Mobile QR Code QR CODE : Journal of the Korean Society of Civil Engineers
1 
Alcrudo, F. and Benkhaldoun, F. (2001). “Exact solutions to the Riemann problem of the shallow water equations with a bottom step.” Comput. & Fluids, Vol. 30, pp. 643-671.10.1016/S0045-7930(01)00013-5Alcrudo, F. and Benkhaldoun, F. (2001). “Exact solutions to the Riemann problem of the shallow water equations with a bottom step.” Comput. & Fluids, Vol. 30, pp. 643-671.DOI
2 
Batten, P., Lambert, C. and Causon, D. M. (1996). “Positively conservative high-resolution convection schemes for unstructured elements.” Int. J. Numer. Meth. Eng., Vol. 39, pp. 1821-1838.10.1002/(SICI)1097-0207(19960615)39:11<1821::AID-NME929>3.0.CO;2-EBatten, P., Lambert, C. and Causon, D. M. (1996). “Positively conservative high-resolution convection schemes for unstructured elements.” Int. J. Numer. Meth. Eng., Vol. 39, pp. 1821-1838.DOI
3 
Bermudez, A. and Vázquez, M. E. (1994). “Upwind methods for hyperbolic conservation laws with source terms.” Comput. & Fluids, Vol. 23, pp. 1049-1071.10.1016/0045-7930(94)90004-3Bermudez, A. and Vázquez, M. E. (1994). “Upwind methods for hyperbolic conservation laws with source terms.” Comput. & Fluids, Vol. 23, pp. 1049-1071.DOI
4 
Chow, V.T. (1959). Open-channel hydraulics, McGraw Hill Co., Inc.Chow, V.T. (1959). Open-channel hydraulics, McGraw Hill Co., Inc.Google Search
5 
Gusev, A. V., Ostapenko, V. V., Malysheva, A. A. and Malysheva, I. A. (2008). “Open-channel waves generated by propagation of a discontinuous wave over a bottom step.” J. Appl. Mech. Tech. Phys., Vol. 49, pp. 23-33.10.1007/s10808-008-0004-8Gusev, A. V., Ostapenko, V. V., Malysheva, A. A. and Malysheva, I. A. (2008). “Open-channel waves generated by propagation of a discontinuous wave over a bottom step.” J. Appl. Mech. Tech. Phys., Vol. 49, pp. 23-33.DOI
6 
Hirt, C. W. and Nichols, B. D. (1981). “Volume of fluid(VOF) method for the dynamics of free boundaries.” J. Comput. Phys., Vol. 39, pp. 201-225.10.1016/0021-9991(81)90145-5Hirt, C. W. and Nichols, B. D. (1981). “Volume of fluid(VOF) method for the dynamics of free boundaries.” J. Comput. Phys., Vol. 39, pp. 201-225.DOI
7 
Hwang, S. Y. (2013a). “Finite-volume model for shallow-water flow over uneven bottom.” J. KWRA, Vol. 46, pp. 139-153 (in Korean).10.3741/jkwra.2013.46.2.139Hwang, S. Y. (2013a). “Finite-volume model for shallow-water flow over uneven bottom.” J. KWRA, Vol. 46, pp. 139-153 (in Korean).DOI
8 
Hwang, S. Y. (2013b). “Exact and approximate Riemann solvers for the shallow-water flows over a step.” Proc. KWRA Conf., KWRA, p. 575 (in Korean).링크Hwang, S. Y. (2013b). “Exact and approximate Riemann solvers for the shallow-water flows over a step.” Proc. KWRA Conf., KWRA, p. 575 (in Korean).DOI
9 
Hwang, S. Y. (2013c). “Exact solutions of the Riemann problem for the shallow-water flow over a step to the dry-bed.” Proc. 39th KSCE Conf., KSCE, pp. 1515-1518 (in Korean).Hwang, S. Y. (2013c). “Exact solutions of the Riemann problem for the shallow-water flow over a step to the dry-bed.” Proc. 39th KSCE Conf., KSCE, pp. 1515-1518 (in Korean).Google Search
10 
Hwang, S. Y. (2014). “A study on imposing exact solutions as internal boundary conditions in simulating the shallow-water flows over a step.” J. KSCE, Vol. 34, pp. 479-492 (in Korean).10.12652/ksce.2014.34.2.0479Hwang, S. Y. (2014). “A study on imposing exact solutions as internal boundary conditions in simulating the shallow-water flows over a step.” J. KSCE, Vol. 34, pp. 479-492 (in Korean).DOI
11 
Hwang, S. Y. (2015). “2D numerical simulations for shallow-water flows over discontinuous topography.” Proc. 41th KSCE Conf., KSCE (in Korean; publishing).Hwang, S. Y. (2015). “2D numerical simulations for shallow-water flows over discontinuous topography.” Proc. 41th KSCE Conf., KSCE (in Korean; publishing).Google Search
12 
Hwang, S. Y. and Lee, S. H. (2012). “An application of the HLLL approximate Riemann solver to the shallow water equations.” J. KSCE, Vol. 32, pp. 21-27 (in Korean).Hwang, S. Y. and Lee, S. H. (2012). “An application of the HLLL approximate Riemann solver to the shallow water equations.” J. KSCE, Vol. 32, pp. 21-27 (in Korean).Google Search
13 
LeVeque, R. J. (2002). Finite volume method for hyperbolic problems, Cambridge Univ. Press.10.1017/CBO9780511791253LeVeque, R. J. (2002). Finite volume method for hyperbolic problems, Cambridge Univ. Press.DOI
14 
Linde, T. (2002). “A practical, general-purpose, two-state HLL Riemann solver for hyperbolic conservation laws.” Int. J. Numer. Meth. Fluids, Vol. 40, pp. 391-402.10.1002/fld.312Linde, T. (2002). “A practical, general-purpose, two-state HLL Riemann solver for hyperbolic conservation laws.” Int. J. Numer. Meth. Fluids, Vol. 40, pp. 391-402.DOI
15 
Prokof’ev, V. A. (2005). “Two-dimensional horizontal numerical model of open flow over a bed with obstacles.” Water Resources, Vol. 32, No. 3, pp. 252-264.10.1007/s11268-005-0034-zProkof’ev, V. A. (2005). “Two-dimensional horizontal numerical model of open flow over a bed with obstacles.” Water Resources, Vol. 32, No. 3, pp. 252-264.DOI
16 
Weiyan, T. (1992). Shallow water hydrodynamics, Elsevier Science Publishers.Weiyan, T. (1992). Shallow water hydrodynamics, Elsevier Science Publishers.Google Search
17 
Zhou, J. G., Causon, D. M., Ingram, D. M. and Mingham, C. G. (2002). “Numerical solutions of the shallow water equations with discontinuous bed topography.” Int. J. Numer. Meth. Fluids, Vol. 38, pp. 769-788.10.1002/fld.243Zhou, J. G., Causon, D. M., Ingram, D. M. and Mingham, C. G. (2002). “Numerical solutions of the shallow water equations with discontinuous bed topography.” Int. J. Numer. Meth. Fluids, Vol. 38, pp. 769-788.DOI
18 
Zhou, J. G., Causon, D. M., Mingham, C. G. and Ingram, D. M. (2001). “The surface gradient method for the treatment of source terms in the shallow-water equations.” J. Comput. Phys., Vol. 168, pp. 1-25.10.1006/jcph.2000.6670Zhou, J. G., Causon, D. M., Mingham, C. G. and Ingram, D. M. (2001). “The surface gradient method for the treatment of source terms in the shallow-water equations.” J. Comput. Phys., Vol. 168, pp. 1-25.DOI