Mobile QR Code QR CODE : Journal of the Korean Society of Civil Engineers
1 
ACI Committee 318 (2011). Building code requirement for reinforced concrete and commentary (318R-01), ACI, Detroit, M.I., 391., pp. 120-150. ACI Committee 318 (2011). Building code requirement for reinforced concrete and commentary (318R-01), ACI, Detroit, M.I., 391., pp. 120-150.Google Search
2 
ASCE-ACI Committee 426 (1973). “The shear strength of reinforced concrete members.” Journal of Structural Division, ASCE, Vol. 99, No. 6, pp. 1091-1187.ASCE-ACI Committee 426 (1973). “The shear strength of reinforced concrete members.” Journal of Structural Division, ASCE, Vol. 99, No. 6, pp. 1091-1187.Google Search
3 
ASCE-ACI Committee 445 (1998). “Recent approaches to shear design of structural concrete.” Journal of Structural Engineering, ASCE, Vol. 124, No. 5, pp. 1375-1417.10.1061/(ASCE)0733-9445(1998)124:12(1375)ASCE-ACI Committee 445 (1998). “Recent approaches to shear design of structural concrete.” Journal of Structural Engineering, ASCE, Vol. 124, No. 5, pp. 1375-1417.DOI
4 
Cervenka, V. (2000). ATENA program documentation, Cervenka Consulting, pp. 10-120.Cervenka, V. (2000). ATENA program documentation, Cervenka Consulting, pp. 10-120.Google Search
5 
Comite Euro International Du Beton (CEB/FIP) (2010). “CEB-FIP model code for concrete structures.” Bulletin d’Information, No. 124/125, pp. 437.Comite Euro International Du Beton (CEB/FIP) (2010). “CEB-FIP model code for concrete structures.” Bulletin d’Information, No. 124/125, pp. 437.Google Search
6 
Commission of the European Communities (1991). Eurocode No. 2: Design of Concrete Structures, Part 1: General rules and Rules for Buildings, ENV 1992-1-1, pp. 253.Commission of the European Communities (1991). Eurocode No. 2: Design of Concrete Structures, Part 1: General rules and Rules for Buildings, ENV 1992-1-1, pp. 253.Google Search
7 
Gupta, P. R., and Collins, M. P. (2001). “Evaluation of shear design procedures for reinforced concrete members under axial compression.” ACI Structural Journal, Vol. 98, No. 4, pp. 537-547.Gupta, P. R., and Collins, M. P. (2001). “Evaluation of shear design procedures for reinforced concrete members under axial compression.” ACI Structural Journal, Vol. 98, No. 4, pp. 537-547.Google Search
8 
Hsu, T. T. C. (1993). Unified theory of reinforced concrete, CRC Press, Boca Raton, Fla, pp. 193-256.Hsu, T. T. C. (1993). Unified theory of reinforced concrete, CRC Press, Boca Raton, Fla, pp. 193-256.Google Search
9 
Jeong, J.-P. and Kim, W. (2014). “Shear resistant mechanism into base components : Beam Action and Arch Action in Shear-Critical RC Members.” International Journal of Concrete Structures and Materials, Vol. 8, No. 1, pp. 1-14.10.1007/s40069-013-0064-xJeong, J.-P. and Kim, W. (2014). “Shear resistant mechanism into base components : Beam Action and Arch Action in Shear-Critical RC Members.” International Journal of Concrete Structures and Materials, Vol. 8, No. 1, pp. 1-14.DOI
10 
Kim, W. and Jeong, J.-P. (2011a). “Decoupling of arch action in shear-critical reinforced concrete beam.” ACI Structural Journal, Vol. 108, No. 4, pp. 395-404.Kim, W. and Jeong, J.-P. (2011a). “Decoupling of arch action in shear-critical reinforced concrete beam.” ACI Structural Journal, Vol. 108, No. 4, pp. 395-404.Google Search
11 
Kim, W. and Jeong, J.-P. (2011b). “Non-bernoulli-compatibility truss model for RC member subjected to combined action of flexure and shear, Part I-Its derivation of theoretical concept.” KSCE Journal of Civil Engineering, Vol. 15, No. 1, pp. 101-108.10.1007/s12205-011-0662-6Kim, W. and Jeong, J.-P. (2011b). “Non-bernoulli-compatibility truss model for RC member subjected to combined action of flexure and shear, Part I-Its derivation of theoretical concept.” KSCE Journal of Civil Engineering, Vol. 15, No. 1, pp. 101-108.DOI
12 
Kim, W. and Jeong, J.-P. (2011c). “Non-bernoulli-compatibility truss model for RC member subjected to combined action of flexure and shear, Part II-Its practical solution.” KSCE Journal of Civil Engineering, Vol. 15, No. 1, pp. 109-117.10.1007/s12205-011-0663-5Kim, W. and Jeong, J.-P. (2011c). “Non-bernoulli-compatibility truss model for RC member subjected to combined action of flexure and shear, Part II-Its practical solution.” KSCE Journal of Civil Engineering, Vol. 15, No. 1, pp. 109-117.DOI
13 
Kotsovos, G. M. and Kotsovos, M. D. (2013). “Effect of axial compression on shear capacity of linear RC members without transverse reinforcement.” Magagine of Concrete Research, Vol. 65, No. 21, pp. 1360-1375.10.1680/macr.13.00192Kotsovos, G. M. and Kotsovos, M. D. (2013). “Effect of axial compression on shear capacity of linear RC members without transverse reinforcement.” Magagine of Concrete Research, Vol. 65, No. 21, pp. 1360-1375.DOI
14 
Lorentsen, M. (1965). “Theory for the combined action of bending moment and shear in reinforced concrete and prestressed concrete beams.” ACI Journal, Vol. 62, No. 4, pp. 403-419.Lorentsen, M. (1965). “Theory for the combined action of bending moment and shear in reinforced concrete and prestressed concrete beams.” ACI Journal, Vol. 62, No. 4, pp. 403-419.Google Search
15 
Marti, P. (1985). “Basic tools of reinforced concrete beam design.” ACI Journal, Vol. 82, No. 1, pp. 46-56.Marti, P. (1985). “Basic tools of reinforced concrete beam design.” ACI Journal, Vol. 82, No. 1, pp. 46-56.Google Search
16 
Niwa, J. (1997). “Lattice model with concrete tension members for shear resisting mechanism of concrete beams.” CEB Bulletin d’Information, No. 237, pp. 159-170.Niwa, J. (1997). “Lattice model with concrete tension members for shear resisting mechanism of concrete beams.” CEB Bulletin d’Information, No. 237, pp. 159-170.Google Search
17 
Park, R. and Paulay, T. (1975). Reinforced concrete structures, Wiley, N. Y., pp. 201-256.10.1002/9780470172834Park, R. and Paulay, T. (1975). Reinforced concrete structures, Wiley, N. Y., pp. 201-256.DOI
18 
Ramirez, J. A. and Breen, J. A. (1991). “Evaluation of a modified truss model approach for beams in shear.” ACI Structural Journal, Vol. 88, No. 5, pp. 562-571.Ramirez, J. A. and Breen, J. A. (1991). “Evaluation of a modified truss model approach for beams in shear.” ACI Structural Journal, Vol. 88, No. 5, pp. 562-571.Google Search
19 
Vecchio, F. J. and Collins, M. P. (1986). “The modified compression field theory for reinforced concrete elements subjected to shear.” ACI Structural Journal, Vol. 83, No. 2, pp. 219-231.Vecchio, F. J. and Collins, M. P. (1986). “The modified compression field theory for reinforced concrete elements subjected to shear.” ACI Structural Journal, Vol. 83, No. 2, pp. 219-231.Google Search
20 
Xie, L., Bentz, E. C. and Collins, M. P. (2011). “Influence of axial stress on shear response of reinforced concrete elements.” ACI Structural Journal, Vol. 108, No. 6, pp. 745-754.Xie, L., Bentz, E. C. and Collins, M. P. (2011). “Influence of axial stress on shear response of reinforced concrete elements.” ACI Structural Journal, Vol. 108, No. 6, pp. 745-754.Google Search