Mobile QR Code QR CODE : Journal of the Korean Society of Civil Engineers
1 
ACI Subcommittee 445 (2002). Examples for the design of structural concrete with strut-and-tie models; SP-208, American Concrete Institute, Farmington Hills, Michigan, USA.ACI Subcommittee 445 (2002). Examples for the design of structural concrete with strut-and-tie models; SP-208, American Concrete Institute, Farmington Hills, Michigan, USA.Google Search
2 
Ali, M. A. and White, R. N. (2001). “Consideration of compression stress bulging and strut degradation in truss modeling of ductile and brittle corbels.” Engineering Structures, Vol. 23, pp. 240-249.10.1016/S0141-0296(00)00040-7Ali, M. A. and White, R. N. (2001). “Consideration of compression stress bulging and strut degradation in truss modeling of ductile and brittle corbels.” Engineering Structures, Vol. 23, pp. 240-249.DOI
3 
American Association of State Highway and Transportation Officials (2010). AASHTO LRFD bridge design specifications, 5th Edition, Washington, D.C., USA.American Association of State Highway and Transportation Officials (2010). AASHTO LRFD bridge design specifications, 5th Edition, Washington, D.C., USA.Google Search
4 
American Concrete Institute (2011). Building code requirements for structural concrete (ACI 318M-11) and commentary, Farmington Hills, Michigan, USA.American Concrete Institute (2011). Building code requirements for structural concrete (ACI 318M-11) and commentary, Farmington Hills, Michigan, USA.Google Search
5 
Bergmeister, K., Breen, J. E., Jirsa, J. O. and Kreger, M. E. (1993). Detailing in structural concrete, Research Report 1127-3F, University of Texas at Austin, Texas, USA.Bergmeister, K., Breen, J. E., Jirsa, J. O. and Kreger, M. E. (1993). Detailing in structural concrete, Research Report 1127-3F, University of Texas at Austin, Texas, USA.Google Search
6 
Campione, G. (2009). “Flexural response of FRC corbels.” Cement & Concrete Composites, Vol. 31, 2009, pp. 204-210.10.1016/j.cemconcomp.2009.01.006Campione, G. (2009). “Flexural response of FRC corbels.” Cement & Concrete Composites, Vol. 31, 2009, pp. 204-210.DOI
7 
Canadian Standards Association (CSA) (2004). Design of concrete structures for buildings, A23.3-M04, Rexdale, Ontario, Canada.Canadian Standards Association (CSA) (2004). Design of concrete structures for buildings, A23.3-M04, Rexdale, Ontario, Canada.Google Search
8 
Chae, H. S. (2012). Indeterminate strut-tie models for reinforced concrete deep beams and corbels, Ph.D Dissertation, Kyungpook National University, Daegu, Korea, p. 290.Chae, H. S. (2012). Indeterminate strut-tie models for reinforced concrete deep beams and corbels, Ph.D Dissertation, Kyungpook National University, Daegu, Korea, p. 290.Google Search
9 
Collins, M. P. and Mitchell, D. (2001). Prestressed concrete structures, 3rd Edition, Prentice Hall, Englewood Cliffs, New Jersey, p. 766.Collins, M. P. and Mitchell, D. (2001). Prestressed concrete structures, 3rd Edition, Prentice Hall, Englewood Cliffs, New Jersey, p. 766.Google Search
10 
Comite Euro-International du Beton (2010). CEP-FIP model code 2010, International Federation for Structural Concrete (fib), Lausanne, Switzerland.Comite Euro-International du Beton (2010). CEP-FIP model code 2010, International Federation for Structural Concrete (fib), Lausanne, Switzerland.Google Search
11 
European Committee for Standardization (2004). Eurocode 2: Design of Concrete Structures, Brussels, Belgium.European Committee for Standardization (2004). Eurocode 2: Design of Concrete Structures, Brussels, Belgium.Google Search
12 
Fattuhi, N. I. (1994). “Reinforced corbels made with plain and fibrous concretes.” ACI Structural Journal, Vol. 91, No. 5, pp. 530-536.Fattuhi, N. I. (1994). “Reinforced corbels made with plain and fibrous concretes.” ACI Structural Journal, Vol. 91, No. 5, pp. 530-536.Google Search
13 
Fattuhi, N. I. and Hughes, B. P. (1989). “Ductility of reinforced concrete corbels containing either steel fibers or stirrups.” ACI Structural Journal, Vol. 86, No. 6, pp. 644-651.Fattuhi, N. I. and Hughes, B. P. (1989). “Ductility of reinforced concrete corbels containing either steel fibers or stirrups.” ACI Structural Journal, Vol. 86, No. 6, pp. 644-651.Google Search
14 
Foster, S. J., Powell, R. E. and Selim, H. S. (1996). “Performance of high-strength concrete corbels.” ACI Structural Journal, Vol. 93, No. 5, pp. 555-563.Foster, S. J., Powell, R. E. and Selim, H. S. (1996). “Performance of high-strength concrete corbels.” ACI Structural Journal, Vol. 93, No. 5, pp. 555-563.Google Search
15 
Hermansen, B. R. and Cowan, J. (1974). “Modified shear-friction theory for bracket design.” ACI Journal, Proceedings, Vol. 71, No. 1, pp. 55-60.Hermansen, B. R. and Cowan, J. (1974). “Modified shear-friction theory for bracket design.” ACI Journal, Proceedings, Vol. 71, No. 1, pp. 55-60.Google Search
16 
Hwang, S. J., Lu, W. Y. and Lee, H. J. (2000). “Shear strength prediction for reinforced concrete corbels.” ACI Structural Journal, Vol. 97, No. 4, pp. 543-552.Hwang, S. J., Lu, W. Y. and Lee, H. J. (2000). “Shear strength prediction for reinforced concrete corbels.” ACI Structural Journal, Vol. 97, No. 4, pp. 543-552.Google Search
17 
Jensen, B. C. (1979). “Reinforced concrete corbels - Some Exact Solutions, Final report, IABSE colloquium on plasticity in reinforce concrete.” International Association for Bridge and Structural Engineering, Zurich, Vol. 29, No. 2, pp. 293-300.Jensen, B. C. (1979). “Reinforced concrete corbels - Some Exact Solutions, Final report, IABSE colloquium on plasticity in reinforce concrete.” International Association for Bridge and Structural Engineering, Zurich, Vol. 29, No. 2, pp. 293-300.Google Search
18 
Jensen, B. C. (1982). “On the ultimate load of reinforced concrete corbels, Dialog I-82.” Miscellaneous Papers in Civil Engineering, Danish Engineering Academy, Lyngby, pp. 119-137.Jensen, B. C. (1982). “On the ultimate load of reinforced concrete corbels, Dialog I-82.” Miscellaneous Papers in Civil Engineering, Danish Engineering Academy, Lyngby, pp. 119-137.Google Search
19 
Korean Concrete Institute (KCI) (2012). Specifications for design of concrete members, Kimoon-dang, p. 342.Korean Concrete Institute (KCI) (2012). Specifications for design of concrete members, Kimoon-dang, p. 342.Google Search
20 
Korean Concrete Institute (KCI) (2013). Strut-tie model design examples of structural concrete, Kimoon-Dang, p. 259.Korean Concrete Institute (KCI) (2013). Strut-tie model design examples of structural concrete, Kimoon-Dang, p. 259.Google Search
21 
Kriz, L. B. and Raths, C. H. (1965). “Connections in precast concrete structures - strength of corbels.” PCI Journal, Vol. 10, No. 1, pp. 16-61.Kriz, L. B. and Raths, C. H. (1965). “Connections in precast concrete structures - strength of corbels.” PCI Journal, Vol. 10, No. 1, pp. 16-61.Google Search
22 
Mast, R. F. (1968). “Auxiliary reinforcement in concrete connections.” Proceedings, ASCE, Vol. 94, No. 6, pp. 1485-1504.Mast, R. F. (1968). “Auxiliary reinforcement in concrete connections.” Proceedings, ASCE, Vol. 94, No. 6, pp. 1485-1504.Google Search
23 
Mattock, A. H., Chen, K. C. and Soongswang, K. (1976). “The behavior of reinforced concrete corbels.” PCI Journal, Vol. 21, No. 2, pp. 52-77.Mattock, A. H., Chen, K. C. and Soongswang, K. (1976). “The behavior of reinforced concrete corbels.” PCI Journal, Vol. 21, No. 2, pp. 52-77.Google Search
24 
Nawy, E. G., Stark, H. and Opaluch, W. (2011). Prestressed concrete: A Fundamental Approach, Pearson Prentice Hall, Upper Saddle River, New Jersey, USA, p. 984.Nawy, E. G., Stark, H. and Opaluch, W. (2011). Prestressed concrete: A Fundamental Approach, Pearson Prentice Hall, Upper Saddle River, New Jersey, USA, p. 984.Google Search
25 
Pang, X. B. and Hsu, T. T. C. (1995). “Behavior of reinforced concrete membrane elements in shear.” ACI Structural Journal, Vol. 92, No. 6, pp. 665-679.Pang, X. B. and Hsu, T. T. C. (1995). “Behavior of reinforced concrete membrane elements in shear.” ACI Structural Journal, Vol. 92, No. 6, pp. 665-679.Google Search
26 
Rogowsky, D. M. and MacGregor, J. G. (1983). Shear strength of deep reinforced concrete beams, Structural Engineering Report No. 110, Department of Civil Engineering, University of Alberta, Edmonton, USA, p. 178.Rogowsky, D. M. and MacGregor, J. G. (1983). Shear strength of deep reinforced concrete beams, Structural Engineering Report No. 110, Department of Civil Engineering, University of Alberta, Edmonton, USA, p. 178.Google Search
27 
Russo, G., Venir, R., Pauletta, M. and Somma, G. (2006). “Reinforced concrete corbels.” ACI Structural Journal, Vol. 103, No. 1, pp. 3-10.Russo, G., Venir, R., Pauletta, M. and Somma, G. (2006). “Reinforced concrete corbels.” ACI Structural Journal, Vol. 103, No. 1, pp. 3-10.Google Search
28 
Shaikh, A. F. (1978). “Proposed revisions to shear-friction provisions.” PCI Journal, Vol. 23, No. 1, pp. 12-21.Shaikh, A. F. (1978). “Proposed revisions to shear-friction provisions.” PCI Journal, Vol. 23, No. 1, pp. 12-21.Google Search
29 
Solanki, H. and Sabnis, G. M. (1987). “Reinforced concrete corbels - simplified.” ACI Structural Journal, Vol. 84, pp. 428-432.Solanki, H. and Sabnis, G. M. (1987). “Reinforced concrete corbels - simplified.” ACI Structural Journal, Vol. 84, pp. 428-432.Google Search
30 
Wight, J. K., Richart, F. E. and MacGregor, J. G. (2011). Reinforced concrete: Mechanics and Design, 5th Edition, Prentice Hall, Englewood Cliffs, New Jersey, USA, p. 1157.Wight, J. K., Richart, F. E. and MacGregor, J. G. (2011). Reinforced concrete: Mechanics and Design, 5th Edition, Prentice Hall, Englewood Cliffs, New Jersey, USA, p. 1157.Google Search
31 
Yong, Y. K. and Balaguru, P. (1994). “Behavior of reinforced high-strength concrete corbels.” Journal of Structural Engineering, ASCE, Vol. 120, No. 5, pp. 1182-1201.10.1061/(ASCE)0733-9445(1994)120:4(1182)Yong, Y. K. and Balaguru, P. (1994). “Behavior of reinforced high-strength concrete corbels.” Journal of Structural Engineering, ASCE, Vol. 120, No. 5, pp. 1182-1201.DOI
32 
Yun, Y. M. (2005). “Effective strength of concrete strut in strut-tie model (I): Methods for determining effective strength of concrete strut.” Journal of the Korean Society of Civil Engineers, Vol. 25, No. 1A, pp. 49-59.Yun, Y. M. (2005). “Effective strength of concrete strut in strut-tie model (I): Methods for determining effective strength of concrete strut.” Journal of the Korean Society of Civil Engineers, Vol. 25, No. 1A, pp. 49-59.Google Search
33 
Yun, Y. M. and Ramirez, J. A. (1994). “Strut-Tie model design of disturbed regions in concrete structure.” ASCE Structural Congress XII, Atlanta, Georgia, USA. Yun, Y. M. and Ramirez, J. A. (1994). “Strut-Tie model design of disturbed regions in concrete structure.” ASCE Structural Congress XII, Atlanta, Georgia, USA.Google Search
34 
Yun, Y. M., Kim, B. H., Lee, W. S. and Jeong, C. H. (2007). “Prediction of shear strength for reinforced concrete corbels using shear-friction and strut-tie models.” Journal of the Korean Society of Civil Engineers, Vol. 27, No. 2, pp. 141-155.Yun, Y. M., Kim, B. H., Lee, W. S. and Jeong, C. H. (2007). “Prediction of shear strength for reinforced concrete corbels using shear-friction and strut-tie models.” Journal of the Korean Society of Civil Engineers, Vol. 27, No. 2, pp. 141-155.Google Search
35 
Zhang, L. X. B. and Hsu, T. T. C. (1998). “Behavior and analysis of 100MPa concrete membrane elements.” Journal of Structural Engineering, ASCE, Vol. 124, No. 1, pp. 24-34.10.1061/(ASCE)0733-9445(1998)124:1(24)Zhang, L. X. B. and Hsu, T. T. C. (1998). “Behavior and analysis of 100MPa concrete membrane elements.” Journal of Structural Engineering, ASCE, Vol. 124, No. 1, pp. 24-34.DOI