JKSCE
KSCE JOURNAL OF CIVIL AND
ENVIRONMENTAL ENGINEERING RESEARCH
KSCE
Contact
ISSN : 1015-6348 (Print)
ISSN : 2799-9629 (Online)
Mobile QR Code
Journal of the Korean Society of Civil Engineers
ISO Journal Title
KSCE J. Civ. Environ. Eng. Res.
Open Access, Bi-monthly
Main Menu
Main Menu
최근호
Current Issue
논문집
Journal Archive
저널소개
About Journal
편집위원회
Editorial Board
논문투고안내
For Authors and Reviewers
윤리규정
Publication Ethics
Principles of Transparency and Best Practice
Business Model
연락처
Contact Info
논문투고
E-submission
Journal Search
Home
All Issues
2024-06
(v.44 n.3)
10.12652/Ksce.2024.44.3.0385
Journal XML
XML
PDF
INFO
REF
References
1
"Al-Nuaimy, W., Huang, Y., Nakhkash, M., Fang, M. T. C., Nguyen, V. T. and Eriksen, A. (2000). “Automatic detection of buried utilities and solid objects with GPR using neural networks and pattern recognition.” Journal of Applied Geophysics, Vol. 43, pp. 157-165, https://doi.org/10.1016/S0926-9851(99)00055-5."
2
"Annan, A. (1999). “Practical processing of GPR data.” Mississauga, ON, Canada, Sensors & Software."
3
"Bailia, J., Lahouara, S., Herglia, M., Al-Qadi, I. L. and Besbes, K. (2009). “GPR signal denoising by discrete wavelet transform.” NDT & E International, Vol. 42, No. 8, pp. 696-703."
4
"Benedetto, A., Tosti, F., Ciampoli, L. and D’Amico, F. (2017). “An overview of ground-penetrating radar signal processing techniques for road inspections.” Signal Process, pp. 201-209."
5
"Gamba, P. (2000). “Neural detection of pipe signatures in ground penetrating radar images.” IEEE Trans Geosci Remote Sens, pp. 790-797."
6
"Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang W., Weyand, T., Andreetto, M. and Adam, H. (2017). “MobileNets : Efficient convolutional neural networks for mobile vision applications.” arXiv preprint, https://arXiv.org/abs/1704.04861v1."
7
"Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., Le, Q. V. and Adam, H. (2019). “Searching for MobileNetV3.” arXiv preprint, https://arXiv.org/abs/1905.02244v5."
8
"Kang, M. S., Kim, N., Lee, J. J. and An, Y. K. (2019). “Deep learning-based automated underground cavity detection using three-dimensional ground penetrating radar.” Structural Health Monitoring, Vol. 19, No. 1, pp. 173-185, https://doi.org/10.1177/1475921719838081."
9
"Kingma, D. P. and Ba, J. (2014). “ADAM: A method for stochastic optimization.” Proceedings of 3rd International Conference for Learning Representations, San Diego, USA, 2015, arXiv preprint, https://arxiv.org/abs/1412.6980."
10
"Kurbiel, T. and Khaleghian, S. (2017).“Training of deep neural networks based on distance measures using RMSProp.” arXiv preprint, https://arxiv.org/abs/1708.01911."
11
"Qin, Y. and Huang, C. (2016). “Identifying underground voids using a GPR circular-end bow-tie antenna system based on a support vector machine.” International Journal of Remote Sensing, pp. 876-888, https://doi.org/10.1080/01431161.2015.1137990."
12
"Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R. (2014). “Dropout : A simple way to prevent neural networks from overfitting.” Journal of Machine Learning Research, Vol. 15, pp. 1929-1958."
13
"Tzanis, A. (2013). “Detection and extraction of orientation-and- scale-dependent information from two-dimensional GPR data with tuneable directional wavelet filters.” Journal Applied Geophysics, Vol. 89, pp. 48-67, https://doi.org/10.1016/j.jappgeo.2012.11.007."
14
"Zhang, Y., Huston, D. and Xia, T. (2016). “Underground object characterization based on neural networks for ground penetrating radar data.” Proceedings of the International Society for Optics and Photonics, pp. 1-9."