์ง€ ์ฒจ๋‘ํ™์ˆ˜๋Ÿ‰์˜ ์ฐจ์ด๊ฐ€ ๋ฐœ์ƒํ•˜์˜€๋˜ ๊ฒฐ๊ณผ๋ฅผ ํ™์ˆ˜์œ„ ๊ณ„์‚ฐ์˜ ๊ฒฝ๊ณ„์กฐ๊ฑด์œผ๋กœ ์„ค์ •ํ•œ ๊ฒฐ๊ณผ, ํ™ฉ๊ตฌ์ง€์ฒœ ํ•˜๋ฅ˜ ๋‹จ๋ฉด(No.0+870)์—์„œ์˜ ํ™์ˆ˜์œ„ ๋ฒ”์œ„๋Š” EL. 20.5โˆผ22.9 m๋กœ, ์ˆ˜์‹ฌ ๊ธฐ์ค€์œผ๋กœ ์ตœ๋Œ“๊ฐ’์ด ์ตœ์†Ÿ๊ฐ’์˜ ์•ฝ 1.7๋ฐฐ์ธ ๊ฒƒ์œผ๋กœ ๊ฒ€ํ† ๋˜์—ˆ๋‹ค. ์นจ์ˆ˜์‹ฌ์€ ํ™์ˆ˜์œ„์™€ ์ง€๋ฐ˜๊ณ ์˜ ์ฐจ์ด๋กœ ๊ณ„์‚ฐ๋˜๋ฏ€๋กœ ๊ฐ•์šฐ์‹œ๋‚˜๋ฆฌ์˜ค๋ณ„ ์นจ์ˆ˜์‹ฌ์˜ ์ตœ์†Ÿ๊ฐ’๊ณผ ์ตœ๋Œ“๊ฐ’์˜ ๋ฐฐ์œจ๋„ ์ด์™€ ์œ ์‚ฌํ•œ ์ˆ˜์ค€์ธ ๊ฒƒ์œผ๋กœ ๊ฒ€ํ† ๋˜์—ˆ๋‹ค.

4. ์š”์•ฝ ๋ฐ ๊ฒฐ๋ก 

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ™์ˆ˜์˜ˆ์ธก์— ๋ฐ์ดํ„ฐ๋ชจํ˜• ์ ์šฉ์‹œ ํ•™์Šต์„ ์œ„ํ•œ ์ž…๋ ฅ์ž๋ฃŒ๋ฅผ ๋ฌผ๋ฆฌ๋ชจํ˜• ๊ธฐ๋ฐ˜์œผ๋กœ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋Š” HEC ์†Œํ”„ํŠธ์›จ์–ด ๊ธฐ๋ฐ˜ ์—‘์…€๋Ÿฌ๋ ˆ์ดํ„ฐ๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๊ฐœ๋ฐœ๋œ ์—‘์…€๋Ÿฌ๋ ˆ์ดํ„ฐ๋Š” HEC-1์„ ์ด์šฉํ•œ ํ™์ˆ˜๋Ÿ‰ ์‚ฐ์ •, HEC-RAS๋ฅผ ์ด์šฉํ•œ ํ™์ˆ˜์œ„ ์‚ฐ์ • ๊ทธ๋ฆฌ๊ณ  RAS Mapper์„ ์ด์šฉํ•œ ํ•˜์ฒœ๋ฒ”๋žŒ ๋ชจ์˜์™€ ์นจ์ˆ˜์˜ˆ์ƒ๋„ ์ถœ๋ ฅ์˜ ์ „์ฒด ๊ณผ์ •์„ ์ž๋™ํ™”ํ•˜์˜€๋‹ค. ์ „๊ตญ์— ๊ฑธ์ณ์„œ ์œ„์น˜ํ•œ 26๊ฐœ์†Œ์˜ ์ง€๋ฐฉํ•˜์ฒœ์— ์ ์šฉํ•œ ๊ฒฐ๊ณผ, ๋‹ค์ˆ˜์˜ ๊ฐ•์šฐ์‹œ๋‚˜๋ฆฌ์˜ค์— ๋Œ€ํ•˜์—ฌ ๊ฐ๊ฐ์˜ ํ™์ˆ˜๋ฒ”๋žŒ์ง€๋„๋ฅผ ์„ฑ๊ณต์ ์œผ๋กœ ์ž‘์„ฑ๋จ์œผ๋กœ์จ ์‹ค๋ฌด์ ์šฉ์„ฑ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๊ฐœ๋ฐœ๋œ ์—‘์…€๋Ÿฌ๋ ˆ์ดํ„ฐ๋Š” ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜์˜ ๋ฐ์ดํ„ฐ๋ชจํ˜•์˜ ํ•™์Šต์ž๋ฃŒ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋‘” ๊ฒƒ์œผ๋กœ ๋ฐ์ดํ„ฐ๋ชจํ˜•์˜ ์ข…๋ฅ˜์— ์ƒ๊ด€์—†์ด ๋ฒ”์šฉ์ ์œผ๋กœ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ๊ฐ•์šฐ-์œ ์ถœ ๊ด€๊ณ„์—์„œ ๊ฐ•์šฐ์˜ ์‹œ๏ฝฅ๊ณต๊ฐ„์  ํŠน์„ฑ์ด ํ™์ˆ˜์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ๊ด€ํ•œ ์—ฐ๊ตฌ, ์‹ค์‹œ๊ฐ„ ์˜ˆ์ธก ๋ฐ ์‹œ๋‚˜๋ฆฌ์˜ค ๊ธฐ๋ฐ˜์˜ ํ™์ˆ˜๊ด€๋ฆฌ ๊ธฐ์ˆ  ๋“ฑ์— ํ™•๋Œ€ ์ ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค.

ํ˜„์žฌ๋Š” ์ ์šฉ ๋ฒ”์œ„๊ฐ€ ํ•˜์ฒœ๋ฒ”๋žŒ ๋ชจ์˜๋กœ ๊ตญํ•œ๋˜์–ด ์žˆ์œผ๋‚˜, ํ–ฅํ›„ XP-SWMM(XP Solutions, 2013), FLO2D(O'Brien et al., 1993)์™€ ๊ฐ™์€ ์ƒ์šฉํ”„๋กœ๊ทธ๋žจ๊ณผ์˜ ์—ฐ๊ณ„ ๋“ฑ์„ ํ†ตํ•˜์—ฌ ๋‚ด์ˆ˜์นจ์ˆ˜ ๋ชจ์˜๋ฅผ ์œ„ํ•œ ๋„์‹œ์นจ์ˆ˜์ง€๋„ ์ž‘์„ฑ์œผ๋กœ ์˜์—ญ์„ ํ™•๋Œ€ํ•  ์˜ˆ์ •์ด๋‹ค. ํ˜„์žฌ e๋ฌธ์„œ ํ˜•ํƒœ๋กœ ์ค€๋น„๋œ ์‚ฌ์šฉ์ž ๋งค๋‰ด์–ผ, ํ™œ์šฉ ์˜ˆ์ œ ์ด์™ธ์— ์‹œ์—ฐ ๋™์˜์ƒ ๋“ฑ์„ ์ œ์ž‘ํ•˜๊ณ  ๋ฐฐํฌํ•จ์œผ๋กœ์จ ์ฒ˜์Œ ์‚ฌ์šฉ์ž์˜ ์ง„์ž… ์žฅ๋ฒฝ์„ ๋‚ฎ์ถ”๋Š” ๋ฐ ์ค‘์ ์„ ๋‘˜ ๊ณ„ํš์ด๋‹ค. ์—‘์…€๋Ÿฌ๋ ˆ์ดํ„ฐ์˜ ํ‰๊ฐ€ํŒ ์‹ ์ฒญ์€ ์ €์ž์˜ ์ด๋ฉ”์ผ(arz6oiof@naver.com)๋กœ ์š”์ฒญํ•  ์ˆ˜ ์žˆ๋‹ค.

Fig. 6. Box-and-whisker Plot of Peak Discharges Depnding on Rainfall Scenario
../../Resources/KSCE/Ksce.2024.44.2.0173/fig6.png
Fig. 7. Comparison of Flood Maps Generated by (a) Proposed Flood Map Accelerator and Those Produced by (b) Ministry of Environment
../../Resources/KSCE/Ksce.2024.44.2.0173/fig7.png

Acknowledgements

This research was supported by a grant(RS-2022-ND634021) of โ€˜Development Risk Prediction Technology of Storm and Flood for Climate Change based on Artificial Intelligenceโ€™ funded by Ministry of Interior and Safety(MOIS, Korea).

References

1 
"Bates, P. D. and De Roo, A. P. J. (2000). โ€œA simple raster-based model for flood inundation simulation.โ€ Journal of Hydrology, Elsevier, Vol. 236, Nos. 1-2, pp. 54-77, https://doi.org/10.1016/S0022-1694(00)00278-X."DOI
2 
"Bates, P. D., Horritt, M. S. and Fewtrell, T. J. (2010). โ€œA simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling.โ€ Journal of Hydrology, Elsevier, Vol. 387, Nos. 1-2, pp. 33-45, https://doi.org/10.1016/j.jhydrol.2010.03.027."DOI
3 
"Berkhahn, S., Fuchs, L. and Neuweiler, I. (2019). โ€œAn ensemble neural network model for real-time prediction of urban floods.โ€ Journal of Hydrology, Elsevier, Vol. 575, pp. 743-754, https://doi.org/10.1016/j.jhydrol.2019.05.066."DOI
4 
"Brunner, G. W. (1995). HEC-RAS River Analysis System hydraulic reference manual, CPD-69, Hydrologic Engineering Center, Davis, CA. "URL
5 
"Burrichter, B., Hofmann, J., Koltermann da Silva, J., Niemann, A. and Quirmbach, M. (2023). โ€œA spatiotemporal deep learning approach for urban pluvial flood forecasting with multi-source data.โ€ Water, MDPI, Vol. 15, No. 9, 1760, https://doi.org/10.3390/w15091760."DOI
6 
"Chen, W., Li, Y., Xue, W., Shahabi, H., Li, S., Hong, H., Wang, X. Bian, H., Zhang, S. Pradhan, B. and Ahmad, B. B. (2020). โ€œModeling flood susceptibility using data-driven approaches of naรฏve bayes tree, alternating decision tree, and random forest methods.โ€ Science of the Total Environment, Elsevier, Vol. 701, 134979, https://doi.org/10.1016/j.scitotenv.2019.134979."DOI
7 
"Clark, C. O. (1945). โ€œStorage and the unit hydrograph.โ€ Transactions of the American Society of Civil Engineers, ASCE, Vol. 110, No. 1, pp. 1419-1446, https://doi.org/10.1061/TACEAT.0005800."DOI
8 
"DHI Software (2003). MIKE SHE user guide and reference manual, DHI A/S. "URL
9 
"Dottori, F. and Todini, E. (2011). โ€œDevelopments of a flood inundation model based on the cellular automata approach: testing different methods to improve model performance.โ€ Physics and Chemistry of the Earth, Parts A/B/C, Elsevier, Vol. 36, Nos. 7-8, pp. 266-280, https://doi.org/10.1016/j.pce.2011.02.004."DOI
10 
"Innovyze (2012). InfoWorks ICM Help v3.0. "URL
11 
"Islam, A. R. M. T., Talukdar, S., Mahato, S., Kundu, S., Eibek, K. U., Pham, Q. B., Kuriqi, A. and Linh, N. T. T. (2021). โ€œFlood susceptibility modelling using advanced ensemble machine learning models.โ€ Geoscience Frontiers, Elsevier, Vol. 12, No. 3, 101075, https://doi.org/10.1016/j.gsf.2020.09.006."DOI
12 
"Ivanov, V. Y., Xu, D., Dwelle, M. C., Sargsyan, K., Wright, D. B., Katopodes, N., Kim, J., Tran, V. N., Warnock, A., Fatichi, S., Burlando, P., Caporali, E., Restrepo, P., Sanders, B. F., Chaney, M. M., Nunes, A. M. B., Nardi, F., Vivoni, E. R., Istanbulluoglu, E., Bisht, G. and Bras, R. L. (2021). โ€œBreaking down the computational barriers to realโ€time urban flood forecasting.โ€ Geophysical Research Letters, AGU, Vol. 48, No. 20, e2021GL093585, https://doi.org/10.1029/2021GL093585."DOI
13 
"Ghimire, B., Chen, A. S., Guidolin, M., Keedwell, E. C., Djordjeviฤ‡, S. and Saviฤ‡, D. A. (2013). โ€œFormulation of a fast 2D urban pluvial flood model using a cellular automata approach.โ€ Journal of Hydroinformatics, IWA, Vol. 15, No. 3, pp. 676-686, https://doi.org/10.2166/hydro.2012.245."DOI
14 
"Gude, V., Corns, S. and Long, S. (2020). โ€œFlood prediction and uncertainty estimation using deep learning.โ€ Water, MDPI, Vol. 12, No. 3, 884, https://doi.org/10.3390/w12030884."DOI
15 
"Guidolin, M., Chen, A. S., Ghimire, B., Keedwell, E. C., Djordjeviฤ‡, S. and Saviฤ‡, D. A. (2016). โ€œA weighted cellular automata 2D inundation model for rapid flood analysis.โ€ Environmental Modelling & Software, Elsevier, Vol. 84, pp. 378-394, https://doi.org/10.1016/j.envsoft.2016.07.008."DOI
16 
"Guo, Z., Moosavi, V. and Leitรฃo, J. P. (2022). โ€œData-driven rapid flood prediction mapping with catchment generalizability.โ€ Journal of Hydrology, Elseiver, Vol. 609, 127726, https://doi.org/10.1016/j.jhydrol.2022.127726."DOI
17 
"He, Q. P. and Wang, J. (2007). โ€œFault detection using the k-nearest neighbor rule for semiconductor manufacturing processes.โ€ IEEE Transactions on Semiconductor Manufacturing, IEEE, Vol. 20 No. 4, pp. 345-354, https://doi.org/10.1109/TSM.2007.907607."DOI
18 
"Hu, R. L., Pierce, D., Shafi, Y., Boral, A., Anisimov, V., Nevo, S. and Chen, Y. F. (2022). โ€œAccelerating physics simulations with tensor processing units: An inundation modeling example.โ€ The International Journal of High Performance Computing Applications, Sage Journals, Vol. 36, No. 4, pp. 510-523, https://doi.org/10.1177/10943420221102873."DOI
19 
"Huff, F. A. (1967). โ€œTime distribution of rainfall in heavy storms.โ€ Water Resources Research, AGU, Vol. 3, No. 4, pp. 1007-1019, https://doi.org/10.1029/WR003i004p01007."DOI
20 
"Jamali, B., Bach, P. M., Cunningham, L. and Deletic, A. (2019). โ€œA Cellular Automata fast flood evaluation (CA-ffรฉ) model.โ€ Water Resources Research, AGU, Vol. 55, No. 6, pp. 4936-4953, https://doi.org/10.1029/2018WR023679."DOI
21 
"Jamali, B., Lรถwe, R., Bach, P. M., Urich, C., Arnbjerg-Nielsen, K. and Deletic, A. (2018). โ€œA rapid urban flood inundation and damage assessment model.โ€ Journal of Hydrology, Elsevier, Vol. 564, pp. 1085-1098, https://doi.org/10.1016/j.jhydrol.2018.07.064."DOI
22 
"Jeong, D. K. and Lee, B. H. (2010). โ€œDevelopment of urban flood water level forecasting model using regression method.โ€ Journal of Korea Water Resources Association, KWRA, Vol. 43, No. 2, pp. 221-231, https://doi.org/10.3741/JKWRA.2010.43.2.221 (in Korean)."DOI
23 
"Jeong, J. and Kim, J. (2022). โ€œImproved practical methods for considering climate change in design flood estimation.โ€ Journal of the Korean Society of Hazard Mitigation, KOSHAM, Vol. 22, No. 6, pp. 301-309, https://doi.org/10.9798/KOSHAM.2022.22.6.301 (in Korean)."DOI
24 
"Kabir, S., Patidar, S., Xia, X., Liang, Q., Neal, J. and Pender, G. (2020). โ€œA deep convolutional neural network model for rapid prediction of fluvial flood inundation.โ€ Journal of Hydrology, Elsevier, Vol. 590, 125481, https://doi.org/10.1016/j.jhydrol. 2020.125481."DOI
25 
"Kabir, S., Wood, D. and Waller, S. (2023). โ€œA deep learning model for generalized surface water flooding across multiple return periods.โ€ Engineering Proceedings, MDPI, Vol. 39, No. 1, 94, https://doi.org/10.3390/engproc2023039094."DOI
26 
"Kang, J. E. and Lee, M. J. (2015). โ€œAnalysis of urban infrastructure risk areas to flooding using neural network in Seoul.โ€ KSCE Journal of Civil and Environmental Engineering Research, KSCE, Vol. 35, No. 4, pp. 997-1006, https://doi.org/10.12652/Ksce.2015.35.4.0997 (in Korean)."DOI
27 
"Kia, M. B., Pirasteh, S., Pradhan, B., Mahmud, A. R., Sulaiman, W. N. A. and Moradi, A. (2012). โ€œAn artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia.โ€ Environmental Earth Sciences, Springer, Vol. 67, pp. 251-264, https://doi.org/10.1007/s12665-011-1504-z."DOI
28 
"Kim, H. I., Han, K. Y. and Lee, J. Y. (2020). โ€œPrediction of urban flood extent by LSTM model and logistic regression.โ€ KSCE Journal of Civil and Environmental Engineering Research, KSCE, Vol. 40, No. 3, pp. 273-283, https://doi.org/10.12652/Ksce. 2020.40.3.0273 (in Korean)."DOI
29 
"Kim, H. I., Lee, Y. S. and Kim, B. (2021). โ€œReal-time flood prediction applying random forest regression model in urban areas.โ€ Journal of Korea Water Resources Association, KWRA, Vol. 54, No. spc1, pp. 1119-1130, https://doi.org/10.3741/JKWRA. 2021.54.S-1.1119 (in Korean)."DOI
30 
"Kim, J. and Jeong, J. (2019). โ€œDevelopment of stream channel design program for stream channel improvement.โ€ Magazine of the Korean Society of Civil Engineers, KSCE, Vol. 67, No. 8, pp. 48-52 (in Korean). "URL
31 
"Kumar, M., Kumar, P., Kumar, A., Elbeltagi, A. and Kuriqi, A. (2022). โ€œModeling stage-discharge-sediment using support vector machine and artificial neural network coupled with wavelet transform.โ€ Applied Water Science, Springer, Vol. 12, No. 5, 87, https://doi.org/10.1007/s13201-022-01621-7."DOI
32 
"Lee, S., Kim, B., Choi, H. and Noh, S. J. (2022). โ€œA review on urban inundation modeling research in South Korea: 2001-2022.โ€ Journal of Korea Water Resources Association, KWRA, Vol. 55, No. 10, pp. 707-721, https://doi.org/10.3741/JKWRA.2022.55.10.707 (in Korean)."DOI
33 
"Lee, J. and Kim, B. (2021). โ€œScenario-based real-time flood prediction with logistic regression.โ€ Water, MDPI, Vol. 13, No. 9, 1191, https://doi.org/10.3390/w13091191."DOI
34 
"Lรถwe, R., Bรถhm, J., Jensen, D. G., Leandro, J. and Rasmussen, S. H. (2021). โ€œU-FLOOD - Topographic deep learning for predicting urban pluvial flood water depth.โ€ Journal of Hydrology, Elsevier, Vol. 603, 126898, https://doi.org/10.1016/j.jhydrol.2021.126898."DOI
35 
"Ministry of Environment(ME) (2019). Guidelines for estimating flood discharge (in Korean). "URL
36 
"Ministry of Environment(ME) (2020). Guidelines for developing a flood danger alert map (in Korean). "URL
37 
"Ministry of Land, Transport and Maritime Affairs(MLTMA) (2012). Design flood estimation guide (in Korean). "URL
38 
"Ministry of the Interior and Safety(MOIS) (2020). Guidelines for mapping of the disaster hazard maps (in Korean). "URL
39 
"Ministry of the Interior and Safety(MOIS) (2022). Establishment of disaster prevention performance targets by region (in Korean). "URL
40 
"Ministry of Land, Infrastructure and Transport(MOLIT) (2014). The national river master plan for Jinwi watershed (in Korean). "URL
41 
"Muรฑoz, D. F., Yin, D., Bakhtyar, R., Moftakhari, H., Xue, Z., Mandli, K. and Ferreira, C. (2022). โ€œInter-model comparison of Delft3Dโ€FM and 2D HEC-RAS for total water level prediction in coastal to inland transition zones.โ€ Journal of the American Water Resources Association, AWRA, Vol. 58, No. 1, pp. 34-49, https://doi.org/10.1111/1752-1688.12952."DOI
42 
"O'Brien, J. S., Julien, P. Y. and Fullerton, W. T. (1993). โ€œTwo- dimensional water flood and mudflow simulation.โ€ Journal of Hydraulic Engineering, ASCE, Vol. 119, No. 2, pp. 244-261, https://doi.org/10.1061/(ASCE)0733-9429(1993)119:2(244)."DOI
43 
"Petaccia, G., Natale, L., Savi, F., Velickovic, M., Zech, Y. and Soares-Frazรฃo, S. (2013). โ€œFlood wave propagation in steep mountain rivers.โ€ Journal of Hydroinformatics, IWA, Vol. 15, No. 1, pp. 120-137, https://doi.org/10.2166/hydro.2012.122."DOI
44 
"Piadeh, F., Behzadian, K. and Alani, A. M. (2022). โ€œA critical review of real-time modelling of flood forecasting in urban drainage systems.โ€ Journal of Hydrology, Elsevier, Vol. 607, 127476, https://doi.org/10.1016/j.jhydrol.2022.127476."DOI
45 
"Qi, W., Ma, C., Xu, H., Chen, Z., Zhao, K. and Han, H. (2021). โ€œA review on applications of urban flood models in flood mitigation strategies.โ€ Natural Hazards, Springer, Vol. 108, pp. 31-62, https://doi.org/10.1007/s11069-021-04715-8."DOI
46 
"Rezaeianzadeh, M., Tabari, H., Arabi Yazdi, A., Isik, S. and Kalin, L. (2014). โ€œFlood flow forecasting using ANN, ANFIS and regression models.โ€ Neural Computing and Applications, Springer, Vol. 25, pp. 25-37, https://doi.org/10.1007/s00521-013-1443-6."DOI
47 
"Rossman, L. A. (2010). Storm water management model user's manual version 5.0, U.S. Environmental Protection Agency, Washington, DC. "URL
48 
"Saha, T. K., Pal, S., Talukdar, S., Debanshi, S., Khatun, R., Singha, P. and Mandal, I. (2021). โ€œHow far spatial resolution affects the ensemble machine learning based flood susceptibility prediction in data sparse region.โ€ Journal of Environmental Management, Elsevier, Vol. 297, 113344, https://doi.org/10.1016/j.jenvman. 2021.113344."DOI
49 
"Soil Conservation Service(SCS). (1956). Hydrology. National Engineering Handbook, Supplement A, Section 4, Chapter 10, Soil Conservation Service, USDA., Washington. "URL
50 
"Sun, A. Y., Li, Z., Lee, W., Huang, Q., Scanlon, B. R. and Dawson, C. (2023). โ€œRapid flood inundation forecast using Fourier neural operator.โ€ Proceedings of 2023 IEEE/DVF International Conference on Computer Vision Workshops, IEEE, Paris, France, pp. 3733-3739, https://doi.org/10.1109/ICCVW60793.2023.00401."DOI
51 
"Suwon City (2014). The comprehensive plans for flood hazard reduction, Suwon City (in Korean). "URL
52 
"XP Solutions (2013). XP-SWMM stormwater and wastewater management model: getting started manual, Newbury, UK. "URL
53 
"Zhang, Y., Ragettli, S., Molnar, P., Fink, O. and Peleg, N. (2022). โ€œGeneralization of an Encoder-Decoder LSTM model for flood prediction in ungauged catchments.โ€ Journal of Hydrology, Elsevier, Vol. 614, 128577, https://doi.org/10.1016/j.jhydrol. 2022.128577."DOI