Mobile QR Code QR CODE : Journal of the Korean Society of Civil Engineers
1 
Audebert, N., Le Saux, B. and Lefèvre, S. (2016). "Semantic segmentation of earth observation data using multimodal and multi-scale deep networks." Asian Conference on Computer Vision, Springer, Taipei, Taiwan, pp. 180-196.DOI
2 
Buslaev, A., Seferbekov, S., Iglovikov, V. and Shvets, A. (2018). "Fully convolutional network for automatic road extraction from satellite imagery." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, Utah, pp. 207-210.DOI
3 
Filin, O. and Zapara, A. (2018). "Road detection with EOSResUNet and post vectorizing algorithm." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, Utah, pp. 201-205.DOI
4 
Ghosh, A., Ehrlich, M., Shah, S., Davis, L. and Chellappa, R. (2018). "Stacked U-Nets for ground material segmentation in remote sensing imagery." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, Utah, pp. 257-261.DOI
5 
Jo, W. H., Lim, Y. H. and Park, K. H. (2019). "Deep learning based land cover classification using convolutional neural network: a case study of Korea." The Korean Geographical Society, Vol. 54, No. 1, pp. 1-16 (in Korean).
6 
Kampffmeyer, M., Salberg, A. B. and Jenssen, R. (2016). "Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks." Proceedings of the IEEE conference on computer vision and pattern recognition workshops, Las Vegas, pp. 1-9.DOI
7 
Lee, S. H. and Kim, J. S. (2019). "Land cover classification using sematic image segmentation with deep learning." Korean Journal of Remote Sensing, Vol. 35, No. 2, pp. 279-288 (in Korean).
8 
National Environment Information Network System (2019). Land cover map, Available at: http://www.neins.go.kr/gis/mnu01/doc 03a.asp (Accessed: February 03, 2020) (in Korean).
9 
Ronneberger, O., Fischer, P. and Brox, T. (2015). "U-net: Convolutional networks for biomedical image segmentation." International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, Germany, pp. 234-241.DOI
10 
Seo, K. H., Oh, C. W., Kim, D, Lee, M. Y. and Yang, Y. J. (2019). "An empirical study on automatic building extraction from aerial images using a deep learning algorithm." Proceedings of Korean Society for Geospatial Information Science, Republic of Korea, pp. 243-252 (in Korean).
11 
Szegedy, C., Ioffe, S., Vanhoucke, V. and Alemi, A. A. (2017). "Inception-v4, inception-resnet and the impact of residual connections on learning." Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, pp. 4278-4284.
12 
Xu, Y., Wu, L., Xie, Z. and Chen, Z. (2018). "Building extraction in very high resolution remote sensing imagery using deep learning and guided filters." Remote Sensing, Vol. 10, No. 1, 144.DOI
13 
Zhang, Z., Liu, Q. and Wang, Y. (2018). "Road extraction by deep residual u-net." IEEE Geoscience and Remote Sensing Letters, Vol. 15, No. 5, pp. 749-753.DOI