Mobile QR Code QR CODE : Journal of the Korean Society of Civil Engineers
1 
Coppola, E. A. Jr., Rana, A. J., Poulton, M. M., Szidarovszky, F. and Uhl, V. W. (2005). “A neural network model for predicting aquifer water level elevations.” Ground Water, 2005, Vol. 43, No. 2, pp. 231-241.10.1111/j.1745-6584.2005.0003.xCoppola, E. A. Jr., Rana, A. J., Poulton, M. M., Szidarovszky, F. and Uhl, V. W. (2005). “A neural network model for predicting aquifer water level elevations.” Ground Water, 2005, Vol. 43, No. 2, pp. 231-241.DOI
2 
Jeju Special Self-Governing Province (2013). Comprehensive Water Resouces Plan for Jeju-Island, p. 366 (in Korean). Jeju Special Self-Governing Province (2013). Comprehensive Water Resouces Plan for Jeju-Island, p. 366 (in Korean).Google Search
3 
Jeju Special Self-Governing Province (2016). Determination of expanded management water levels and development of groundwater prediction model, p. 112 (in Korean).Jeju Special Self-Governing Province (2016). Determination of expanded management water levels and development of groundwater prediction model, p. 112 (in Korean).Google Search
4 
Kim, J. W., Koh, G. W., Won, J. H. and Han, C. (2005). “A study on the determination of management groundwater level on jeju island.” Journal of KoSSGE, Vol. 10, No. 2, pp. 12-19 (in Korean).Kim, J. W., Koh, G. W., Won, J. H. and Han, C. (2005). “A study on the determination of management groundwater level on jeju island.” Journal of KoSSGE, Vol. 10, No. 2, pp. 12-19 (in Korean).Google Search
5 
McCulloch, W. S. and Pitts, W. (1943). “A logical calculus of the ideas immanent in nervous activity.” The Bulletin of Mathematical Biophysics, Vol. 5, No. 4, pp. 115-133.10.1007/BF02478259McCulloch, W. S. and Pitts, W. (1943). “A logical calculus of the ideas immanent in nervous activity.” The Bulletin of Mathematical Biophysics, Vol. 5, No. 4, pp. 115-133.DOI
6 
Mohanty, S., Jha, M. K., Kumar, A. and Sudheer, K. P. (2010). “Artificial neural network modeling for groundwater level forecasting in a river island of eastern india.” Water Resources Management, Vol. 24, No. 9, pp. 1845-1865.10.1007/s11269-009-9527-xMohanty, S., Jha, M. K., Kumar, A. and Sudheer, K. P. (2010). “Artificial neural network modeling for groundwater level forecasting in a river island of eastern india.” Water Resources Management, Vol. 24, No. 9, pp. 1845-1865.DOI
7 
Sung, J. Y., Lee, J., Chung, I. M. and Heo, J. H. (2017). “Hourly water level forecasting at tributary affected by main river condition.” Water, Vol. 9, No. 9, 644, doi:10.3390/w9090644.10.3390/w9090644Sung, J. Y., Lee, J., Chung, I. M. and Heo, J. H. (2017). “Hourly water level forecasting at tributary affected by main river condition.” Water, Vol. 9, No. 9, 644, doi:10.3390/w9090644.DOI
8 
Yi, M. J. and Lee, K. K. (2004). “Transfer function-noise modelling of irregularly observed grounfwater heads using precipitation data.” Journal of Hydrology, Vol. 285, No. 3, pp. 272-287.10.1016/j.jhydrol.2003.10.020Yi, M. J. and Lee, K. K. (2004). “Transfer function-noise modelling of irregularly observed grounfwater heads using precipitation data.” Journal of Hydrology, Vol. 285, No. 3, pp. 272-287.DOI
9 
Yoon, H., Kim, Y., Ha, K. and Kim, G. B. (2013). “Application of groundwater-level prediction models using data-based learning algorithms to national groundwater monitoring network data.” The Journal of Engineering Geology, Vol. 23, No. 2, pp. 137-147 (in Korean).10.9720/kseg.2013.2.137Yoon, H., Kim, Y., Ha, K. and Kim, G. B. (2013). “Application of groundwater-level prediction models using data-based learning algorithms to national groundwater monitoring network data.” The Journal of Engineering Geology, Vol. 23, No. 2, pp. 137-147 (in Korean).DOI