Title |
Evaluation of the Bending Moment of FRP Reinforced Concrete Using Artificial Neural Network
|
Keywords |
FRP ; 인공신경망 ; 역전파 학습 알고리즘 Fiber Reinforced Polymer ; Artificial Neural Networks ; Back Propagation Algorithm |
Abstract |
In this study, Multi-Layer Perceptron(MLP) among models of Artificial Neural Network(ANN) is used for the development of a model that evaluates the bending capacities of reinforced concrete beams strengthened by FRP Rebar. And the data of the existing researches are used for materials of ANN model. As the independent variables of input layer, main components of bending capacities, width, effective depth, compressive strength, reinforcing ratio of FRP, balanced steel ratio of FRP are used. And the moment performance measured in the experiment is used as the dependent variable of output layer. The developed model of ANN could be applied by GFRP, CFRP and AFRP Rebar and the model is verified by using the documents of other previous researchers. As the result of the ANN model presumption, comparatively precise presumption values are achieved to presume its bending capacities at the model of ANN(0.05), while observing remarkable errors in the model of ANN(0.1). From the verification of the ANN model, it is identified that the presumption values comparatively correspond to the given data ones of the experiment. In addition, from the Sensitivity Analysis of evaluation variables of bending performance, effective depth has the highest influence, followed by steel ratio of FRP, balanced steel ratio, compressive strength and width in order.
|