Mobile QR Code QR CODE : Journal of the Korean Society of Civil Engineers

References

1 
Bendale A., Boult T. E. (2015). "Towards open world recognition.", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, Massachusetts, USA, pp. 1893-1902URL
2 
Bendale A., Boult T. E. (2016). "Towards open set deep networks.", Proceedings of the IEEE Conference on Computer Vision and pattern Recognition, Las Vegas, Nevada, USA, pp. 1563-1572URL
3 
Cha Y. J., Choi W. R., Büyüköztürk O. (2017). "Deep learning-based crack damage detection using convolutional neural networks.", Computer‐Aided Civil and Infrastructure Engineering, Vol. 32, No. 5, pp. 361-378DOI
4 
Fisher R. A., Tippett L. H. C. (1928). "Limiting forms of the frequency distribution of the largest or smallest member of a sample.", Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press, Vol. 24, No. 2, pp. 180-190DOI
5 
Jenkinson A. F. (1955). "The frequency distribution of the annual maximum (or minimum) values of meteorological elements.", Quarterly Journal of the Royal Meteorological Society, Vol. 81, No. 348, pp. 158-171DOI
6 
Kim S. M., Sohn J. M., Kim D. S. (2020). "A method for concrete crack detection using U-Net based image inpainting technique.", Journal of The Korea Society of Computer and Information, Vol. 25, No. 10, pp. 35-42 (in Korean)DOI
7 
Korea Expressway Corporation Research Institute (KECRI) (2015). "Prediction model for long-term maintenance costs of highway bridges (in Korean)."Google Search
8 
Korea Expressway Corporation Research Institute (KECRI) (2020). "Image-based inspection techniques of bridge for seoul–sejong expressway (in Korean)."Google Search
9 
LeCun Y., Bottou L., Bengio Y., Haffner P. (1998). "Gradient-based learning applied to document recognition.", Proceedings of the IEEE, Vol. 86, No. 11, pp. 2278-2324DOI
10 
Liu Y., Tang Y., Zhang L., Liu L., Song M., Gong K., Peng Y., Hou J., Jiang T. (2020). "Hyperspectral open set classification with unknown classes rejection towards deep networks.", International Journal of Remote Sensing, Vol. 41, No. 16, pp. 6355-6383DOI
11 
Neal L., Olson M., Fern X., Wong W. K., Li F. (2018). "Open set learning with counterfactual images.", Proceedings of the European Conference on Computer Vision, ECCV, Munich, Germany, pp. 1-16URL
12 
Nguyen A., Yosinski J., Clune J. (2015). "Deep neural networks are easily fooled: High confidence predictions for unrecognizable images.", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, Massachusetts, USA, pp. 427-436URL
13 
Özgenel Ç. F. (2019). "Concrete crack images for classification.", Mendeley Data, Version 2DOI
14 
Park J. M., Kim H. S., Shin D. H., Park M. S., Kim S. H. (2019). "A study on machine learning algorithm suitable for automatic crack detection in wall-climbing robot.", Kips Transactions on Software and Data Engineering, Vol. 8, No. 11, pp. 449-456 (in Korean)DOI
15 
Scheirer W. J., Rocha A. R., Sapkota A., Boult T. E. (2012). "Toward open set recognition.", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 35, No. 7, pp. 1757-1772DOI
16 
Scheirer W. J., Rocha A., Micheals R. J., Boult T. E. (2011). "Meta-recognition: The theory and practice of recognition score analysis.", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 33, No. 8, pp. 1689-1695DOI
17 
Scherreik M. D., Rigling B. D. (2016). "Open set recognition for automatic target classification with rejection.", IEEE Transactions on Aerospace and Electronic Systems, Vol. 52, No. 2, pp. 632-642DOI
18 
Seol D. H., Oh J. H., Kim H. J. (2020). "Comparison of deep learning-based CNN models for crack detection.", Journal of The Architectural Institute of Korea Structure & Construction, Vol. 36, No. 3, pp. 113-120 (in Korean)DOI
19 
Simonyan K., Zisserman A. (2014). "Very deep convolutional networks for large-scale image recognition.", arXiv preprint arXiv:1409.1556.URL
20 
Sun X., Li X., Ren K., Song J. (2019). "Solving the defect in application of compact abating probability to convolutional neural network based open set recognition.", 2019 IEEE 31st International Conference on Tools with Artificial Intelligence, ICTAI, Portland, USADOI