Mobile QR Code QR CODE : Journal of the Korean Society of Civil Engineers
1 
Abdallah, S., Fan, M. and Rees, D. W. A. (2018). "bonding mechanisms and strength of steel fiber-reinforced cementitious composites: Overview." Journal of Materials in Civil Engineering, Vol. 30, No. 3, p. 04018001. doi: 10.1061/(ASCE)MT.1943-5533.0002154.DOI
2 
Al Khalaf, M. N. and Page, C. L. (1979). "Steel/mortar interfaces: Microstructural features and mode of failure." Cement and Concrete Research, Vol. 9, No. 2, pp. 197-207. doi: 10.1016/0008-8846(79)90026-7.DOI
3 
Al Khalaf, M. N., Page, C. L. and Ritchie, A. G. B. (1980). "Effects of fibre surface composition on mechanical properties of steel fibre reinforced mortars." Cement and Concrete Research, Vol. 10, No. 1, pp. 71-77.DOI
4 
Alwan, J. M., Naaman, A. and Hansen, W. (1991). "Pull-out work of steel fibers from cementitious composites?: Analytical investigation." Cement & Concrete Composites, Vol. 13, No. 4, pp. 247-255. doi: 10.1016/0958-9465(91)90030-L.DOI
5 
Azhari, F. and Banthia, N. (2012). "Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing." Cement and Concrete Composites, Vol. 34, No. 7, pp. 866-873. doi: 10.1016/j.cemconcomp.2012.04.007.DOI
6 
Bartos, P. (1981). "Review paper: Bond in fibre reinforced cements and concretes." The International Journal of Cement Composites, Vol. 3, No. 3, pp. 159-177.DOI
7 
Bentur, A. and Alexander, M. G. (2000). "A review of the work of the RILEM TC 159-ETC: Engineering of the interfacial transition zone in cementitious composites." Materials and Structures, Vol. 33, No. 2, pp. 82-87. doi: 10.1007/BF02484160.DOI
8 
Bentur, A., Diamond, S. and Mindess, S. (1985). "The microstructure of the steel fibre-cement interface." Journal of Materials Science, Vol. 20, No. 10, pp. 3610-3620. doi: 10.1007/BF01113768.DOI
9 
Bontea, D. M., Chung, D. D. L. and Lee, G. C. (2000). "Damage in carbon fiber-reinforced concrete, monitored by electrical resistance measurement." Cement and Concrete Research, Vol. 30, No. 4, pp. 651-659. doi: 10.1016/S0008-8846(00)00204-0.DOI
10 
Chan, Y. W. and Chu, S. H. (2004). "Effect of silica fume on steel fiber bond characteristics in reactive powder concrete." Cement and Concrete Research, Vol. 34, No. 7, pp. 1167-1172. doi: 10.1016/j.cemconres.2003.12.023.DOI
11 
Chung, D. D. L. (2002). "Piezoresistive cement-based materials for strain sensing." Journal of Intelligent Material Systems and Structures, Vol. 13, No. 9, pp. 599-609. doi: 10.1106/104538902031861.DOI
12 
Ford, S. J., Shane, J. D. and Mason, T. O. (1998). "Assigment of features in impedance spectra of the cement paste/steel system." Cement and Concrete Research, Vol. 28, No. 12, pp. 1737-1751.DOI
13 
Fu, X and Chung, D. D. L. (1997). "Bond strength and contact electrical resistivity between cement and stainless steel fiber: their correlation and dependence on fiber surface treatment and curing age." ACI Materials Journal, Vol. 94, No. 3, pp. 203-208.DOI
14 
Fu, X., Lu, W. and Chung, D. D. L. (1998). "Improving the Strain- sensing ability of carbon fiber-reinforced cement by ozone treatment of the fibers." Cement and Concrete Research, Vol. 28, No. 2, pp. 183-187. doi: 10.1016/S0008-8846(97)00265-2.DOI
15 
Han, B. and Ou, J. (2007). "Embedded piezoresistive cement-based stress/strain sensor." Sensors and Actuators, A: Physical, Vol. 138, No. 2, pp. 294-298. doi: 10.1016/j.sna.2007.05.011.DOI
16 
Han, B., Yu, X. and Kwon, E. (2009). "A self-sensing carbon nanotube/ cement composite for traffic monitoring." Nanotechnology, Vol. 20, No. 44, pp. 1-5. doi: 10.1088/0957-4484/20/44/445501.DOI
17 
Han, B., Yu, X. and Ou, J. (2014). Self-sensing concrete in smart structures, Butterworth Heinemann, Kindlington.
18 
Han, B., Zhang K., Yu, X., Kwon, E. and Ou, J. (2011). "Nickel particle-based self-sensing pavement for vehicle detection." Measurement: Journal of the International Measurement Confederation, Vol. 44, No. 9, pp. 1645-1650. doi: 10.1016/j.measurement.2011.06.014.DOI
19 
Han, B., Zhang, K., Yu, X., Kwon, E. and Ou, J. (2012). "Electrical characteristics and pressure-sensitive response measurements of carboxyl MWNT/cement composites." Cement and Concrete Composites, Vol. 34, No. 6, pp. 794-800. doi: 10.1016/j.cemconcomp.2012.02.012.DOI
20 
Hou, T. C. and Lynch, J. P. (2005). "Conductivity-based strain monitoring and damage characterization of fiber reinforced cementitious structural components." Smart Structures and Materials, pp. 419-429.DOI
21 
Kim, D. J., El-Tawil, S. and Naaman, A. (2010). "Effect of matrix strength on pullout behavior of high-strength deformed steel fibers." Vol. 272, ACI special publication, pp. 135-150.
22 
Kim, M. K. and Kim, D. J. (2018). "Electro-mechanical self-sensing response of ultra-high-performance fiber-reinforced concrete in tension Electromechanical response of high performance fiber reinforced cementitinous composites containing milled glass fibers under tension." Materials, Vol. 11, No. 7, pp. 1-18.DOI
23 
Kim, M. K., Kim, D. J. and An, Y. K. (2018). "Electro-mechanical self-sensing response of ultra-high-performance fiber-reinforced concrete in tension." Composites Part B: Engineering, Vol. 134, pp. 254-264. doi: 10.1016/j.compositesb.2017.09.061.DOI
24 
Le, H. V. and Kim, D. J. (2017). "Effect of matrix cracking on electrical resistivity of high performance fiber reinforced cementitious composites in tension." Construction and Building Materials, Vol. 156, pp. 750-760. doi: 10.1016/j.conbuildmat.2017.09.046.DOI
25 
Le, H. V., Moon, D. and Kim, D. J. (2018). "Effects of ageing and storage conditions on the interfacial bond strength of steel fibers in mortars." Construction and Building Materials, Vol. 170, pp. 129-141.DOI
26 
Lee, Y., Kang, S. T. and Kim, J. K. (2010). "Pullout behavior of inclined steel fiber in an ultra high strength cementitious matrix." Construction and Building Materials, Vol. 24, No. 10, pp. 2030-2041.DOI
27 
Naaman, A. E. and Najm, H. (1991). "Bond-slip mechanisms of steel fibers in concrete." ACI Materials Journal, Vol. 88, No. 2, pp. 135-145.DOI
28 
Nguyen, D. L., Song, J., Manathamsombat, C. and Kim, D. J. (2014). "Comparative electromechanical damage-sensing behaviors of six strain-hardening steel fiber-reinforced cementitious composites under direct tension." Composites Part B: Engineering, Vol. 69, pp. 159-168. doi: 10.1016/j.compositesb.2014.09.037.DOI
29 
Park, S. H., Ryu, G. S., Koh, K. T. and Kim, D. J. (2014). "Effect of shrinkage reducing agent on pullout resistance of high- strength steel fibers embedded in ultra-high-performance concrete." Cement and Concrete Composites, Vol. 49, pp. 59-69. doi: 10.1016/j.cemconcomp.2013.12.012.DOI
30 
Peled, A., Torrents, J. M., Mason, T. O., Shah, S. P. and Garboczi, E. J. (2001). "Electrical impedance spectra to monitor damage during tensile loading of cement composites." ACI Materials Journal, Vol. 98, No. 4, pp. 313-322. doi: 10.14359/10400.DOI
31 
Pour-Ghaz, M., Kim, J., Nadukuru, S. S., Connor, S. M., Michalowski, R. L., Bradshaw, A., Green, R. A., Lynch, J. P., Poursaee, A. and Weiss, W. J. (2011). "Using electrical, magnetic and acoustic sensors to detect damage in segmental concrete pipes subjected to permanent ground displacement." Cement & Concrete Composites, Vol. 33, pp. 749-762.DOI
32 
Ranade, R., Zhang, J., Lynch, J. P. and Li, V. C. (2014). "Influence of micro-cracking on the composite resistivity of Engineered Cementitious Composites." Cement and Concrete Research, Vol. 58, pp. 1-12. doi: 10.1016/j.cemconres.2014.01.002.DOI
33 
Shannag, M. J., Brincker, R. and Hansen, W. (1997). "Pullout behavior of steel fibers from cement-based composites." Cement and Concrete Research, Vol. 27, No. 6, pp. 925-936. doi: 10.1016/S0008-8846(97)00061-6.DOI
34 
Shi, Z. Q. and Chung, D. D. L. (1999). "Carbon fiber-reinforced concrete for traffic monitoring and weighing in motion." Cement and Concrete Research, Vol. 29, No. 3, pp. 435-439. doi: 10.1016/S0008-8846(98)00204-X.DOI
35 
Song, J., Nguyen, D. L., Manathamsombat, C. and Kim, D. J. (2015). "Effect of fiber volume content on electromechanical behavior of strain-hardening steel-fiber-reinforced cementitious composites." Journal of Composite Materials, Vol. 49, No. 29, pp. 3621-3634. doi: 10.1177/0021998314568169.DOI
36 
Suryanto, B., McCarter, W. J., Starrs, G. and Ludford-jones, G. V. (2016). "Electrochemical immittance spectroscopy applied to a hybrid PVA/steel fiber engineered cementitious composite." Materials and Design, Vol. 105, No. 5, pp. 179-189. doi: 10.1016/j.matdes.2016.05.037.DOI
37 
Torrents, J. M., Mason, T. O. and Garboczi, E. J. (2000). "Impedance spectra of fiber-reinforced cement-based composites: A modeling approach." Cement and Concrete Research, Vol. 30, No. 4, pp. 585-592. doi: 10.1016/S0008-8846(00)00211-8.DOI
38 
Wang, D., Shi, C., Wu, Z., Xiao J., Huang, Z. and Fang, Z. (2015). "A review on ultra high performance concrete: Part II. Hydration, microstructure and properties." Construction and Building Materials, Vol. 96, pp. 368-377. doi: 10.1016/j.conbuildmat.2015.08.095.DOI
39 
Wen, S. and Chung, D. D. L. (2003). "A comparative study of steel- and carbon-fiber cement as piezoresistive strain sensors." Advances in Cement Research, Vol. 15, No. 3, pp. 119-128.DOI
40 
Wu, Z., Khayat, K. H. and Shi, C. (2018). "How do fiber shape and matrix composition affect fiber pullout behavior and flexural properties of UHPC?." Cement and Concrete Composites, Vol. 90, pp. 193-201. doi: 10.1016/j.cemconcomp.2018.03.021.DOI
41 
Yoo, D. Y., You, I. and Lee, S. J. (2017). "Electrical properties of cement-based composites with carbon nanotubes, graphene, and graphite nanofibers." Sensors, Vol. 17 No. 5, pp. 1-13. doi: 10.3390/s17051064.DOI