Mobile QR Code QR CODE : Journal of the Korean Society of Civil Engineers
1 
Barpi, F. (2004). “Impact behaviour of concrete: A Computational Approach.” Engineering Fracture Mechanics, Vol. 71, No. 15, pp. 2197-2213.10.1016/j.engfracmech.2003.11.007Barpi, F. (2004). “Impact behaviour of concrete: A Computational Approach.” Engineering Fracture Mechanics, Vol. 71, No. 15, pp. 2197-2213.DOI
2 
Bischoff, P. H. and Perry, S. H. (1991). “Compressive behaviour of concrete at high strain rates.” Materials and Structures, Vol. 24, pp. 425-450.10.1007/BF02472016Bischoff, P. H. and Perry, S. H. (1991). “Compressive behaviour of concrete at high strain rates.” Materials and Structures, Vol. 24, pp. 425-450.DOI
3 
Bischoff, P. H. and Perry, S. H. (1995). “Impact behavior of plain concrete loaded in uniaxial compression.” Jounal of Engineering Mechanics, ASCE, Vol. 121, No. 6, pp. 685-693.10.1061/(ASCE)0733-9399(1995)121:6(685)Bischoff, P. H. and Perry, S. H. (1995). “Impact behavior of plain concrete loaded in uniaxial compression.” Jounal of Engineering Mechanics, ASCE, Vol. 121, No. 6, pp. 685-693.DOI
4 
Bolander, J. E. and Berton, S. (2004). “Simulation of shrinkage induced cracking in cement composite overlays.” Cement and Concrete Composites, Vol. 26, pp. 861-871. 10.1016/j.cemconcomp.2003.04.001Bolander, J. E. and Berton, S. (2004). “Simulation of shrinkage induced cracking in cement composite overlays.” Cement and Concrete Composites, Vol. 26, pp. 861-871.DOI
5 
Bolander, J. E. and Saito, S. (1998). “Fracture analyses using spring networks with random geometry.” Engineering Fracture Mechanics, Vol. 61, pp. 569-591.10.1016/S0013-7944(98)00069-1Bolander, J. E. and Saito, S. (1998). “Fracture analyses using spring networks with random geometry.” Engineering Fracture Mechanics, Vol. 61, pp. 569-591.DOI
6 
Cadoni, E., Solomos, G. and Albertini, C. (2013). “Concrete behavior in direct tension tests at high strain rates.” Magazine of Concrete Research, ICE, Vol. 65, No. 11, pp. 660-672.10.1680/macr.12.00175Cadoni, E., Solomos, G. and Albertini, C. (2013). “Concrete behavior in direct tension tests at high strain rates.” Magazine of Concrete Research, ICE, Vol. 65, No. 11, pp. 660-672.DOI
7 
Chen, J. (2011). Discrete Element Method (DEM) analysis for Hot-Mix Asphalt (HMA) mixture compaction, Ph.D. Dissertation, University of Tennessee, Knoxville, T.N., USA.Chen, J. (2011). Discrete Element Method (DEM) analysis for Hot-Mix Asphalt (HMA) mixture compaction, Ph.D. Dissertation, University of Tennessee, Knoxville, T.N., USA.Google Search
8 
Gatuingt, F. and Pijaudier-Cabot, G. (2002). “Coupled damage and plasticity modelling in transient dynamic analysis of concrete.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 26, pp. 1-24.10.1002/nag.188Gatuingt, F. and Pijaudier-Cabot, G. (2002). “Coupled damage and plasticity modelling in transient dynamic analysis of concrete.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 26, pp. 1-24.DOI
9 
Grote, D. L., Park, S. W. and Zhou, M. (2001). “Dynamic behavior of concrete at high strain rates and pressures: I. Experimental Characterization.” International Journal of Impact Engineering, Vol. 25, No. 9, pp. 869-886.10.1016/S0734-743X(01)00020-3Grote, D. L., Park, S. W. and Zhou, M. (2001). “Dynamic behavior of concrete at high strain rates and pressures: I. Experimental Characterization.” International Journal of Impact Engineering, Vol. 25, No. 9, pp. 869-886.DOI
10 
Hentz, S., Donzé, F. V. and Daudevile, L. (2004). “Discrete element modelling of concrete submitted to dynamic loading at high strain rates.” Computers and Structures, Vol. 82, pp. 2509-2524.10.1016/j.compstruc.2004.05.016Hentz, S., Donzé, F. V. and Daudevile, L. (2004). “Discrete element modelling of concrete submitted to dynamic loading at high strain rates.” Computers and Structures, Vol. 82, pp. 2509-2524.DOI
11 
Hughes, B. P. and Gregory, R. (1972). “Concrete subjected to high rates of loading in compression.” Magazine of Concrete Research, Vol. 24, No. 78, pp. 25-36.10.1680/macr.1972.24.78.25Hughes, B. P. and Gregory, R. (1972). “Concrete subjected to high rates of loading in compression.” Magazine of Concrete Research, Vol. 24, No. 78, pp. 25-36.DOI
12 
Kim, K. (2011). Development of irregular lattice models for simulating rate dependent failure in concrete materials and structures, Ph.D. Dissertation, Yonsei University.Kim, K. (2011). Development of irregular lattice models for simulating rate dependent failure in concrete materials and structures, Ph.D. Dissertation, Yonsei University.Google Search
13 
Kim, K., Bolander, J. E. and Lim, Y. M. (2011). “Rigid-body- spring network with visco-plastic damage model for simulating rate dependent fracture of RC structures.” Applied Mechanics and Materials, Vol. 82, pp. 259-265.10.4028/www.scientific.net/amm.82.259Kim, K., Bolander, J. E. and Lim, Y. M. (2011). “Rigid-body- spring network with visco-plastic damage model for simulating rate dependent fracture of RC structures.” Applied Mechanics and Materials, Vol. 82, pp. 259-265.DOI
14 
Kim, K., Bolander, J. E. and Lim, Y. M. (2013). “Failure simulation of RC structures under highly dynamic conditions using random lattice models.” Computers and Structures, Vol. 125, pp. 127-136.10.1016/j.compstruc.2013.04.007Kim, K., Bolander, J. E. and Lim, Y. M. (2013). “Failure simulation of RC structures under highly dynamic conditions using random lattice models.” Computers and Structures, Vol. 125, pp. 127-136.DOI
15 
Kim, K. and Lim, Y. M. (2011). “Simulation of rate dependent fracture in concrete using an irregular lattice model.” Cement and Concrete Composites, Vol. 33, No. 9, pp. 949-955.10.1016/j.cemconcomp.2011.01.002Kim, K. and Lim, Y. M. (2011). “Simulation of rate dependent fracture in concrete using an irregular lattice model.” Cement and Concrete Composites, Vol. 33, No. 9, pp. 949-955.DOI
16 
Malvar, L. J. and Ross, C. A. (1998). “Review of strain rate effects for concrete in tension.” ACI Materials Journal, Vol. 95, No. 6, pp. 735-739.Malvar, L. J. and Ross, C. A. (1998). “Review of strain rate effects for concrete in tension.” ACI Materials Journal, Vol. 95, No. 6, pp. 735-739.Google Search
17 
Pedersen, R. R., Simone, A. and Sluys, L. J. (2008). “An analysis of dynamic fracture in concrete with a continuum visco-elastic visco-plastic damage model.” Engineering Fracture Mechanics, Vol. 75, No. 13, pp. 3782-3805.10.1016/j.engfracmech.2008.02.004Pedersen, R. R., Simone, A. and Sluys, L. J. (2008). “An analysis of dynamic fracture in concrete with a continuum visco-elastic visco-plastic damage model.” Engineering Fracture Mechanics, Vol. 75, No. 13, pp. 3782-3805.DOI
18 
Ross, C. A., Thompson, P. Y. and Tedesco, J. W. (1989). “Split- hopkinson pressure-bar tests on concrete and mortar in tension and compression.” ACI Materials Journal, Vol. 86, No. 5, pp. 475-481.Ross, C. A., Thompson, P. Y. and Tedesco, J. W. (1989). “Split- hopkinson pressure-bar tests on concrete and mortar in tension and compression.” ACI Materials Journal, Vol. 86, No. 5, pp. 475-481.Google Search
19 
Rossi, P. (1991). “A physical phenomenon which can explain the mechanical behaviour of concrete under high strain rates.” Materials and Structures, Vol. 24, pp. 422-424.10.1007/BF02472015Rossi, P. (1991). “A physical phenomenon which can explain the mechanical behaviour of concrete under high strain rates.” Materials and Structures, Vol. 24, pp. 422-424.DOI
20 
Toutlemonde, F. and Rossi, P. (1994). “Major parameters governing concrete dynamic behaviour and dynamic failure of concrete structures.” Euro-DYMAT94, Oxford, pp. 29-30.Toutlemonde, F. and Rossi, P. (1994). “Major parameters governing concrete dynamic behaviour and dynamic failure of concrete structures.” Euro-DYMAT94, Oxford, pp. 29-30.Google Search
21 
Vegt, I., Weerheijm, J., Pedersen, R. R. and Sluys, L. J. (2006). “Modelling of impact behaviour of concrete – an experimental approach.” Computational Modelling of Concrete Structures – EURO-C 2006, Mayrhofen, Tyrol, Austria, pp. 451-458.Vegt, I., Weerheijm, J., Pedersen, R. R. and Sluys, L. J. (2006). “Modelling of impact behaviour of concrete – an experimental approach.” Computational Modelling of Concrete Structures – EURO-C 2006, Mayrhofen, Tyrol, Austria, pp. 451-458.Google Search