Mobile QR Code QR CODE

Journal of the Korea Concrete Institute

J Korea Inst. Struct. Maint. Insp.
  • Indexed by
  • Korea Citation Index (KCI)
Title An Experimental Study on Evaluation of Axially Compressive Buckling Strength of Corroded Temporary Steel
Authors 김인태 ; 이명진 ; 신창희
Page pp.135-146
ISSN 1226-6205
Keywords 가시설 강구조물 ; 부식손상 ; 축하중 좌굴강도 ; 유효두께 ; 좌굴실험 Temporary steel structure ; Corrosion damage ; Axial buckling strength ; Effective thickness ; Buckling test
Abstract Steel structures have been generally painted to prevent corrosion damage. However, the painted film is deteriorated with increase in service life, and then corrosion damage resulting in cross sectional area occurs on steel surface. As a result, the buckling strength of steel structures can be decreased due to the corrosion damages. The evaluation method of the axial buckling strength of columns about a variety of section shapes and supporting conditions have been presented, but evaluation method of buckling strength about irregular nonprismatic columns is not established. In this study, the axial buckling strength of corroded steels was evaluated based on the buckling test results of corroded steel specimens that were cut off at a temporary steel structure. The corroded specimens were picked up total 10 specimens according to various slenderness ratio from the web of a temporary structure's main beam. The length of specimens is 200, 300, 400, 500 and 600mm respectively. The rust productions were removed by the chemical treatment. Then, the surface geometry was measured at intervals of 1×1mm by using the optical 3D digitizing system, and the residual thickness of the specimens was calculated. The axial buckling test was performed on 10 corroded specimens and 12 non-corroded specimens under the fixed-fixed support condition. From the test results, the effect of corrosion damages on axial buckling load was investigated. Regardless of corrosion damage degree, the axial buckling strength of corroded specimens and non-corroded specimens was evaluated identically by using minimum average residual thickness or average residual thickness to minus its standard deviation. Reasonable measuring intervals of residual thickness was proposed by using the results to apply for practical works.