Arnold, J. G. and Fohrer, N. (2005). "SWAT2000: Current capabilities and research
opportunities in applied watershed modeling." Hydrological Processes, Vol. 19, No.
3, pp. 563-572.
10.1002/hyp.5611
ASTM (2000). Standard guide for risk-based corrective action, standard E2081-00 (Reapproved
2004), ASTM International, West Conshohocken, PA, USA, p. 95.
Chang, S. W. and Chung, I .M. (2015). "Analysis of groundwater budget in a water curtain
cultivation site." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 35,
No. 6, pp. 1259-1267 (in Korean).
10.12652/Ksce.2015.35.6.1259
Chang, S. W., Moon, H. S., Lee, E. H., Joo, J. C. and Nam, K. P. (2019a). "Numerical
study of contaminant pathway for risk assessment in subsurface of contaminated sites."
Journal of Soil and Groundwater Environment, Vol. 24, No. 3, pp. 13-23 (in Korean).
Chang, S. W., Kim, M. G. and Chung, I. M. (2019b). "Numerical study of contaminant
pathway based on generic-scenarios and contaminant-based scenarios of vadose zone."
Journal of the Korean Society of Civil Engineers, KSCE, Vol. 39, No. 6, pp. 751-758
(in Korean).
Kim, M. J. and Park, J. W. (2007). "Contaminant fate and transport modeling for risk
assessment." Journal of Soil and Groundwater Environment, Vol. 12, No. 1, pp. 44-52
(in Korean).
Mazzieri, F., Di Sante, M., Fratalocchi, E. and Pasqualini, E. (2016). "Modeling contaminant
leaching and transport to groundwater in Tier 2 risk assessment procedures of contaminated
sites." Environmental Earth Sciences, Vol. 75, No. 18, 1247.
10.1007/s12665-016-6043-1
Ministry of Environment (MOE) (2006). Soil contamination risk assessment guideline,
No. 283 (in Korean).
Ministry of Environment (MOE) (2010). Human health risk assessment for contaminated
sites (in Korean).
Ministry of Environment (MOE) (2020). National groundwater information center, Available
at: https://www.gims.go.kr (Accessed: October 06, 2020).
Ryu, H. R. (2010). Development of realistic risk assessment framework for organic
contaminants incorporating desoption-limited bioavailability and dilution attenuation
factors, Ph.D. Dissertation, Seoul National University.
United States Environmental Protection Agency (USEPA) (1996a). Soil screening guidance:
User>s guide, office of emergency and remedial response, EPA/540/R-96/018. NTIS PB96-963505,
Washington, DC.
United States Environmental Protection Agency (USEPA) (1996b). Soil screening guidance:
Technical background document, Office of Emergency and Remedial Response, EPA/540/R-96/128.
NTIS PB96-963502, Washington, DC.
United States Environmental Protection Agency (USEPA) (2002). Supplemental guidance
for developing soil screening levels for superfund sites: Appendix C, Washington,
DC.
United States Environmental Protection Agency (USEPA) (2005). Partition coefficients
for metals in surface water, soil, and waste, Washington, DC.
Verginelli, I. and Baciocchi, R. (2013). "Role of natural attenuation in modeling
the leaching of contaminants in the risk analysis framework." Journal of Environmental
Management, Vol. 114, pp. 395-403.
10.1016/j.jenvman.2012.10.035
23186723