Mobile QR Code QR CODE : Journal of the Korean Society of Civil Engineers
1 
10.1016/j.cemconres.2003.08.016Baur, I., Keller, P., Mavrocordatos, D., Wehrli, B. and Johnson, C. A. (2004). “Dissolution-precipitation behaviour of ettringite, monosulfate, and calcium silicate hydrate.” Cement and concrete research, Vol. 34, No. 2, pp. 341-348. Baur, I., Keller, P., Mavrocordatos, D., Wehrli, B. and Johnson, C. A. (2004). “Dissolution-precipitation behaviour of ettringite, monosulfate, and calcium silicate hydrate.” Cement and concrete research, Vol. 34, No. 2, pp. 341-348.DOI
2 
Bensted, J. and Barnes, P. (2002). Structure and performance of cements, Spon press, London and New York.Bensted, J. and Barnes, P. (2002). Structure and performance of cements, Spon press, London and New York.Google Search
3 
10.1111/j.1151-2916.1993.tb06597.xBrown, P. W. (1993). “Kinetics of tricalcium aluminate and tetracalcium aluminoferrite hydration in the presence of calcium sulfate.” Journal of the American Ceramic Society, Vol. 76, No. 12, pp. 2971-2976. Brown, P. W. (1993). “Kinetics of tricalcium aluminate and tetracalcium aluminoferrite hydration in the presence of calcium sulfate.” Journal of the American Ceramic Society, Vol. 76, No. 12, pp. 2971-2976.DOI
4 
Cavani, F., Trifir, F. and Vaccariὸ, A. (1991). Hydrotalcite-type anionic clays: Preparation, Properties and Applications, Elsevier.Cavani, F., Trifir, F. and Vaccariὸ, A. (1991). Hydrotalcite-type anionic clays: Preparation, Properties and Applications, Elsevier.Google Search
5 
10.1016/j.jhazmat.2012.05.082Choi, W. H., Ghorpade, P. A., Kim, K. B., Shin, J. W. and Park, J. Y. (2012). “Properties of synthetic monosulfate as a novel material for arsenic removal.” J. Hazard Mater, Vol. 227-228, pp. 402-409Choi, W. H., Ghorpade, P. A., Kim, K. B., Shin, J. W. and Park, J. Y. (2012). “Properties of synthetic monosulfate as a novel material for arsenic removal.” J. Hazard Mater, Vol. 227-228, pp. 402-409DOI
6 
10.1016/j.jssc.2003.12.030Christensen, A. N., Jensen, T. R. and Hanson, J. C. (2004). “Formation of ettringite, Ca6Al2 (SO4)3(OH)12.26 H2O, Aft, and monosulfate, Ca4Al2O6 (SO4). 14H2O, AFm-14, in hydrothermal hydration of Portland cement and of calcium aluminum oxide: calcium sulfate dihydrate mixtures studied by in situ synchrotron X-ray powder diffraction.” Journal of solid state chemistry, Vol. 177, No. 6, pp. 1944-1951. Christensen, A. N., Jensen, T. R. and Hanson, J. C. (2004). “Formation of ettringite, Ca6Al2 (SO4)3(OH)12.26 H2O, Aft, and monosulfate, Ca4Al2O6 (SO4). 14H2O, AFm-14, in hydrothermal hydration of Portland cement and of calcium aluminum oxide: calcium sulfate dihydrate mixtures studied by in situ synchrotron X-ray powder diffraction.” Journal of solid state chemistry, Vol. 177, No. 6, pp. 1944-1951.DOI
7 
10.1016/S0008-8846(99)00200-8Clark, B. and Brown, P. (1999). “The formation of calcium sulfoaluminate hydrate compounds: Part I.” Cement and concrete research, Vol. 29, No. 12, pp. 1943-1948. Clark, B. and Brown, P. (1999). “The formation of calcium sulfoaluminate hydrate compounds: Part I.” Cement and concrete research, Vol. 29, No. 12, pp. 1943-1948.DOI
8 
Davis, J. A. and Hayes, K. F. (1986). “Geochemical processes at mineral surfaces: an overview.” Geochemical processes at mineral surfaces, Vol. 323, No. 2-18. Davis, J. A. and Hayes, K. F. (1986). “Geochemical processes at mineral surfaces: an overview.” Geochemical processes at mineral surfaces, Vol. 323, No. 2-18.Google Search
9 
Fuller, M. E. and Scow, K. M. (1997). “Impact of trichloroethylene and toluene on nitrogen cycling in soil.” Applied and environmental microbiology, Vol. 63, No. 10, pp. 4015-4019. Fuller, M. E. and Scow, K. M. (1997). “Impact of trichloroethylene and toluene on nitrogen cycling in soil.” Applied and environmental microbiology, Vol. 63, No. 10, pp. 4015-4019.Google Search
10 
10.1016/j.cemconres.2011.07.006Gineys, N., Aouad, G., Sorrentino, F. and Damidot, D. (2011). “Incorporation of trace elements in Portland cement clinker: Thresholds limits for Cu, Ni, Sn or Zn.” Cement and concrete research, Vol. 41, No. 11, pp. 1177-1184. Gineys, N., Aouad, G., Sorrentino, F. and Damidot, D. (2011). “Incorporation of trace elements in Portland cement clinker: Thresholds limits for Cu, Ni, Sn or Zn.” Cement and concrete research, Vol. 41, No. 11, pp. 1177-1184.DOI
11 
Henschler, D., Bonse, G. and Greim, H. (1976). “Carcinogenic potential of chlorinated ethylenes tentative molecular rules.” IARC scientific publications, Vol. 13, pp. 171-175. Henschler, D., Bonse, G. and Greim, H. (1976). “Carcinogenic potential of chlorinated ethylenes tentative molecular rules.” IARC scientific publications, Vol. 13, pp. 171-175.Google Search
12 
10.1021/es991377bHwang, I. and Batchelor, B. (2000). “Reductive dechlorination of tetrachloroethylene by Fe (II) in cement slurries.” Environ Sci Technol, Vol. 34, No. 23, pp. 5017-5022. Hwang, I. and Batchelor, B. (2000). “Reductive dechlorination of tetrachloroethylene by Fe (II) in cement slurries.” Environ Sci Technol, Vol. 34, No. 23, pp. 5017-5022.DOI
13 
10.1021/es010619gHwang, I. and Batchelor, B. (2001). “Reductive dechlorination of tetrachloroethylene in soils by Fe (II)-based degradative solidification/stabilization.” Environ Sci Technol, Vol. 35, No. 18, pp. 3792-3797. Hwang, I. and Batchelor, B. (2001). “Reductive dechlorination of tetrachloroethylene in soils by Fe (II)-based degradative solidification/stabilization.” Environ Sci Technol, Vol. 35, No. 18, pp. 3792-3797.DOI
14 
10.1016/j.jhazmat.2004.10.002Hwang, I., Park, H. J., Kang, W. H. and Park, J. Y. (2005). “Reactivity of Fe(II)/cement systems in dechlorinating chlorinated ethylenes.” J. Hazard Mater, Vol. 118, No. 1, pp. 103-111. Hwang, I., Park, H. J., Kang, W. H. and Park, J. Y. (2005). “Reactivity of Fe(II)/cement systems in dechlorinating chlorinated ethylenes.” J. Hazard Mater, Vol. 118, No. 1, pp. 103-111.DOI
15 
10.2355/isijinternational.50.1064Jeon, J. W., Jung, S. M. and Sasaki, Y. (2010). “Formation of Calcium Ferrites under Controlled Oxygen Potentials at 1273 K.” ISIJ international, Vol. 50, No. 8, pp. 1064-1070. Jeon, J. W., Jung, S. M. and Sasaki, Y. (2010). “Formation of Calcium Ferrites under Controlled Oxygen Potentials at 1273 K.” ISIJ international, Vol. 50, No. 8, pp. 1064-1070.DOI
16 
10.1016/j.jhazmat.2007.06.061Jung, B. and Batchelor, B. (2008). “Analysis of dechlorination kinetics of chlorinated aliphatic hydrocarbons by Fe(II) in cement slurries.” J. Hazard Mater, Vol. 152, No. 1, pp. 62-70.Jung, B. and Batchelor, B. (2008). “Analysis of dechlorination kinetics of chlorinated aliphatic hydrocarbons by Fe(II) in cement slurries.” J. Hazard Mater, Vol. 152, No. 1, pp. 62-70.DOI
17 
10.1016/j.chemosphere.2008.04.092Kim, H. S., Kang, W. H., Kim, M., Park, J. Y. and Hwang, I. (2008). “Comparison of hematite/Fe (II) systems with cement/ Fe(II) systems in reductively dechlorinating trichloroethylene.” Chemosphere, Vol. 73, No. 5, pp. 813-819. Kim, H. S., Kang, W. H., Kim, M., Park, J. Y. and Hwang, I. (2008). “Comparison of hematite/Fe (II) systems with cement/ Fe(II) systems in reductively dechlorinating trichloroethylene.” Chemosphere, Vol. 73, No. 5, pp. 813-819.DOI
18 
10.1021/es070361fKo, S. and Batchelor, B. (2007). “Identification of active agents for tetrachloroethylene degradation in Portland cement slurry containing ferrous iron.” Environ Sci Technol, Vol. 41, No. 16, pp. 5824-5832. Ko, S. and Batchelor, B. (2007). “Identification of active agents for tetrachloroethylene degradation in Portland cement slurry containing ferrous iron.” Environ Sci Technol, Vol. 41, No. 16, pp. 5824-5832.DOI
19 
10.1089/ees.2010.0189Ko, S. and Batchelor, B. (2010). “Effect of cement type on performance of ferrous iron-based degradative solidification and stabilization.” Environ Engineering Science, Vol. 27, No. 11, pp. 977-987.Ko, S. and Batchelor, B. (2010). “Effect of cement type on performance of ferrous iron-based degradative solidification and stabilization.” Environ Engineering Science, Vol. 27, No. 11, pp. 977-987.DOI
20 
Kovalick Jr, W. (1992). “Trends in innovative treatment technologies at contaminated sites.” Water Science & Technology, Vol. 26, No. 1-2, pp. 99-106. Kovalick Jr, W. (1992). “Trends in innovative treatment technologies at contaminated sites.” Water Science & Technology, Vol. 26, No. 1-2, pp. 99-106.Google Search
21 
10.1021/es048428bMaithreepala, R. A. and Doong, R. A. (2005). “Enhanced dechlorination of chlorinated methanes and ethenes by chloride green rust in the presence of copper(II).” Environ. Sci. Technol, Vol. 39, No. 11, pp. 4082-4090. Maithreepala, R. A. and Doong, R. A. (2005). “Enhanced dechlorination of chlorinated methanes and ethenes by chloride green rust in the presence of copper(II).” Environ. Sci. Technol, Vol. 39, No. 11, pp. 4082-4090.DOI
22 
10.1016/j.gca.2007.09.035Moschner, G., Lothenbach, B., Rose, J., Ulrich, A., Figi, R. and Kretzschmar, R. (2008). “Solubility of Fe-ettringite (Ca6[Fe(OH)6]2 (SO4)3 26H2O).” Geochimica et Cosmochimica Acta, Vol. 72, No. 1, pp. 1-18. Moschner, G., Lothenbach, B., Rose, J., Ulrich, A., Figi, R. and Kretzschmar, R. (2008). “Solubility of Fe-ettringite (Ca6[Fe(OH)6]2 (SO4)3 26H2O).” Geochimica et Cosmochimica Acta, Vol. 72, No. 1, pp. 1-18.DOI
23 
Perkins, R. and Palmer, C. (1999). “Solubility of ettringite (CA6AL (OH)6)2 (SO4)3.26H2O) AT 5-75 ℃.” Geochimica et Cosmochimica Acta, Vol. 63, No. 13-14, pp. 1969-1980. Perkins, R. and Palmer, C. (1999). “Solubility of ettringite (CA6AL (OH)6)2 (SO4)3.26H2O) AT 5-75 ℃.” Geochimica et Cosmochimica Acta, Vol. 63, No. 13-14, pp. 1969-1980.Google Search
24 
10.1289/ehp.00108s2343Rhomberg, L. R. (2000). “Dose-response analyses of the carcinogenic effects of trichloroethylene in experimental animals.” Environmental Health Perspectives, Vol. 108(Suppl 2), pp. 343-358. Rhomberg, L. R. (2000). “Dose-response analyses of the carcinogenic effects of trichloroethylene in experimental animals.” Environmental Health Perspectives, Vol. 108(Suppl 2), pp. 343-358.DOI
25 
Sposito, G. (1994). Chemical equilibria and kinetics in soils, Oxford University Press, USA.Sposito, G. (1994). Chemical equilibria and kinetics in soils, Oxford University Press, USA.Google Search
26 
10.1016/S0008-8846(01)00466-5Taylor, H., Famy, C. and Scrivener, K. (2001).“Delayed ettringite formation.” Cement and concrete research, Vol. 31, No. 5, pp. 683-693. Taylor, H., Famy, C. and Scrivener, K. (2001).“Delayed ettringite formation.” Cement and concrete research, Vol. 31, No. 5, pp. 683-693.DOI
27 
10.1680/cc.25929Taylor, H. F. W. (1997). Cement chemistry, Thomas Telford.Taylor, H. F. W. (1997). Cement chemistry, Thomas Telford.DOI
28 
10.1016/j.jssc.2010.11.003Woo, M. A., Woo Kim, T., Paek, M. J., Ha, H. W., Choy, J. H. and Hwang, S. J. (2011). “Phosphate-intercalated Ca–Fe-layered double hydroxides: Crystal structure, bonding character, and release kinetics of phosphate.” Journal of solid state chemistry, Vol. 184, No. 1, pp. 171-176.Woo, M. A., Woo Kim, T., Paek, M. J., Ha, H. W., Choy, J. H. and Hwang, S. J. (2011). “Phosphate-intercalated Ca–Fe-layered double hydroxides: Crystal structure, bonding character, and release kinetics of phosphate.” Journal of solid state chemistry, Vol. 184, No. 1, pp. 171-176.DOI