Mobile QR Code QR CODE : Journal of the Korean Society of Civil Engineers
1 
Chavent, G. and Salzano, G. (1982). “A finite element method for the 1D water flooding problem with gravity.” J. Comp. Phys., Vol. 45, pp. 307-344.10.1016/0021-9991(82)90107-3Chavent, G. and Salzano, G. (1982). “A finite element method for the 1D water flooding problem with gravity.” J. Comp. Phys., Vol. 45, pp. 307-344.DOI
2 
Cockburn, B. (1999). “Discontinuous galerkin methods for convection dominated problems.” Lecture Notes in Computational Science and Engineering, Springer, Vol. 9, pp. 69-224.10.1007/978-3-662-03882-6_2Cockburn, B. (1999). “Discontinuous galerkin methods for convection dominated problems.” Lecture Notes in Computational Science and Engineering, Springer, Vol. 9, pp. 69-224.DOI
3 
Cunge, J. A., Holly, F. M. and Verwey, A. (1980). Practical aspects of computational river hydraulics, Pitman, London.Cunge, J. A., Holly, F. M. and Verwey, A. (1980). Practical aspects of computational river hydraulics, Pitman, London.Google Search
4 
Harten, A., Lax. P. D., van Leer, B. (1983). “On upstream differencing and Godunov-type schemes for hyperbolic conservation laws.” SIAM Rev. Vol. 25, No. 1, pp. 35-61.10.1137/1025002Harten, A., Lax. P. D., van Leer, B. (1983). “On upstream differencing and Godunov-type schemes for hyperbolic conservation laws.” SIAM Rev. Vol. 25, No. 1, pp. 35-61.DOI
5 
Hesthaven, J. S. and Warburton, T. (2007). Nodal discontinuous galerkin methods: Algorithms, Analysis, and Applications, Springer, New York.Hesthaven, J. S. and Warburton, T. (2007). Nodal discontinuous galerkin methods: Algorithms, Analysis, and Applications, Springer, New York.Google Search
6 
Hughes, T. J. R. and Brooks, A. N. (1982). “A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: Application to the Streamline-Upwind Procedure.” Finite Elements in Fluids, R. H. Gallagher et al., eds., Wiley, Chichester, U.K., Vol. 4, pp. 46-65.Hughes, T. J. R. and Brooks, A. N. (1982). “A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: Application to the Streamline-Upwind Procedure.” Finite Elements in Fluids, R. H. Gallagher et al., eds., Wiley, Chichester, U.K., Vol. 4, pp. 46-65.Google Search
7 
Jain, S. C. (2001). Open-channel flow, John Wiley & Sons, New York.Jain, S. C. (2001). Open-channel flow, John Wiley & Sons, New York.Google Search
8 
Kim, J. S. and Han, K. Y. (2009). “One-dimensional hydraulic modeling of open channel flow using the Riemann approximate solver - Application for natural river.” J. Korea Water Resources Association, Vol. 42, No. 4, pp. 271-279 (in Korean).10.3741/JKWRA.2009.42.4.271Kim, J. S. and Han, K. Y. (2009). “One-dimensional hydraulic modeling of open channel flow using the Riemann approximate solver - Application for natural river.” J. Korea Water Resources Association, Vol. 42, No. 4, pp. 271-279 (in Korean).DOI
9 
Lai, W. and Khan, A. A. (2012). “Discontinuous galerkin method for 1D shallow water flow in nonrectangular and nonprismatic channels.” J. Hydraul. Engrg., Vol. 138, No. 3, pp. 285-296.10.1061/(ASCE)HY.1943-7900.0000501Lai, W. and Khan, A. A. (2012). “Discontinuous galerkin method for 1D shallow water flow in nonrectangular and nonprismatic channels.” J. Hydraul. Engrg., Vol. 138, No. 3, pp. 285-296.DOI
10 
Lax, P. D. (1954). “Weak solutions of nonlinear hyperbolic equations and their numerical computation.” Comm. Pure Appl. Math., Vol. 7, pp. 159-193.10.1002/cpa.3160070112Lax, P. D. (1954). “Weak solutions of nonlinear hyperbolic equations and their numerical computation.” Comm. Pure Appl. Math., Vol. 7, pp. 159-193.DOI
11 
Lee, H. and Lee, N. J. (2013). “Simulation of shallow water flow by discontinuous galerkin finite element method.” Proc. of 2013 IAHR World Congress, Chengdu, China.Lee, H. and Lee, N. J. (2013). “Simulation of shallow water flow by discontinuous galerkin finite element method.” Proc. of 2013 IAHR World Congress, Chengdu, China.Google Search
12 
LeVeque, R. J. (2002). Finite volume methods for hyperbolic problems, Cambridge University Press, Cambridge.10.1017/CBO9780511791253LeVeque, R. J. (2002). Finite volume methods for hyperbolic problems, Cambridge University Press, Cambridge.DOI
13 
Meselhe, E. A., Sotiropoulos, F. and Holly, F. M. (1997). “Numerical simulation of transcritical flow in open channels.” J. Hydraul. Engrg., Vol. 23, No. 9, pp. 774-782.10.1061/(ASCE)0733-9429(1997)123:9(774)Meselhe, E. A., Sotiropoulos, F. and Holly, F. M. (1997). “Numerical simulation of transcritical flow in open channels.” J. Hydraul. Engrg., Vol. 23, No. 9, pp. 774-782.DOI
14 
Mohapatra, P. K. and Bhallamudi, S. M. (1996). “Computation of a dam-break flood wave in channel transitions.” Adv. Water Resour., Vol. 19, No. 3, pp. 181-187.10.1016/0309-1708(95)00036-4Mohapatra, P. K. and Bhallamudi, S. M. (1996). “Computation of a dam-break flood wave in channel transitions.” Adv. Water Resour., Vol. 19, No. 3, pp. 181-187.DOI
15 
Reed, W. H. and Hill, T. R. (1973). Triangular mesh methods for the neutron transport equation, Scientific Laboratory Report, Los Alamos, LA-UR-73-479.Reed, W. H. and Hill, T. R. (1973). Triangular mesh methods for the neutron transport equation, Scientific Laboratory Report, Los Alamos, LA-UR-73-479.Google Search
16 
Roe, P. (1981). “Approximate riemann solvers, parameter vectors, and difference schemes.” J. Comput. Phys., Vol. 43, No. 2, pp. 357-372.10.1016/0021-9991(81)90128-5Roe, P. (1981). “Approximate riemann solvers, parameter vectors, and difference schemes.” J. Comput. Phys., Vol. 43, No. 2, pp. 357-372.DOI
17 
Schwanenberg, D. and Harms, M. (2004). “Discontinuous galerkin finite-element method for transcritical two-dimensional shallow water flows.” J. Hydraul. Engrg., Vol. 130, No. 5, pp. 412-421.10.1061/(ASCE)0733-9429(2004)130:5(412)Schwanenberg, D. and Harms, M. (2004). “Discontinuous galerkin finite-element method for transcritical two-dimensional shallow water flows.” J. Hydraul. Engrg., Vol. 130, No. 5, pp. 412-421.DOI
18 
Townson, J. M. and Al-Salihi, A. H. (1989). “Models of dam-break flow in R-T space.” J. Hydraul. Engrg., Vol. 115, No. 5. pp. 561-575.10.1061/(ASCE)0733-9429(1989)115:5(561)Townson, J. M. and Al-Salihi, A. H. (1989). “Models of dam-break flow in R-T space.” J. Hydraul. Engrg., Vol. 115, No. 5. pp. 561-575.DOI
19 
Zienkiewicz, O. C. and Codina, R. (1995). “A general algorithm for compressible and incompressible flow, Part I: The Split Charac-teristic Based Scheme.” Int. J. Numer. Meth. Fluids, Vol. 20, pp. 869-885.10.1002/fld.1650200812Zienkiewicz, O. C. and Codina, R. (1995). “A general algorithm for compressible and incompressible flow, Part I: The Split Charac-teristic Based Scheme.” Int. J. Numer. Meth. Fluids, Vol. 20, pp. 869-885.DOI