Mobile QR Code QR CODE : Journal of the Korean Society of Civil Engineers

References

1 
"Fallati, L., Polidori, A., Salvatore, C., Saponari, L., Savini, A. and Galli, P. (2019). “Anthropogenic Marine Debris assessment with Unmanned Aerial Vehicle imagery and deep learning: A case study along the beaches of the Republic of Maldives.” Science of the Total Environment, Elsevier, Vol. 693, 133581, https://doi.org/10.1016/j.scitotenv.2019.133581."DOI
2 
"Kim, S., Kim, T., Hyeon, J., Won, J. and Kim, H. (2023). “Comparing object detection models for water trash monitoring.” Proceedings of International Conference on Computing in Civil and Building Engieering, Springer, Cape Town, South Africa, pp. 161-170, https://doi.org/10.1007/978-3-031-35399-4_13."DOI
3 
"Korea Marine Environment Management Corporation (KOEM) (2020a). 2020 National Coastal Waste Monitoring Service (in Korean). "URL
4 
"Korea Marine Environment Management Corporation (KOEM) (2020b). Standard Product Calculation and Design Standards for Marine Waste Purification Business (in Korean). "URL
5 
"Kylili, K., Kyriakides, I., Artusi, A. and Hadjistassou, C. (2019). “Identifying floating plastic marine debris using a deep learning approach.” Environmental Science and Pollution Research, EuChemS, Vol. 26, pp. 17091-17099, https://doi.org/10.1007/s11356-019-05148-4."DOI
6 
"Lee, J. and Kang, Y. (2021). “The criteria for suitable site selection of floating barriers.” Proceedings of the Korean Society for Marine Environment and Energy, KOSMEE, Incheon, Korea, pp. 1640 (in Korean). "URL
7 
"Reinelt, G. (1994). The Traveling Salesman: Computational Solutions for TSP Applications, Springer, Berlin, Heidelberg. "URL
8 
"Sánchez-Ferrer, A., Valero-Mas, J. J., Gallego, A. J. and Calvo- Zaragoza, J. (2023). “An experimental study on marine debris location and recognition using object detection.” Pattern Recognition Letters, Elsevier, Vol. 168, pp. 154-161, https://doi.org/10.1016/j.patrec.2022.12.019."DOI
9 
"Wang, C. Y., Bochkovskiy, A. and Liao, H. Y. M. (2023). “YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors.” Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE Computer Society and The Computer Vision Foundation, Vancouver, Canada, pp. 7464-7475, https://doi.org/10.1109/CVPR52729.2023.00721."DOI