Mobile QR Code QR CODE : Journal of the Korean Society of Civil Engineers
1 
Beaudan, P. and Moin, P. (1994). Numerical experiments on the flow past a circular cylinder at subcritical Reynolds number, Report TF-62, Stanford University.Beaudan, P. and Moin, P. (1994). Numerical experiments on the flow past a circular cylinder at subcritical Reynolds number, Report TF-62, Stanford University.Google Search
2 
Behr, M., Hastreiter, D., Mittal, S. and Tezduyar, T. E. (1995). “Incompressible flow past a circular cylinder: Dependence of the computed flow field on the location of the lateral boundaries.” Computer Methods in Applied Mechanics and Engineering, Vol. 123, pp. 309-316.10.1016/0045-7825(94)00736-7Behr, M., Hastreiter, D., Mittal, S. and Tezduyar, T. E. (1995). “Incompressible flow past a circular cylinder: Dependence of the computed flow field on the location of the lateral boundaries.” Computer Methods in Applied Mechanics and Engineering, Vol. 123, pp. 309-316.DOI
3 
Behr, M., Liou, J., Shih, R. and Tezduyar, T. E. (1991). “Vorticity- stream function formulation of unsteady incompressible flow past a cylinder: sensitivity of the computed flow field to the location of the outflow boundary.” International Journal for Numerical Methods in Fluids, Vol. 12, pp. 323-342.10.1002/fld.1650120403Behr, M., Liou, J., Shih, R. and Tezduyar, T. E. (1991). “Vorticity- stream function formulation of unsteady incompressible flow past a cylinder: sensitivity of the computed flow field to the location of the outflow boundary.” International Journal for Numerical Methods in Fluids, Vol. 12, pp. 323-342.DOI
4 
Braza, M. (1981). Simulation numérique du décollement instationnaire externe par une formulation vitesse-pression: Application à l’écoulement autour d’un Cylindre, Thèse de Docteur-Ingénieur, Institut National Polytechnique de Toulouse, France.Braza, M. (1981). Simulation numérique du décollement instationnaire externe par une formulation vitesse-pression: Application à l’écoulement autour d’un Cylindre, Thèse de Docteur-Ingénieur, Institut National Polytechnique de Toulouse, France.Google Search
5 
Chan, F. C., Ghidaoui, M. S. and Kolyshkin, A. A. (2006). “Can the dynamics of shallow wakes be reproduced from a single time- averaged profile?” Physics of Fluids, 18, 048105.10.1063/1.2194965Chan, F. C., Ghidaoui, M. S. and Kolyshkin, A. A. (2006). “Can the dynamics of shallow wakes be reproduced from a single time- averaged profile?” Physics of Fluids, 18, 048105.DOI
6 
Daniello, R. J., Waterhouse, N. E. and Rothstein, J. P. (2009). “Drag reduction in turbulent flows over superhydrophobic surfaces.” Physic of Fluids, 21, 085103.10.1063/1.3207885Daniello, R. J., Waterhouse, N. E. and Rothstein, J. P. (2009). “Drag reduction in turbulent flows over superhydrophobic surfaces.” Physic of Fluids, 21, 085103.DOI
7 
Dennis, S. C. R. and Chang, G. (1970). “Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100.” Journal of Fluid Mechanics, Vol. 42, pp. 471-489.10.1017/S0022112070001428Dennis, S. C. R. and Chang, G. (1970). “Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100.” Journal of Fluid Mechanics, Vol. 42, pp. 471-489.DOI
8 
Engelman, M. S. and Sani, R. L. (1982). “The implementation of normal and/or tangential boundary conditions in finite element codes for incompressible fluid flow.” International Journal for Numerical Methods in Fluid, Vol. 2, pp. 225-238.10.1002/fld.1650020302Engelman, M. S. and Sani, R. L. (1982). “The implementation of normal and/or tangential boundary conditions in finite element codes for incompressible fluid flow.” International Journal for Numerical Methods in Fluid, Vol. 2, pp. 225-238.DOI
9 
Ha Minh H. (1979). Application de la méthode implicite des directions alternées (ADI) à la résolution des équations de Navier–Stokes autour d’un cercle, Report M3-25, Institut de M’ecanique des Fluides de Toulouse.Ha Minh H. (1979). Application de la méthode implicite des directions alternées (ADI) à la résolution des équations de Navier–Stokes autour d’un cercle, Report M3-25, Institut de M’ecanique des Fluides de Toulouse.Google Search
10 
Hamielec, A. and Raal, J. (1969). “Numerical studies of viscous flow around circular cylinders.” Physics of Fluids, Vol. 12, pp. 11-17.10.1063/1.1692253Hamielec, A. and Raal, J. (1969). “Numerical studies of viscous flow around circular cylinders.” Physics of Fluids, Vol. 12, pp. 11-17.DOI
11 
Hron, J., Roux, C. L., Málek, J. and Rajagopal, K. R. (2008). “Flows of incompressible fluids subject to Navier’s slip on the boundary.” Computers and Mathematics with Applications, Vol. 56, pp. 2128-2143.10.1016/j.camwa.2008.03.058Hron, J., Roux, C. L., Málek, J. and Rajagopal, K. R. (2008). “Flows of incompressible fluids subject to Navier’s slip on the boundary.” Computers and Mathematics with Applications, Vol. 56, pp. 2128-2143.DOI
12 
Liang, Q., Zang, J., Borthwick, A. G. L. and Taylor, P. H. (2007). “Shallow flow simulation on dynamically adaptive cut cell quadtree grids.” International Journal for Numerical Methods in Fluids, Vol. 53, pp. 1777-1799.10.1002/fld.1363Liang, Q., Zang, J., Borthwick, A. G. L. and Taylor, P. H. (2007). “Shallow flow simulation on dynamically adaptive cut cell quadtree grids.” International Journal for Numerical Methods in Fluids, Vol. 53, pp. 1777-1799.DOI
13 
Liang, S. J., Tang, J. H. and Wu, M. S. (2008). “Solution of shallow- water equations using least-squares finite-element method.” Acta Mechanica Sinica, Vol. 24, pp. 523-532.10.1007/s10409-008-0151-4Liang, S. J., Tang, J. H. and Wu, M. S. (2008). “Solution of shallow- water equations using least-squares finite-element method.” Acta Mechanica Sinica, Vol. 24, pp. 523-532.DOI
14 
Lienhard, J. H. (1966). Synopsis of lift, drag, and vortex frequency data for rigid circular cylinders, Bulletin 300, Washington State University.Lienhard, J. H. (1966). Synopsis of lift, drag, and vortex frequency data for rigid circular cylinders, Bulletin 300, Washington State University.Google Search
15 
Liu, H., Zhou, G. J. and Burrows, R. (2009). “Lattice Boltzmann model for shallow water flows in curved and meandering channels.” International Journal of Computational Fluid Dynamics, Vol. 23, No. 3, pp. 209-220.10.1080/10618560902754924Liu, H., Zhou, G. J. and Burrows, R. (2009). “Lattice Boltzmann model for shallow water flows in curved and meandering channels.” International Journal of Computational Fluid Dynamics, Vol. 23, No. 3, pp. 209-220.DOI
16 
Martinez, G. (1978). Caractéristiques dynamiques et thermiques de l’écoulement autour d’un cylinder circulaire à nombre de Reynolds modéré, Thèse de Docteur-Ingénieur, Institute National Polytechnique de Toulouse, France.Martinez, G. (1978). Caractéristiques dynamiques et thermiques de l’écoulement autour d’un cylinder circulaire à nombre de Reynolds modéré, Thèse de Docteur-Ingénieur, Institute National Polytechnique de Toulouse, France.Google Search
17 
Negretti, M. E. (2003). Analysis of the wake behind a circular cylinder in shallow water flow, Master-Thesis, Trento University, Italy.Negretti, M. E. (2003). Analysis of the wake behind a circular cylinder in shallow water flow, Master-Thesis, Trento University, Italy.Google Search
18 
Niavarani, A. and Priezjev, N. V. (2009). “The effective slip length and vortex formation in laminar flow over a rough surface.” Physic of Fluids, 21, 52105.10.1063/1.3121305Niavarani, A. and Priezjev, N. V. (2009). “The effective slip length and vortex formation in laminar flow over a rough surface.” Physic of Fluids, 21, 52105.DOI
19 
Niavarani, A. and Priezjev, N. V. (2010). “Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids.” Physical Review E, 81, 011606.10.1103/PhysRevE.81.011606Niavarani, A. and Priezjev, N. V. (2010). “Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids.” Physical Review E, 81, 011606.DOI
20 
Parvazinia, M., Nassehi, V., Wakeman, R. J. and Ghoreishy, M. H. R. (2006). “Finite element modelling of flow through a porous medium between two parallel plates using the Brinkman equation.” Transport in Porous Media, Vol. 63, pp. 71-90.10.1007/s11242-005-2721-2Parvazinia, M., Nassehi, V., Wakeman, R. J. and Ghoreishy, M. H. R. (2006). “Finite element modelling of flow through a porous medium between two parallel plates using the Brinkman equation.” Transport in Porous Media, Vol. 63, pp. 71-90.DOI
21 
Persillon, H. P. and Braza, M. (1998). “Physical analysis of the transition to turbulence in the wake of a circular cylinder by three-dimensional Navier-Stokes simulation.” Journal of Fluid Mechanics, Vol. 365, pp. 23-88.10.1017/S0022112098001116Persillon, H. P. and Braza, M. (1998). “Physical analysis of the transition to turbulence in the wake of a circular cylinder by three-dimensional Navier-Stokes simulation.” Journal of Fluid Mechanics, Vol. 365, pp. 23-88.DOI
22 
Pinder, G. F. and Gray, W. G. (1977). Finite element simulation in surface and subsurface hydrology, ACADEMIC PRESS, pp. 275-283.Pinder, G. F. and Gray, W. G. (1977). Finite element simulation in surface and subsurface hydrology, ACADEMIC PRESS, pp. 275-283.Google Search
23 
Seo, I. W. and Song, C. G. (2010) “Development of 2D Finite Element Model for the Analysis of Shallow Water Flow.” Journal of the Korean Society of Civil Engineers, Vol. 30, No. 2B, pp. 199-209 (in Korean).Seo, I. W. and Song, C. G. (2010) “Development of 2D Finite Element Model for the Analysis of Shallow Water Flow.” Journal of the Korean Society of Civil Engineers, Vol. 30, No. 2B, pp. 199-209 (in Korean).Google Search
24 
Seo, I. W. and Song, C. G. (2012). “Numerical simulation of laminar flow past a circular cylinder with slip conditions.” International Journal for Numerical Methods in Fluids, Vol. 68, pp. 1538-1560.10.1002/fld.2542Seo, I. W. and Song, C. G. (2012). “Numerical simulation of laminar flow past a circular cylinder with slip conditions.” International Journal for Numerical Methods in Fluids, Vol. 68, pp. 1538-1560.DOI
25 
Son, J. S. and Hanratty, T. J. (1969). “Numerical solution for the flow around a circular cylinder at Reynolds numbers of 40, 200 and 500.” Journal of Fluid Mechanics, Vol. 35, pp. 369-386.10.1017/S0022112069001169Son, J. S. and Hanratty, T. J. (1969). “Numerical solution for the flow around a circular cylinder at Reynolds numbers of 40, 200 and 500.” Journal of Fluid Mechanics, Vol. 35, pp. 369-386.DOI
26 
Song, C. G. and Seo, I. W. (2012) “Numerical Simulation of Convection-dominated Flow Using SU/PG Scheme.” Journal of the Korean Society of Civil Engineers, Vol. 32, No. 3B, pp. 175-183 (in Korean).Song, C. G. and Seo, I. W. (2012) “Numerical Simulation of Convection-dominated Flow Using SU/PG Scheme.” Journal of the Korean Society of Civil Engineers, Vol. 32, No. 3B, pp. 175-183 (in Korean).Google Search
27 
Ta Phuoc Loc. (1975). “Étude numérique de l’écoulement d’un fluide visqueux incompressible autour d’un cylindre fixeou en rotation, Effet Magnus.” Journal of Méchanics, Vol. 14, pp. 109-134.Ta Phuoc Loc. (1975). “Étude numérique de l’écoulement d’un fluide visqueux incompressible autour d’un cylindre fixeou en rotation, Effet Magnus.” Journal of Méchanics, Vol. 14, pp. 109-134.Google Search
28 
Tezduyar, T. E. and Shih, R. (1991). “Numerical experiments on downstream boundary of flow past cylinder.” Journal of Engineering Mechanics, Vol. 117, pp. 854-871.10.1061/(ASCE)0733-9399(1991)117:4(854)Tezduyar, T. E. and Shih, R. (1991). “Numerical experiments on downstream boundary of flow past cylinder.” Journal of Engineering Mechanics, Vol. 117, pp. 854-871.DOI
29 
Thoman, D. C. and Szewczyk, A. A. (1969). “Time-dependent viscous flow over a circular cylinder.” Physics of Fluids, Vol. 12(II), pp. 76-86.Thoman, D. C. and Szewczyk, A. A. (1969). “Time-dependent viscous flow over a circular cylinder.” Physics of Fluids, Vol. 12(II), pp. 76-86.Google Search
30 
Tophøj, L., Møller, S. and Brøns, S. (2006). “Streamline patterns and their bifurcations near a wall with Navier slip boundary conditions.” Physic of Fluids, 18, 083102.10.1063/1.2337660Tophøj, L., Møller, S. and Brøns, S. (2006). “Streamline patterns and their bifurcations near a wall with Navier slip boundary conditions.” Physic of Fluids, 18, 083102.DOI
31 
Tuann, S. Y. and Olson, M. (1978). “Numerical studies of the flow around a circular cylinder by a finite-element method.” Computers and Fluids, Vol. 6, pp. 219-240.10.1016/0045-7930(78)90015-4Tuann, S. Y. and Olson, M. (1978). “Numerical studies of the flow around a circular cylinder by a finite-element method.” Computers and Fluids, Vol. 6, pp. 219-240.DOI
32 
Yulistiyanto, B., Zech, Y. and Graf, W. H. (1998). “Flow around a cylinder: Shallow-water modeling with diffusion-dispersion.” Journal of Hydraulic Engineering, Vol. 124, No. 4, pp 419-429.10.1061/(ASCE)0733-9429(1998)124:4(419)Yulistiyanto, B., Zech, Y. and Graf, W. H. (1998). “Flow around a cylinder: Shallow-water modeling with diffusion-dispersion.” Journal of Hydraulic Engineering, Vol. 124, No. 4, pp 419-429.DOI
33 
Zhou, J. G. (2002). “A lattice Boltzmann model for the shallow water equations.” Computer Methods in Applied Mechanics and Engineering, Vol. 191, pp. 3527-3539.10.1016/S0045-7825(02)00291-8Zhou, J. G. (2002). “A lattice Boltzmann model for the shallow water equations.” Computer Methods in Applied Mechanics and Engineering, Vol. 191, pp. 3527-3539.DOI
34 
Zienkiewicz, O. Z. and Heinrich, J. C. (1979). “A unified treatment of steady-state shallow water and two-dimensional Navier-Stokes equations-finite element penalty function approach.” Computer Methods in Applied Mechanics and Engineering, Vol. 17-18, Part 3, pp. 673-698.10.1016/0045-7825(79)90050-1Zienkiewicz, O. Z. and Heinrich, J. C. (1979). “A unified treatment of steady-state shallow water and two-dimensional Navier-Stokes equations-finite element penalty function approach.” Computer Methods in Applied Mechanics and Engineering, Vol. 17-18, Part 3, pp. 673-698.DOI