Mobile QR Code QR CODE : Journal of the Korean Society of Civil Engineers
1 
Chang, S. (2012). Dynamics of saltwater intrusion processes in saturated porous media systems, Ph.D. Dissertation, Auburn University, Auburn, the United States.Chang, S. (2012). Dynamics of saltwater intrusion processes in saturated porous media systems, Ph.D. Dissertation, Auburn University, Auburn, the United States.Google Search
2 
Croucher, A. E. and O'Sullivan, M. J. (1995). “The Henry Problem for Saltwater Intrusion.” Water Resources Research, Vol. 31, No. 7, pp. 1809-1814.10.1029/95WR00431Croucher, A. E. and O'Sullivan, M. J. (1995). “The Henry Problem for Saltwater Intrusion.” Water Resources Research, Vol. 31, No. 7, pp. 1809-1814.DOI
3 
Diersch, H. J. G. (2002). FEFLOW finite element subsurface flow and transport simulation system-user's manual/reference manual/ white papers. Release 5.0 Report, Berlin.10.1016/0309-1708(82)90049-5Diersch, H. J. G. (2002). FEFLOW finite element subsurface flow and transport simulation system-user's manual/reference manual/ white papers. Release 5.0 Report, Berlin.DOI
4 
Frind, E. O. (1982). “Simulation of Long-Term Transient Density- Dependent Transport in Groundwater.” Advances in Water Resources, Vol. 5, No. 2, pp. 73-88.Frind, E. O. (1982). “Simulation of Long-Term Transient Density- Dependent Transport in Groundwater.” Advances in Water Resources, Vol. 5, No. 2, pp. 73-88.Google Search
5 
Goswami, R. R. and Clement, T. P. (2007). “Laboratory-scale Investigation of Saltwater Intrusion Dynamics.” Water Resources Research, Vol. 43, No. 4, doi: 10.1029/2006WR005151.10.1029/2006WR005151 Goswami, R. R. and Clement, T. P. (2007). “Laboratory-scale Investigation of Saltwater Intrusion Dynamics.” Water Resources Research, Vol. 43, No. 4, doi: 10.1029/2006WR005151.DOI
6 
Goswami, R. R., Clement, T. P. and Hayworth, J. H. (2012). “Comparison of Numerical Techniques used for Simulating Variable- Density Flow and Transport Experiments, Journal of Hydrologic Engineering, Vol. 17, No. 2, pp. 272-282.10.1061/(ASCE)HE.1943-5584.0000428Goswami, R. R., Clement, T. P. and Hayworth, J. H. (2012). “Comparison of Numerical Techniques used for Simulating Variable- Density Flow and Transport Experiments, Journal of Hydrologic Engineering, Vol. 17, No. 2, pp. 272-282.DOI
7 
Guo, W. and Langevin, C. D. (2002). User's Guide to SEWAT: A Computer Program for Simulation of Three-Dimensional Variable- Density Ground-Water Flow, United States Geological Survey.Guo, W. and Langevin, C. D. (2002). User's Guide to SEWAT: A Computer Program for Simulation of Three-Dimensional Variable- Density Ground-Water Flow, United States Geological Survey.Google Search
8 
Henry, H. R. (1964). Effects of dispersion on salt encroachment in coastal aquifers, U.S. Geological Survey Water-Supply Paper Report 1613-C, C71-C84. pp.Henry, H. R. (1964). Effects of dispersion on salt encroachment in coastal aquifers, U.S. Geological Survey Water-Supply Paper Report 1613-C, C71-C84. pp.Google Search
9 
Huyakorn, P. S., Andersen, P. F., Mercer, J. W. and White, Jr. H. O. (1987). “Saltwater Intrusion in Aquifers: Development and Testing of a Three-Dimensional Finite Element Model.” Water Resources Research, Vol. 23, No. 2, pp. 293-312.10.1029/WR023i002p00293Huyakorn, P. S., Andersen, P. F., Mercer, J. W. and White, Jr. H. O. (1987). “Saltwater Intrusion in Aquifers: Development and Testing of a Three-Dimensional Finite Element Model.” Water Resources Research, Vol. 23, No. 2, pp. 293-312.DOI
10 
Kanel, S. R., Goswami, R. R., Clement, T. P., Barnett, M. O. and Zhao, D. (2008). “Two Dimensional Transport Characteristics of Surface Stabilized Zero-Valent Iron Nanoparticles in Porous Media.” Environ Sci Technol, Vol. 42, No. 3, pp. 896-900.10.1021/es071774jKanel, S. R., Goswami, R. R., Clement, T. P., Barnett, M. O. and Zhao, D. (2008). “Two Dimensional Transport Characteristics of Surface Stabilized Zero-Valent Iron Nanoparticles in Porous Media.” Environ Sci Technol, Vol. 42, No. 3, pp. 896-900.DOI
11 
Lee, C. H. and Cheng, R. T. S. (1974). “On Seawater Encroachment in Coastal Aquifers.” Water Resources Research, Vol. 10, pp. 1039-1043.10.1029/WR010i005p01039Lee, C. H. and Cheng, R. T. S. (1974). “On Seawater Encroachment in Coastal Aquifers.” Water Resources Research, Vol. 10, pp. 1039-1043.DOI
12 
Pinder, G. F. and Cooper, Jr. H. H. (1970). “A Numerical Technique for Calculating the Transient Position of the Saltwater Front.” Water Resources Research, Vol. 6, No. 3, pp. 875-882.10.1029/WR006i003p00875Pinder, G. F. and Cooper, Jr. H. H. (1970). “A Numerical Technique for Calculating the Transient Position of the Saltwater Front.” Water Resources Research, Vol. 6, No. 3, pp. 875-882.DOI
13 
Segol, G. (1994). Classic Groundwater Simulations Proving and Improving Numerical Models, Old Tappan, N. J.Segol, G. (1994). Classic Groundwater Simulations Proving and Improving Numerical Models, Old Tappan, N. J.Google Search
14 
Segol, G., Pinder, G. F. and Gray, W. G. (1975). “A Galerkin-finite Element Technique for Calculating the Transient Position of the Saltwater Front.” Water Resources Research, Vol. 11, No. 2, pp. 343-347.10.1029/WR011i002p00343Segol, G., Pinder, G. F. and Gray, W. G. (1975). “A Galerkin-finite Element Technique for Calculating the Transient Position of the Saltwater Front.” Water Resources Research, Vol. 11, No. 2, pp. 343-347.DOI
15 
Simpson, M. J. and Clement, T. P. (2003). “Theoretical Analysis of the Worthiness of Henry and Elder Problems as Benchmarks of Density-Dependent Groundwater Flow Models.” Advances in Water Resources, Vol. 26, No. 1, pp. 17-31.10.1016/S0309-1708(02)00085-4 Simpson, M. J. and Clement, T. P. (2003). “Theoretical Analysis of the Worthiness of Henry and Elder Problems as Benchmarks of Density-Dependent Groundwater Flow Models.” Advances in Water Resources, Vol. 26, No. 1, pp. 17-31.DOI
16 
Simpson, M. J. and Clement, T. P. (2004). “Improving the Worthiness of the Henry Problem as a Benchmark for Density-Dependent Groundwater Flow Models.” Water Resources Research, Vol. 40, No. 1, p. W01504.10.1029/2003WR002199Simpson, M. J. and Clement, T. P. (2004). “Improving the Worthiness of the Henry Problem as a Benchmark for Density-Dependent Groundwater Flow Models.” Water Resources Research, Vol. 40, No. 1, p. W01504.DOI
17 
Torlapati, J. and Clement, T. P. (2013). “Benchmarking a Visual- Basic based Multi-Component One-Dimensional Reactive Transport Modeling Tool.” Computers & Geosciences, Vol. 50, pp. 72-83.10.1016/j.cageo.2012.08.009Torlapati, J. and Clement, T. P. (2013). “Benchmarking a Visual- Basic based Multi-Component One-Dimensional Reactive Transport Modeling Tool.” Computers & Geosciences, Vol. 50, pp. 72-83.DOI
18 
Voss, C. I. and Provost, A. M. (2002). A Model for Saturated- Unsaturated, Variable-Density Ground-Water Flow with Solute or Energy Transport Report, U.S. Geol. Surv., Reston, Va.Voss, C. I. and Provost, A. M. (2002). A Model for Saturated- Unsaturated, Variable-Density Ground-Water Flow with Solute or Energy Transport Report, U.S. Geol. Surv., Reston, Va.Google Search
19 
Voss, C. I. and Souza, W. R. (1987). “Variable Density Flow and Solute Transport Simulation of Regional Aquifers Containing a Narrow Freshwater-Saltwater Transition Zone.” Water Resources Research, Vol. 23, No. 10, pp. 1851-1866.10.1029/WR023i010p01851Voss, C. I. and Souza, W. R. (1987). “Variable Density Flow and Solute Transport Simulation of Regional Aquifers Containing a Narrow Freshwater-Saltwater Transition Zone.” Water Resources Research, Vol. 23, No. 10, pp. 1851-1866.DOI