The Journal of
the Korean Society on Water Environment

The Journal of
the Korean Society on Water Environment

Bimonthly
  • ISSN : 2289-0971 (Print)
  • ISSN : 2289-098X (Online)
  • KCI Accredited Journal

Editorial Office


  1. κ΅­λ¦½ν™˜κ²½κ³Όν•™μ› λ¬Όν™˜κ²½μ—°κ΅¬λΆ€ (Water Environment Research Department, National Institute of Environmental Research)
  2. ν•œκ°•λ¬Όν™˜κ²½μ—°κ΅¬μ†Œ (Han River Environment Research Center)



Flow-adjusted Seasonal Kendall, LOWESS, Nakdong river, Seasonal and Regional Kendall

1. Introduction

μ „κ΅­μ˜ ν•˜μ²œ, ν˜Έμ†Œ λ“± κ³΅κ³΅μˆ˜μ—­μ— λŒ€ν•˜μ—¬ ν™˜κ²½λΆ€μ—μ„œλŠ” μΌλ°˜μˆ˜μ§ˆμΈ‘μ •λ§ 운영 지점을 1,348개(1993λ…„)μ—μ„œ 1,828개 (2016λ…„ ν˜„μž¬)둜 ν™•λŒ€ κ΄€λ¦¬ν•˜κ³  있으며 μˆ˜μ§ˆμ˜€μ—Όμ΄λŸ‰μΈ‘μ • 망은 2004λ…„ 낙동강 μˆ˜κ³„λ₯Ό μ‹œμž‘μœΌλ‘œ κΈˆκ°•, μ˜μ‚°κ°• λ“± 단 κ³„μ μœΌλ‘œ ν™•λŒ€ μ‹œν–‰ν•˜λŠ” λ“± κ΅­κ°€ λ¬Όν™˜κ²½μΈ‘μ •λ§μ„ ν™•λŒ€ 운 μ˜ν•¨μœΌλ‘œμ¨ 전ꡭ에 λŒ€ν•œ 수질 ν˜„ν™© νŒŒμ•…μ€ λ¬Όλ‘  μ •μ±… λ°©ν–₯ 섀정을 μœ„ν•œ 기초자료둜 ν™œμš©ν•˜κ³  μžˆλ‹€(MOE, 2016, NIER, 2008). λ”μš±μ΄ μˆ˜μ§ˆμ˜€μ—Όμ΄λŸ‰μΈ‘μ •λ§μ€ μΌλ°˜μˆ˜μ§ˆμΈ‘μ •λ§κ³Ό 달 리 수질과 μœ λŸ‰μ„ ν•¨κ»˜ μΈ‘μ •ν•˜κ³  μžˆμ–΄ 이λ₯Ό ν™œμš©ν•œ 연ꡬ가 λ‹€μ–‘ν•˜κ²Œ μ§„ν–‰λ˜κ³  μžˆλ‹€. 이쀑 μž₯κΈ° μˆ˜μ§ˆλ³€ν™”μ— λŒ€ν•œ 연ꡬ 둜 λͺ¨μˆ˜μ  방법인 νšŒκ·€λΆ„μ„μ€ λ¬Όλ‘  λΉ„μ •κ·œμ„±, μ΄μƒμΉ˜ 및 결츑치 쑴재 등을 κ³ λ €ν•œ λΉ„λͺ¨μˆ˜μ  좔세뢄석방법인 Mann- Kendall, Seasonal Kendall Testλ₯Ό μ΄μš©ν•œ 연ꡬ가 ν™œλ°œνžˆ μ§„ ν–‰λ˜κ³  μžˆλ‹€(Birsan et al., 2005; Choi et al., 2008; Karpouzos et al., 2010; Kauffiman et al., 2011; Kim et al., 2014; Kim and Park, 2004; Lee and Park, 2008; Song et al., 2012; Xu et al., 2003; Yenilmez et al., 2011). κ·ΈλŸ¬λ‚˜ 이듀 연ꡬ μ—μ„œλŠ” κ°•μˆ˜λŸ‰, μœ λŸ‰, 수온 λ“± μžμ—°μ  μ™ΈλΆ€ν™˜κ²½ μš”μΈμ΄ 수 μ§ˆμ— λ―ΈμΉ  수 μžˆλŠ” 영ν–₯을 κ³ λ €λ˜μ§€ λͺ»ν•˜κ³  μžˆλŠ” 싀정이닀. 특히 μˆ˜μ§ˆμ€ μœ λŸ‰κ³Όμ˜ 관련성이 μ‘΄μž¬ν•˜λ©°(Hirsch et al., 1982; Johnson et al., 1969; Smith et al., 1982), μˆ˜μ§ˆμ˜€μ—Ό 관리 μ‹œ μ€‘μš”ν•œ 영ν–₯ μš”μΈμœΌλ‘œ μž‘μš©λ  수 μžˆλ‹€(Smith et al., 1982). κ·ΈλŸ¬λ―€λ‘œ μ΄λŸ¬ν•œ μœ λŸ‰ λ“± μ™Έμƒλ³€μˆ˜(exogenous variable) 에 μ˜ν•œ 수질 변동을 νŒŒμ•…ν•˜λŠ” 것 λ˜ν•œ μ€‘μš”ν•˜λ‹€. 이에 λ³Έ μ—°κ΅¬μ—μ„œλŠ” 낙동강 μˆ˜κ³„λ₯Ό λŒ€μƒμœΌλ‘œ κ³„μ ˆ 및 곡간좔세 (Seasonal and Regional Kendall test), 곑선좔세(LOWESS) 뢄석은 λ¬Όλ‘  μ—¬λŸ¬ 외생 λ³€μˆ˜ 쀑 μœ λŸ‰μ˜ 영ν–₯을 λ°°μ œν•œ 계 μ ˆμΆ”μ„ΈλΆ„μ„(adjusted Seasonal Kendall test)을 μ‹€ν–‰ν•¨μœΌλ‘œμ¨ 보닀 λ‹€μ–‘ν•œ 좔세뢄석을 ν†΅ν•œ μž₯κΈ° 수질 λ³€ν™”λ₯Ό νŒŒμ•…ν•˜κ³  자 ν•˜μ˜€λ‹€. 이λ₯Ό ν†΅ν•˜μ—¬ ν˜„ 수질 μƒνƒœμ— λŒ€ν•œ λͺ…ν™•ν•œ 자료 λ₯Ό μ œκ³΅ν•˜κ³ μž ν•˜λ©° ν–₯ν›„ μˆ˜μ§ˆκ΄€λ¦¬ 및 μ •μ±… μˆ˜λ¦½μ— 도움이 되고자 ν•˜μ˜€λ‹€.

2. Materials and Methods

2.1. μ—°κ΅¬λŒ€μƒ μœ μ—­

낙동강 μœ μ—­(Fig. 1)은 λŒ€κ΅¬, μšΈμ‚°, λΆ€μ‚°κ΄‘μ—­μ‹œ λ“±μ˜ λŒ€λ„ μ‹œμ™€ μ€‘Β·μ†Œλ„μ‹œλ₯Ό μ§€λ‚˜λ©° μ§€λ₯˜ λΆ€κ·Όμ—λŠ” μ„±μ„œμ‚°μ—…λ‹¨μ§€, ꡬ 미곡단, κΉ€μ²œκ³΅λ‹¨ 등이 μžˆμ–΄ 각쒅 μ‚°μ—…Β·μƒν™œνμˆ˜κ°€ λ‹€λŸ‰ 유 μž…λ˜κ³  μžˆλ‹€. 낙동강 μœ μ—­μ—μ„œ μƒν™œν•˜κ³  μžˆλŠ” 1,300 μ—¬λ§Œ λͺ…μ˜ μ‹μˆ˜μ›μΈ 각쒅 μƒΒ·κ³΅μ—…μš©μˆ˜(21.6%), λ†μ—…μš©μˆ˜(51.0%) 및 ν•˜μ²œμœ μ§€μš©μˆ˜(27.4%) λ“±μœΌλ‘œ ν™œμš©λ˜κ³  μžˆμ–΄ λ‹€μ–‘ν•œ 였 염원에 μ˜ν•œ 수질 μ˜€μ—Όμ΄ λ°œμƒν•  수 μžˆλŠ” κ°€λŠ₯성이 맀우 높은 μœ μ—­μ΄λ‹€. λ˜ν•œ 졜근 4λŒ€κ°• μ‚¬μ—…μ˜ μΌν™˜μœΌλ‘œ 경뢁 상 μ£Όμ‹œλΆ€ν„° 경남 μ°½λ…•κ΅°κΉŒμ§€ μ•½ 200km ꡬ간에 상주보, 낙단 보, ꡬ미보, 칠곑보, 강정고령보, 달성보, ν•©μ²œμ°½λ…•λ³΄, μ°½λ…• ν•¨μ•ˆλ³΄μ˜ 8개 보가 μ„€μΉ˜λ˜μ—ˆμœΌλ©° 총 μ €μˆ˜μš©λŸ‰μ€ μ•½ 5.3μ–΅ ν†€μœΌλ‘œ μœ μ—­ λ‚΄ λ‹€λͺ©μ λŒ μ €μˆ˜μš©λŸ‰μ˜ μ•½ 17%λ₯Ό μ°¨μ§€ν•œλ‹€ (NIER, 2013a). λ‚™λ™κ°•μˆ˜κ³„(μ•ˆλ™, λŒ€κ΅¬, λΆ€μ‚°, ꡬ미 기상관 μΈ‘μ†Œ)의 2004λ…„λΆ€ν„° 2013λ…„ κΉŒμ§€ 10λ…„κ°„ 평균 μ—°κ°•μˆ˜λŸ‰ (KMA, 2014)은 1,180.7 mm이며 7~9μ›” κ°•μˆ˜λŸ‰μ€ 전체 κ°• μˆ˜λŸ‰μ˜ 54.0%λ₯Ό μ°¨μ§€ν•˜κ³  μ§€μ§ˆμ€ 주둜 ν‡΄μ μ•”μœΌλ‘œ κ΅¬μ„±λ˜ μ–΄ 있으며 λΆ€λΆ„μ μœΌλ‘œ λ³€μ„±μ•”κ³Ό ν™”μ„±μ•”λ₯˜κ°€ λΆ„ν¬ν•˜κ³  μžˆλ‹€. ν† μ§€μ΄μš©μ€ 농경지 면적이 5,505 km2둜 전체 μœ μ—­λ©΄μ μ˜ 17.3%λ₯Ό μ°¨μ§€ν•˜λ©° 이쀑 밭이 6.9%, 논이 10.4%, λŒ€μ§€ 6.7%, μž„μ•Όλ©΄μ μ΄ 68.6%, 기타 7.4%λ₯Ό μ°¨μ§€ν•˜κ³  있으며 νμˆ˜λ°œμƒ 및 λ°©λ₯˜λŸ‰μ€ 4λŒ€κ°• μˆ˜κ³„ 쀑 κ°€μž₯ λ§Žμ•„(NIER, 2014) κ³Όκ±°λΆ€ ν„° μˆ˜μ§ˆκ°œμ„ μ„ μœ„ν•˜μ—¬ λ§Žμ€ λ…Έλ ₯을 ν•˜κ³  μžˆλ‹€. 특히 2004 λ…„λΆ€ν„° μˆ˜μ§ˆμ˜€μ—Ό μ΄λŸ‰κ΄€λ¦¬μ œλ₯Ό μ‹€μ‹œν•˜μ—¬ κΈ°μ‘΄ λ°©λ₯˜μˆ˜ 및 λ°°μΆœν—ˆμš©κΈ°μ€€μ— λŒ€ν•œ 농도기쀀을 μ •ν•˜μ—¬ κ΄€λ¦¬ν•˜λ˜ ν•œκ³„λ₯Ό λ²—μ–΄λ‚˜ μ˜€μ—Όλ¬Όμ§ˆ μ΄λŸ‰μ„ ν—ˆμš©μ΄λŸ‰ μ΄λ‚΄λ‘œ λ°°μΆœν•˜λ„λ‘ 관리 ν•˜λŠ” μ œλ„λ‘œ μ „ν™˜ν•˜μ˜€λ‹€(NIER, 2008).

Fig. 1. The location of study sites in the Nakdong River.
../../Resources/kswe/KSWE.2017.33.1.40/JKSWE-33-40_F1.jpg

2.2. 연ꡬ방법

낙동강 μˆ˜κ³„μ˜ μˆ˜μ§ˆμΌλ°˜μΈ‘μ •λ§κ³Ό μˆ˜μ§ˆμ˜€μ—Όμ΄λŸ‰μΈ‘μ •λ§ 곡톡 지점인 κ²½ν˜Έκ°•1(남강A), κ²½ν˜Έκ°•2(남강B), ꡬ미(λ‚™λ³ΈE), 금곑 (λ‚™λ³ΈL), κΈˆν˜Έκ°•6(금호C), 남강4-1(남강E), λ‚΄μ„±μ²œ3-1(λ‚΄μ„± B), λ‚΄μ„±μ²œ5(λ‚΄μ„±A), λŒ€μ•”-1(λ‚™λ³ΈG), 도산(λ‚™λ³ΈB), 물금(λ‚™λ³Έ K), 미천(미천A), λ°€μ–‘κ°•3(λ°€μ–‘B), λ°˜λ³€μ²œ2-1(λ°˜λ³€B), 병성 천-1(병성A), 상주3(λ‚™λ³ΈD), μ˜κ°•2-1(μ˜κ°•A), μš©μ‚°(λ‚™λ³ΈH), μš©μ „μ²œ2(μš©μ „A), μœ„μ²œ6(μœ„μ²œB), μ΄μ•ˆμ²œ(μ΄μ•ˆA), ν™©κ°•1(ν™©κ°• A), ν™©κ°•5(ν™©κ°•B), 회천2-1(회천A)의 총 24개 지점을 연ꡬ λŒ€μƒ μ§€μ μœΌλ‘œ μ„ μ •ν•˜μ˜€λ‹€. 연ꡬ기간은 2004λ…„ 8μ›”λΆ€ν„° 2013λ…„ 12μ›”κΉŒμ§€ μ•½ 10년을 μ„ μ •ν•˜μ˜€κ³  뢄석항λͺ©μ€ 5개둜 μƒλ¬Όν•™μ μ‚°μ†Œμš”κ΅¬λŸ‰(Biological Oxygen Demand, BOD(mg/L)), ν™”ν•™μ μ‚°μ†Œμš”κ΅¬λŸ‰(Chemical Oxygen Demand, COD(mg/L)), μ΄μ§ˆμ†Œ(Total Nitrogen, TN(mg/L)), 총인(Total Phosphorous, TP(mg/L)), μœ λŸ‰(m3/s)에 λŒ€ν•œ 월평균 자료λ₯Ό μ΄μš©ν•˜μ˜€λ‹€. 수질 및 μœ λŸ‰μžλ£ŒλŠ” λ¬Όν™˜κ²½μ •λ³΄μ‹œμŠ€ν…œ(NIER, 2013b)μ—μ„œ μˆ˜μ§‘ν•˜μ˜€λ‹€. 톡계뢄석은 24개 지점에 λŒ€ν•˜μ—¬ Regional/Seasonal Kendall test, LOWESS(LOcally WEighted Scatter plot Smoother) 뢄석 및 adjusted Seasonal Kendall testλ₯Ό USGS의 μΆ”μ„Έ κ²€μ • ν”„λ‘œκ·Έλž¨κ³Ό R을 μ΄μš©ν•˜μ—¬ μ‹€ν–‰ν•˜μ˜€λ‹€(USGS, 2005). 이쀑 Regional/Seasonal Kendall test와 adjusted Seasonal Kendall testλŠ” 관심기간 λ™μ•ˆ 수질의 증감 κ²½ν–₯을 단쑰증 κ°ν˜•μœΌλ‘œ λ‚˜νƒ€λ‚΄μ–΄ κ²°κ³Ό 해석에 μš©μ΄ν•œ μž₯점이 μžˆλ‹€. LOWESS 뢄석은 κ³‘μ„ ν˜• 좔세뢄석 λ°©λ²•μœΌλ‘œμ¨ μ§μ„ ν˜• μΆ”μ„Έ λΆ„μ„μ˜ 단쑰 증감을 λ³΄μ™„ν•˜μ—¬ 관심기간 λ™μ•ˆ μΆ”μ„Έ 변동을 νŒŒμ•…ν•˜κΈ° μœ„ν•΄ μ‚¬μš©λ˜κ³  μžˆλ‹€. λ”λΆˆμ–΄ adjusted Seasonal Kendall testλŠ” Seasonal Kendall testμ—μ„œ μ™Έμƒλ³€μˆ˜μ˜ 영ν–₯ 을 μ œκ±°ν•¨μœΌλ‘œμ¨ λ°°κ²½ 변이성(Background Variables), 즉 작 음(Noise)을 μ΅œμ†Œν™”ν•˜μ—¬ κ°€μ„€κ²€μ • μ‹œ 였λ₯˜μ˜ κ°€λŠ₯성을 쀄여 보닀 μ‹ λ’°μ„± μžˆλŠ” κ²°κ³Όλ₯Ό λ„μΆœν•  수 μžˆλŠ” 뢄석 방법이닀 (Helsel and Hirsch, 2002). Regional Kendall testλŠ” μ•žμ˜ μ„Έ κ°€μ§€ λΆ„μ„λ²•κ³ΌλŠ” 달리 24개 지점 μ „λ°˜μ— λŒ€ν•œ 곡간적 수질 변동을 νŒŒμ•…ν•˜κΈ° μœ„ν•˜μ—¬ μ‚¬μš©ν•˜λŠ” 방법이닀. λ³Έ 방법은 유 μ˜μˆ˜μ€€(Ξ±) 0.1μ—μ„œ H0 (=No Trend)λ₯Ό κΈ°κ°ν•˜λŠ” 경우 유의미 ν•œ κ²½ν–₯성이 μ‘΄μž¬ν•˜λŠ” κ²ƒμœΌλ‘œ νŒλ‹¨ν•˜λ©° 증감에 λŒ€ν•œ 정보 λŠ” S 및 Zν†΅κ³„λŸ‰μ„ μ΄μš©ν•˜μ˜€λ‹€. μ΄λ•Œ μ–‘μ˜ 값이면 수질이 β€œμ¦κ°€β€, 음의 값이면 β€œκ°œμ„ β€λœλ‹€κ³  ν‰κ°€ν•˜μ˜€λ‹€. λΆ„μ„μ ˆμ°¨ Fig. 2)λŠ” λ‹€μŒκ³Ό κ°™λ‹€. 첫 번째둜 Regional Kendall testλ₯Ό 톡해 낙동강 μˆ˜κ³„ 전체에 λŒ€ν•œ 증감경ν–₯을 νŒŒμ•…ν•˜μ˜€κ³ , κ·Έ λ‹€μŒ Seasonal Kendall testλ₯Ό μ‹€ν–‰ν•˜μ—¬ ν•΄λ‹Ή μˆ˜κ³„ λ‚΄ 24개 지점 각각에 λŒ€ν•œ 증감경ν–₯을 λΆ„μ„ν•˜μ˜€λ‹€. λ˜ν•œ 각각의 μ§€ 점에 λŒ€ν•œ 관심기간 λ™μ•ˆμ˜ 세뢀적인 μˆ˜μ§ˆλ³€λ™ νŠΉμ„±μ„ 파 μ•…ν•˜κΈ° μœ„ν•΄ LOWESS 뢄석을 μ‹€ν–‰ν•˜μ˜€λ‹€. λ§ˆμ§€λ§‰μœΌλ‘œ 유 λŸ‰μ„ μ œμ–΄ν•œ adjusted Seasonal Kendall testλ₯Ό μ‹€ν–‰ν•˜μ—¬ 수 μ§ˆμ— 영ν–₯을 λ―ΈμΉ  수 μžˆλŠ” μžμ—°μ  영ν–₯μš”μΈμΈ μœ λŸ‰μ„ 제거 ν•œ 수질 μΆ”μ„Έλ₯Ό νŒŒμ•…ν•œ ν›„ μœ λŸ‰μ˜ 쑴재 μœ λ¬΄μ— λ”°λ₯Έ 수질 λ³€ν™”λ₯Ό 비ꡐ λΆ„μ„ν•˜κ³ μž ν•˜μ˜€λ‹€.

Fig. 2. Procedure of analysis method used in this study.
../../Resources/kswe/KSWE.2017.33.1.40/JKSWE-33-40_F2.jpg

2.2.1. Seasonal Kendall and Regional Kendall tests

Seasonal Kendall test λŠ” Mann-Kendall 의 ν™•μž₯ν˜•μœΌλ‘œ 데이 ν„°λ₯Ό 월별, κ³„μ ˆλ³„λ‘œ κ΅¬λΆ„ν•˜μ—¬ Kendall의 Sν†΅κ³„λŸ‰μ˜ 합을 μ‚°μΆœ ν•˜μ—¬ μ„ ν˜•μΆ”μ„Έλ₯Ό κ²€μ •ν•˜λ©° 식은 μ•„λž˜ 식 (1)κ³Ό κ°™λ‹€. 각 κ³„μ ˆμ— λŒ€ν•œ Mann-Kendall은 식 (1)이며 μ΄λ•Œ g(season) = 1,2...,p (Hirsch and Slack, 1984), Seasonal Kendall ν†΅κ³„λŸ‰μ€ 식 (2) 와 κ°™λ‹€.

(1)
S g = βˆ‘ i = 1 n βˆ’ 1 βˆ‘ j = i + 1 n sgn X jg βˆ’ X ig
(2)
S β€² = βˆ‘ g = 1 p S g

ν‘œλ³Έμ΄ 큰(n>10) 경우(Helsel and Hirsch, 2002) 평균과 λΆ„ 산이 μ •κ·œλΆ„ν¬μ— κ·Όμ‚¬ν•˜κ²Œ 되며 μ΄λ•Œ μ•„λž˜μ˜ 식 (3)을 이 μš©ν•œλ‹€.

ΞΌsk = 0

(3)
Var S βˆ— = βˆ‘ i Var S β€² = βˆ‘ i n i n i βˆ’ 1 2 n i + 5 / 18

ΞΌsk = mean

Var (S*) = variance

λ”λΆˆμ–΄ λ™μΌν•œ 값을 λ‚˜νƒ€λ‚΄λŠ” 데이터가 μ—¬λŸ¬ 개 쑴재 ν•  경우 그룹으둜 λ¬Άμ–΄ μ•„λž˜ 식 (3)에 λŒ€μž…ν•˜μ—¬ μ‚°μΆœν•œλ‹€.

μ΄λ•Œ 평균은 0이며 n>10 일 경우 Var(S*) 을 μ΄μš©ν•œ ν‘œ μ€€ν™” Zν†΅κ³„λŸ‰μœΌλ‘œ 식 (4)에 λ‚˜νƒ€λ‚΄μ—ˆλ‹€.

(4)
Var S βˆ— = βˆ‘ i Var S β€² = βˆ‘ i n i n i βˆ’ 1 2 n i + 5 βˆ’ βˆ‘ ti t i t i βˆ’ 1 2 t i + 5 / 18 Z sk = S βˆ— βˆ’ 1 Var S βˆ— sk S k > 0 0 S k = 0 S βˆ— + 1 Var S βˆ— sk S k < 0

ni = number of data in the ith season

ti = number of tied group

μ΄λ•Œ 귀무가섀H0: slope b 1 Λ† = 0 (no trend)이며 Z ν†΅κ³„λŸ‰κ³Ό p-value을 ꡬ해 μœ μ˜μ„± 검증과정을 거친 ν›„ 수질 μΆ”μ„Έμ˜ 유 무λ₯Ό νŒλ‹¨ν•˜κ²Œ λœλ‹€.

Regional/Seasonal Kendallκ³Ό μœ μ‚¬ν•˜λ©° κ³„μ ˆμ— λŒ€ν•œ 정보 λŒ€μ‹  지점에 λŒ€ν•œ 정보λ₯Ό μ΄μš©ν•œλ‹€. 각 지점에 λŒ€ν•œ S 톡계 λŸ‰μ€ 식 (5)에 λ‚˜νƒ€λ‚΄μ—ˆλ‹€.

(5)
S loc = P βˆ’ M

P = total positive number of yj > yi

M = total negative number of yj < yi

μ΄λ•Œ Regional Kendall testλŠ” 식 (6)κ³Ό κ°™λ‹€(Helsel and Frans, 2006).

(6)
S RK = βˆ‘ S loc

SRK = regional kendall

2.2.2. LOWESS(LOcally WEighted Scatter plot Smoother)

λΉ„λͺ¨μˆ˜μ  ν‰ν™œ(smoothing)방법은 연ꡬ기간 쀑 μΆ”μ„Έ 변동 이 μ‘΄μž¬ν•  경우 νšŒκ·€μ„ μ˜ ν˜•νƒœλ₯Ό μ§μ„ μœΌλ‘œ ν•œμ •μ‹œν‚€μ§€ μ•Š κ³  자료의 μ μ ˆν•œ κ²½ν–₯을 반영 ν•  수 μžˆλŠ” λ°©λ²•μœΌλ‘œ μ‚¬μš© ν•¨μœΌλ‘œμ¨ 단쑰 μ¦κ°λ§Œμ„ λ‚˜νƒ€λ‚΄λŠ” μ„ ν˜•μΆ”μ„Έμ— λŒ€ν•œ 단점을 보완할 수 μžˆλ‹€. LOWESSλŠ” μ „ ꡬ간이 μ•„λ‹Œ x에 λŒ€ν•œ 일 μ •ν•œ 수직 ꡬ간(span λ˜λŠ” window)을 μ •ν•΄ 거리 및 영ν–₯λ ₯ 을 μ‘°μ ˆν•œ ν›„ 각 값에 λŒ€ν•΄ 이동 직선(moving line)을 κ΅¬ν•˜ κ³  μ΄λ‘œλΆ€ν„° y의 ν‰ν™œμ (smoother)을 얻은 ν›„ 이 ν‰ν™œμ λ“€ 을 μ§μ„ μœΌλ‘œ μ—°κ²°ν•œ 것이닀. νšŒκ·€λͺ¨ν˜•에 λŒ€ν•œ 가정없이 회 κ·€λͺ¨ν˜•을 μ μš©ν•  수 있으며 이동선(xi,yi)λ₯Ό κ³„μ‚°ν•˜λŠ” 방법 으둜 x = xi μ€‘μ‹¬μœΌλ‘œ n Γ— f 에 κ°€μž₯ κ°€κΉŒμš΄ μ •μˆ˜λ§ŒνΌμ˜ 데 이터λ₯Ό ν¬ν•¨ν•˜λ„λ‘ 수직띠의 폭을 κ²°μ •ν•œλ‹€(Kim, 2014). 이 λ•Œ xi = x이며 ν‰ν™œμƒμˆ˜μΈ f λŠ” 0 < f < 1 의 λ²”μœ„λ₯Ό κ°€μ§€ λ©° 기본값은 1/3~2/3이며 f κ°€ 크면 x 에 λŒ€ν•œ κ΅¬κ°„μ˜ 크기 κ°€ 컀지며 더 λ§Žμ€ 수의 데이터가 y i Λ† 의 μΆ”μ •μΉ˜μ— 영ν–₯을 μ€€λ‹€. λ”λΆˆμ–΄ μ μ ˆν•œ f 의 선택은 주관적 일 수 μžˆλ‹€(Helsel and Hirsch, 2002). λ”°λΌμ„œ κ΄€μΈ‘μžλ£Œμ˜ 적합정도λ₯Ό μ„Έλ°€ν•˜ 게 κ΄€μ°°ν•˜μ—¬ μ μ ˆν•œ f 값을 μ°Ύμ•„μ•Ό ν•œλ‹€. λ³Έ μ—°κ΅¬μ—μ„œ μ‚¬μš© 된 ν‰ν™œ 폭 f값은 1/2둜 μ£Όμ—ˆκ³  반볡수(Iter)λŠ” 3으둜 μ‹€ν–‰ ν•˜μ˜€λ‹€.

2.2.3. flow-adjusted Seasonal Kendall test

Seasonal Kendall test와 LOWESSκ°€ κ²°ν•©λœ λΆ„μ„λ°©λ²•μœΌ 둜 μ’…μ†λ³€μˆ˜μ— μžμ—°μ  μ™ΈλΆ€μ˜ν–₯ μš”μΈμΈ κ°•μˆ˜λŸ‰, 기온, μœ λŸ‰ 등에 ν•΄λ‹Ήν•˜λŠ” μ™Έμƒλ³€μˆ˜(exogenous variables)을 κ³ λ €ν•˜μ—¬ LOWESS λΉ„λͺ¨μˆ˜ νšŒκ·€μ— μ˜ν•œ 예츑치λ₯Ό μ‚°μΆœν•˜κ²Œ 되고 이 λ•Œ μƒμ‚°λœ μ˜ˆμΈ‘μΉ˜μ™€ μ‹€μΈ‘μΉ˜ κ°„μ˜ 차이인 μž”μ°¨(Ri)을 이용 ν•˜μ—¬ μœ λŸ‰μ„ μ œμ–΄ν•œ μ„ ν˜•μΆ”μ„Έ 검정을 μ‹€ν–‰ν•œλ‹€(Helsel and Hirsch, 2002).

(7)
R i = y i βˆ’ y Λ† i LOWESS

yi = observed value

y Λ† i LOWESS = predicted  value

Ri=adjusted residual

3. Results and Discussion

3.1. Regional/Seasonal Kendall and LOWESS

수질 ν•­λͺ©λ³„ Regional/Seasonal Kendall κ²°κ³Όλ₯Ό Table 1κ³Ό Fig. 3에 λ‚˜νƒ€λ‚΄μ—ˆλ‹€. BOD에 λŒ€ν•œ Regional kendall κ²°κ³Ό S ν†΅κ³„λŸ‰μ€ 124, p-valueλŠ” 0.0214둜 귀무가섀(H0=no trend)을 κΈ°κ°ν•˜μ—¬ μˆ˜κ³„ μ „λ°˜μ— 걸쳐 BOD λ†λ„λŠ” β€œμ¦κ°€β€ν•˜λŠ” κ²½ν–₯ 을 λ‚˜νƒ€λ‚΄μ—ˆλ‹€. Seasonal Kendall κ²°κ³Ό 상λ₯˜μ— ν•΄λ‹Ήν•˜λŠ” 반 λ³€μ²œ2-1, λ‚΄μ„±μ²œ3-1, μœ„μ²œ6, 상주3 지점과 쀑λ₯˜μ˜ 회천2-1 μ§€μ μ—μ„œ S ν†΅κ³„λŸ‰μ΄ 137, 69, 128, 193, 109이고 p-valueλŠ” μœ μ˜μˆ˜μ€€(Ξ±) 0.1 μ΄ν•˜λ‘œ BOD λ†λ„λŠ” μœ μ˜ν•œ β€œμ¦κ°€β€ κ²½ν–₯을 λ‚˜νƒ€λ‚΄μ—ˆλ‹€. 반면, ν•˜λ₯˜ ꡬ간에 μœ„μΉ˜ν•œ λŒ€μ•”-1, 남강4-1, λ¬Ό 금, 금곑 μ§€μ μ˜ S ν†΅κ³„λŸ‰ 107, -82, -98, -73, p-valueλŠ” 유 μ˜μˆ˜μ€€(Ξ±) 0.1 μ΄ν•˜λ‘œ μœ μ˜ν•œ β€œκ°œμ„ β€ κ²½ν–₯을 λ‚˜νƒ€λ‚΄μ—ˆλ‹€. λ‚˜ λ¨Έμ§€ 15개 μ§€μ μ—μ„œλŠ” 증감경ν–₯을 λ‚˜νƒ€λ‚΄μ§€ μ•Šμ•˜λ‹€. 즉 μ—° κ΅¬λŒ€μƒκΈ°κ°„ 쀑 λ‚™λ™κ°•μˆ˜κ³„μ—μ„œ BOD λ†λ„λŠ” β€œμ¦κ°€β€κ²½ν–₯을 λ‚˜νƒ€λ‚΄κ³  있으며 특히 λ°˜λ³€μ²œ2-1, λ‚΄μ„±μ²œ3-1, μœ„μ²œ6, 상주3, 회천2-1의 5개 μ§€μ μ—μ„œ μœ μ˜ν•œ β€œμ¦κ°€β€ κ²½ν–₯을 λ‚˜νƒ€λ‚΄μ—ˆλ‹€. COD λ†λ„λŠ” Regional Kendall κ²°κ³Ό S ν†΅κ³„λŸ‰ 409, p-value 0.0000으둜 μˆ˜κ³„ μ „λ°˜μ— 걸쳐 맀우 μœ μ˜ν•œ β€œμ¦κ°€β€ μΆ”μ„Έλ₯Ό λ‚˜νƒ€λ‚΄μ—ˆλ‹€. Seasonal Kendall κ²°κ³Ό 쀑상λ₯˜ ꡬ간에 μœ„μΉ˜ν•œ 도산, μš©μ „μ²œ2, λ°˜λ³€μ²œ2-1, 미천, λ‚΄μ„±μ²œ5, λ‚΄μ„±μ²œ3-1, 병성 천-1, μœ„μ²œ6, 상주3, ꡬ미, 회천2-1의 11개 μ§€μ μ—μ„œ S톡계 λŸ‰ 124~287, p-value 0.0013~0.0570둜 μœ μ˜ν•œ β€œμ¦κ°€β€ κ²½ν–₯ 을 λ‚˜νƒ€λ‚΄μ—ˆλ‹€. λ‚˜λ¨Έμ§€ μ§€μ μ—μ„œλŠ” 증감경ν–₯을 λ‚˜νƒ€λ‚΄μ§€ μ•Š μ•˜λ‹€. 즉 COD λ†λ„μ˜ 경우 β€œμ¦κ°€β€κ²½ν–₯을 λ‚˜νƒ€λ‚΄κ³  μžˆλŠ” μ§€ 점이 λ‹€λ₯Έ 뢄석 ν•­λͺ©μ— λΉ„ν•΄ λ‹€μˆ˜ ν•΄λ‹Ήλ˜μ—ˆμœΌλ©° 특히 상λ₯˜ ꡬ간을 μ€‘μ‹¬μœΌλ‘œ β€œμ¦κ°€β€ κ²½ν–₯이 λšœλ ·ν•˜μ˜€λ‹€. TN λ†λ„λŠ” Regional Kendall 뢄석 κ²°κ³Ό Sν†΅κ³„λŸ‰ 113, p-value 0.0408둜 μœ μ˜ν•œ β€œμ¦κ°€β€ κ²½ν–₯을 λ‚˜νƒ€λ‚΄μ—ˆλ‹€. Seasonal Kendall κ²°κ³Ό λ³‘μ„±μ²œ-1, λ°€μ–‘κ°•3 μ§€μ μ˜ Sν†΅κ³„λŸ‰μ€ 각각 -129, -113, p-value 0.0700, 0.0474둜 μœ μ˜ν•œ β€œκ°œμ„ β€ κ²½ν–₯을 λ‚˜νƒ€λ‚Έ 반 λ©΄ ν™©κ°•1, κ²½ν˜Έκ°•2, μ§€μ μ˜ Sν†΅κ³„λŸ‰μ€ 각각 86, 125, p-valueλŠ” 0.0738, 0.0545둜 β€œμ¦κ°€β€ μΆ”μ„Έλ₯Ό λ‚˜νƒ€λ‚΄μ—ˆκ³  이 λ“€ 지점을 μ œμ™Έν•œ λŒ€λΆ€λΆ„μ˜ μ§€μ μ—μ„œλŠ” 증감 κ²½ν–₯은 λ‚˜νƒ€λ‚΄ μ§€ μ•Šμ•˜λ‹€. TP λ†λ„μ˜ 경우 Regional Kendall 뢄석 κ²°κ³Ό S ν†΅κ³„λŸ‰ -186, p-value 0.0007둜 ν†΅κ³„μ μœΌλ‘œ 맀우 μœ μ˜ν•œ β€œκ°œ 선” κ²½ν–₯을 λ‚˜νƒ€λ‚΄μ—ˆλ‹€. Seasonal Kendall 뢄석 κ²°κ³Ό β€œμ¦κ°€β€ κ²½ν–₯을 λ‚˜νƒ€λ‚Έ 지점은 μ—†μ—ˆμœΌλ©° λ‚΄μ„±μ²œ5, μ˜κ°•2-1, λ³‘μ„±μ²œ-1 의 쀑상λ₯˜ 3개 지점, μš©μ‚°, 남강4-1, λ°€μ–‘κ°•3, 물금의 ν•˜λ₯˜ 4개 μ§€μ μ—μ„œ Sν†΅κ³„λŸ‰μ€ -140 ~ -215, p-valueλŠ” μœ μ˜μˆ˜μ€€ (Ξ±) 0.1 μ΄ν•˜λ‘œ μœ μ˜ν•œ 수질 β€œκ°œμ„ β€ κ²½ν–₯을 λ‚˜νƒ€λ‚΄μ—ˆλ‹€. 이 λŠ” 2011λ…„ 7μ›” κΈ°μ€€ 뢀산·경남지역에 총 50κ°œμ†Œμ˜ ν•˜μˆ˜ 및 νμˆ˜μ²˜λ¦¬μ‹œμ„€μ—μ„œ μ΄μΈμ²˜λ¦¬μ‹œμ„€μ„ μ„€μΉ˜ λ˜λŠ” 운영되면 μ„œ(NDG, 2012) TP λ†λ„λŠ” λ‹€λ₯Έ 수질 ν•­λͺ©μ— λΉ„ν•΄ β€œκ°œμ„ β€ 된 κ²½ν–₯을 λ‚˜νƒ€λ‚΄λŠ” 지점이 λ‹€μˆ˜λ‘œ λ‚˜νƒ€λ‚΄μ—ˆλ‹€. Table 2.

Table 1. Seasonal and Regional Kendall tests results with BOD
Station Seasonal Kendall trend
Statistic S Z-value p-value Trend

Dosan (Nakbon B) 59 1.695 0.2176 ●
Yongjeoncheon 2 (yongjeon A) 75 2.108 0.1867 ●
Banbyeoncheon 2-1 (Banbyeon B) 137 3.880 0.0273 β–²
Micheon (Micheon A) 78 2.222 0.1331 ●
Naeseongcheon5 (Naeseong A) 58 1.647 0.2590 ●
Naeseongcheon3-1 (Naeseong B) 69 1.978 0.0988 β–²
Iancheon (Ian A) -26 -0.718 0.6494 ●
Yeonggang 2-1 (Yeonggang A) -21 -0.570 0.6615 ●
Byeongseongcheon-1 (Byeongseong A) 0.3412 -0.629 0.3412 ●
Wicheon 6 (Wicheon B) 128 3.615 0.0140 β–²
Sangju 3 (Nakbon D) 193 5.520 0.0020 β–²
Gumi (Nakbon E) 41 1.135 0.4650 ●
Geumhogang 6 (Geumho C) -10 -0.254 0.8126 ●
Hoecheon 2-1 (Hoecheon A) 109 3.083 0.0746 β–²
Daeam-1 (Nakbon G) -107 -3.001 0.0260 β–Ό
Hwanggang1 (Hwanggang A) -24 -0.653 0.6327 ●
Hwanggang5 (Hwanggang B) -74 -2.123 0.1046 ●
Yongsan (Nakbon H) -83 -2.323 0.1196 ●
Gyeonghogang 1 (Namgang A) -51 -1.437 0.2666 ●
Gyeonghogang 2 (Namgang B) -51 -1.431 0.3056 ●
Namgang 4-1 (Namgang E) -82 -2.287 0.0938 β–Ό
Milyanggang 3 (Milyang B) 5 0.113 0.9473 ●
Mulgeum (Nakbon K) -98 -2.745 0.0851 β–Ό
Geumgok (Nakbon L) -73 -2.060 0.0661 β–Ό
Regional Kendall test
N Statistic S Z-value p-value Trend
24 124 2.301 0.0214 β–²

[i] Water Quality Trend : Increase β–², constant ●, Decreased β–Ό, Ξ± < 0.1 statistically significant trends

Fig. 3. Results of Seasonal Kendall trend from 2004 to 2013.
../../Resources/kswe/KSWE.2017.33.1.40/JKSWE-33-40_F3.jpg
Table 2. Seasonal and Regional Kendall tests results with COD
Station Seasonal Kendall trend
Statistic S Z-value p-value Trend

Dosan (Nakbon B) 209 5.917 0.0013 β–²
Yongjeoncheon 2 (yongjeon A) 212 5.990 0.0059 β–²
Banbyeoncheon 2-1 (Banbyeon B) 161 4.513 0.0570 β–²
Micheon (Micheon A) 215 6.042 0.0052 β–²
Naeseongcheon5 (Naeseong A) 132 3.713 0.0402 β–²
Naeseongcheon3-1 (Naeseong B) 163 4.590 0.0105 β–²
Iancheon (Ian A) 29 0.791 0.6954 ●
Yeonggang 2-1 (Yeonggang A) 104 2.927 0.1149 ●
Byeongseongcheon-1 (Byeongseong A) 124 3.477 0.0166 β–²
Wicheon 6 (Wicheon B) 287 8.077 0.0013 β–²
Sangju 3 (Nakbon D) 226 6.355 0.0074 β–²
Gumi (Nakbon E) 207 5.820 0.0024 β–²
Geumhogang 6 (Geumho C) -10 -0.254 0.8625 ●
Hoecheon 2-1 (Hoecheon A) 235 6.632 0.0028 β–²
Daeam-1 (Nakbon G) 25 0.680 0.5956 ●
Hwanggang1 (Hwanggang A) 94 2.633 0.1304 ●
Hwanggang5 (Hwanggang B) 93 2.607 0.1935 ●
Yongsan (Nakbon H) 26 0.711 0.6150 ●
Gyeonghogang 1 (Namgang A) 44 1.232 0.3488 ●
Gyeonghogang 2 (Namgang B) 53 1.471 0.2675 ●
Namgang 4-1 (Namgang E) -12 -0.309 0.8598 ●
Milyanggang 3 (Milyang B) 70 1.957 0.3597 ●
Mulgeum (Nakbon K) 19 0.508 0.6367 ●
Geumgok (Nakbon L) 35 0.971 0.1531 ●
Regional Kendall test
N Statistic S Z-value p-value Trend
24 409 7.528 0.0000 β–²

[i] Water Quality Trend : Increase β–², constant ●, Decreased β–Ό, Ξ± < 0.1 statistically significant trends

LOWESS 뢄석 κ²°κ³Ό λŒ€μƒκΈ°κ°„ λ™μ•ˆ 수질의 증감 변동이 νŒŒμ•…λ˜λŠ” 지점을 Fig. 4에 λ‚˜νƒ€λ‚΄μ—ˆλ‹€. κ·Έ κ²°κ³Ό BOD, COD λ†λ„λŠ” 남강4-1, TPλŠ” ꡬ미, κΈˆν˜Έκ°•6, λŒ€μ•”-1, λ°€μ–‘κ°•3 지점 μ—μ„œ 수질 변동 μΆ”μ„Έλ₯Ό λ‚˜νƒ€λ‚΄μ—ˆλ‹€. 이쀑 ꡬ미 μ§€μ μ˜ TP λ†λ„λŠ” Seasonal Kendall κ²°κ³Ό κ²½ν–₯성이 λ‚˜νƒ€λ‚˜μ§€ μ•Šμ•˜μœΌλ‚˜ LOWESS 뢄석 κ²°κ³Ό 2010년도에 β€œμ¦κ°€β€ ν›„ β€œκ°œμ„ β€ κ²½ν–₯을 λ‚˜νƒ€λ‚΄μ—ˆλ‹€. κΈˆν˜Έκ°•6 지점은 Seasonal Kendall κ²°κ³Ό β€œμœ μ§€β€ μƒνƒœλ₯Ό λ‚˜νƒ€λƒˆμœΌλ‚˜ LOWESS κ²°κ³Ό 2008λ…„ β€œμ¦κ°€β€ ν›„ β€œκ°œμ„ β€ μƒνƒœλ₯Ό μœ μ§€ν•˜μ˜€λ‹€. λŒ€μ•”-1μ—μ„œλ„ Seasonal Kendall κ²°κ³Ό β€œμœ μ§€β€ μƒνƒœλ₯Ό λ‚˜νƒ€λ‚΄μ—ˆμœΌλ‚˜ LOWESS 뢄석 κ²°κ³Ό 2007λ…„ λΆ€ν„° β€œμ¦κ°€β€ ν›„ 2009λ…„ ν›„λ°˜ 이후 β€œκ°œμ„ β€λ˜λŠ” κ²½ν–₯이 뚜렷 ν•˜μ˜€λ‹€. λ°€μ–‘κ°•3 μ§€μ μ˜ Seasonal Kendall κ²°κ³Ό β€œκ°œμ„ β€ κ²½ ν–₯을 λ‚˜νƒ€λ‚΄μ—ˆμœΌλ‚˜ LOWESS 뢄석 κ²°κ³Ό 2007λ…„~2009λ…„κΉŒ μ§€ μ†Œν­ β€œμ¦κ°€β€ ν›„ 점차 β€œκ°œμ„ β€λ˜λŠ” μΆ”μ„Έ λ³€ν™”λ₯Ό λ‚˜νƒ€λ‚΄μ—ˆ λ‹€. 남강 4-1 μ§€μ μ˜ BOD λ†λ„λŠ” Seasonal Kendall 뢄석 κ²°κ³Ό β€œκ°œμ„ β€, COD λ†λ„λŠ” β€œμœ μ§€β€ μƒνƒœλ₯Ό λ‚˜νƒ€λ‚΄μ—ˆμœΌλ‚˜ LOWESS 뢄석 κ²°κ³Ό 2007~2008λ…„ β€œμ¦κ°€β€ ν›„ 2009λ…„ β€œκ°œ 선” κ²½ν–₯을 λ‚˜νƒ€λ‚Έ λ’€ μ™„λ§Œνžˆ μœ μ§€λ˜λŠ” μƒνƒœλ₯Ό λ‚˜νƒ€λ‚΄μ—ˆλ‹€. Table 3, Table 4.

Fig. 4. LOEWSS trend test by the monthly water quality data.
../../Resources/kswe/KSWE.2017.33.1.40/JKSWE-33-40_F4.jpg
Table 3. Seasonal and Regional Kendall tests results with TN
Station Seasonal Kendall trend
Statistic S Z-value p-value Trend

Dosan (Nakbon B) 5 0.112 0.9388 ●
Yongjeoncheon 2 (yongjeon A) 3 0.056 0.9712 ●
Banbyeoncheon 2-1 (Banbyeon B) -35 -0.955 0.4712 ●
Micheon (Micheon A) 29 0.786 0.6475 ●
Naeseongcheon5 (Naeseong A) 31 0.842 0.6907 ●
Naeseongcheon3-1 (Naeseong B) 25 0.674 0.7791 ●
Iancheon (Ian A) 24 0.646 0.7762 ●
Yeonggang 2-1 (Yeonggang A) 16 0.421 0.8329 ●
Byeongseongcheon-1 (Byeongseong A) -129 -3.593 0.0700 β–Ό
Wicheon 6 (Wicheon B) -47 -1.291 0.3968 ●
Sangju 3 (Nakbon D) 37 1.011 0.4394 ●
Gumi (Nakbon E) -29 -0.786 0.5350 ●
Geumhogang 6 (Geumho C) 55 1.516 0.3308 ●
Hoecheon 2-1 (Hoecheon A) 27 0.730 0.6138 ●
Daeam-1 (Nakbon G) -39 -1.067 0.4514 ●
Hwanggang1 (Hwanggang A) 86 2.387 0.0738 β–²
Hwanggang5 (Hwanggang B) 83 2.302 0.3350 ●
Yongsan (Nakbon H) 17 0.449 0.6045 ●
Gyeonghogang 1 (Namgang A) 87 2.446 0.1782 ●
Gyeonghogang 2 (Namgang B) 125 3.481 0.0545 β–²
Namgang 4-1 (Namgang E) -27 -0.730 0.3550 ●
Milyanggang 3 (Milyang B) -113 -3.144 0.0474 β–Ό
Mulgeum (Nakbon K) 21 0.561 0.5120 ●
Geumgok (Nakbon L) 12 0.312 0.7435 ●
Regional Kendall test
N Statistic S Z-value p-value Trend
24 113 2.045 0.0408 β–²

[i] Water Quality Trend : Increase β–², constant ●, Decreased β–Ό, Ξ± < 0.1 statistically significant trends

Table 4. Seasonal and Regional Kendall tests results with TP
Station Seasonal Kendall trend
Statistic S Z-value p-value Trend

Dosan (Nakbon B) 41 1.133 0.3600 ●
Yongjeoncheon 2 (yongjeon A) -81 -2.253 0.2070 ●
Banbyeoncheon 2-1 (Banbyeon B) -65 -1.805 0.3361 ●
Micheon (Micheon A) 87 2.428 0.1273 ●
Naeseongcheon5 (Naeseong A) -183 -5.113 0.0320 β–Ό
Naeseongcheon3-1 (Naeseong B) -12 -0.310 0.7328 ●
Iancheon (Ian A) -57 -1.582 0.3841 ●
Yeonggang 2-1 (Yeonggang A) -143 -3.996 0.0566 β–Ό
Byeongseongcheon-1 (Byeongseong A) -215 -6.007 0.0044 β–Ό
Wicheon 6 (Wicheon B) 33 0.902 0.6028 ●
Sangju 3 (Nakbon D) -35 -0.958 0.6317 ●
Gumi (Nakbon E) -55 -1.519 0.4852 ●
Geumhogang 6 (Geumho C) -146 -4.075 0.1724 ●
Hoecheon 2-1 (Hoecheon A) -11 -0.283 0.8543 ●
Daeam-1 (Nakbon G) -138 -3.850 0.1679 ●
Hwanggang1 (Hwanggang A) -73 -2.024 0.2634 ●
Hwanggang5 (Hwanggang B) 7 0.169 0.9260 ●
Yongsan (Nakbon H) -157 -4.383 0.0760 β–Ό
Gyeonghogang 1 (Namgang A) -24 -0.655 0.6214 ●
Gyeonghogang 2 (Namgang B) -58 -1.610 0.3373 ●
Namgang 4-1 (Namgang E) -152 -4.247 0.0374 β–Ό
Milyanggang 3 (Milyang B) -161 -4.495 0.0612 β–Ό
Mulgeum (Nakbon K) -140 -3.907 0.0652 β–Ό
Geumgok (Nakbon L) -122 -3.440 0.1012 ●
Regional Kendall test
N Statistic S Z-value p-value Trend
24 -186 -3.388 0.0007 β–Ό

[i] Water Quality Trend : Increase β–², constant ●, Decreased β–Ό, Ξ± < 0.1 statistically significant trends

3.2. Comparison of Seasonal and flow-adjusted Seasonal Kendall tests

μœ λŸ‰μ˜ 영ν–₯이 배제된 μƒνƒœμ—μ„œμ˜ 수질 λ³€ν™”λ₯Ό μ‚΄νŽ΄λ³΄κΈ° μœ„ν•˜μ—¬, flow-adjusted Seasonal Kendallλ₯Ό μ‹€ν–‰ν•˜κ³  Seasonal Kendall 뢄석 결과와 λΉ„κ΅ν•˜μ—¬ μ„œλ‘œ μƒμ΄ν•œ 경우λ₯Ό Table 5 에 λ‚˜νƒ€λ‚΄μ—ˆλ‹€. κ·Έ κ²°κ³Ό BOD λ†λ„λŠ” μš©μ „μ²œ2, μ˜κ°•2-1 μ§€ μ μ—μ„œ Seasonal Kendall κ²°κ³Ό Sν†΅κ³„λŸ‰μ΄ 각각 75, 104, p-valueλŠ” 0.1867, 0.1149둜 μœ μ˜ν•œ λ³€ν™”κ°€ μ—†λŠ” κ²ƒμœΌλ‘œ λ‚˜ 타났닀. ν•˜μ§€λ§Œ μœ λŸ‰μ˜ 영ν–₯을 μ œκ±°ν•œ κ²°κ³Ό Sν†΅κ³„λŸ‰ 103, 117, 기울기 ν†΅κ³„λŸ‰ Ξ² λŠ” 0.0802, 0.0845μ”© μ¦κ°€λ˜μ–΄ 톡계 적으둜 각각 μœ μ˜ν•œ β€œμ¦κ°€β€ κ²½ν–₯을 λ‚˜νƒ€λ‚΄μ—ˆλ‹€. 즉 μš©μ „μ²œ 2, μ˜κ°•2-1 μ§€μ μ˜ BOD λ†λ„λŠ” μœ λŸ‰μ˜ 영ν–₯이 없을 λ•Œ μ‹œ κ°„ 흐름에 따라 μ¦κ°€λ˜μ—ˆμœΌλ‚˜ μœ λŸ‰μ΄ μ‘΄μž¬ν•  경우 β€œμœ μ§€β€ μƒνƒœλ₯Ό λ‚˜νƒ€λ‚΄κ³  μžˆμ–΄ BOD λ†λ„λŠ” μœ λŸ‰μ— μ˜ν•˜μ—¬ κ°œμ„ λ˜ κ³  μžˆλŠ” κ²ƒμœΌλ‘œ νŒλ‹¨ν•  수 μžˆμ—ˆλ‹€. λ˜ν•œ λŒ€μ•”-1 μ§€μ μ˜ BOD λ†λ„λŠ” Seasonal Kendall κ²°κ³Ό 기울기 ν†΅κ³„λŸ‰ Ξ² λŠ” -0.1000으둜 μ‹œκ°„μ— 따라 β€œκ°œμ„ β€ κ²½ν–₯을 λ‚˜νƒ€λ‚΄μ—ˆμœΌλ‚˜ flow-adjusted Seasonal Kendall κ²°κ³Ό S ν†΅κ³„λŸ‰μ€ -55, p-valueλŠ” 0.1684둜 β€œμœ μ§€β€ μƒνƒœλ₯Ό λ‚˜νƒ€λ‚΄μ–΄, μœ λŸ‰μ— μ˜ν•œ 수질 농도 β€œμ¦κ°€β€κ°€ μ΄λ£¨μ–΄μ§€λŠ” κ²ƒμœΌλ‘œ νŒλ‹¨λ˜μ—ˆλ‹€. ν™©κ°• ν•˜λ₯˜μ— μœ„μΉ˜ ν•œ ν™©κ°•5 μ§€μ μ˜ Seasonal Kendall κ²°κ³Ό BODλ†λ„λŠ” μ–΄λ–  ν•œ κ²½ν–₯도 λ‚˜νƒ€λ‚΄κ³  μžˆμ§€ μ•Šμ•˜μœΌλ‚˜ μœ λŸ‰μ„ 제거 ν›„ S톡계 λŸ‰μ€ -112, p-value 0.0076, 기울기 ν†΅κ³„λŸ‰ Ξ² λŠ” -0.0243으둜 μœ μ˜ν•œ β€œκ°œμ„ β€ κ²½ν–₯을 λ‚˜νƒ€λ‚΄μ—ˆλ‹€. λ”°λΌμ„œ μ‹œκ°„μ΄ κ²½κ³Όν•˜λ©΄ μ„œ μœ λŸ‰μ— μ˜ν•œ BOD 농도 β€œμ¦κ°€β€ κ²½ν–₯이 μžˆλŠ” κ²ƒμœΌλ‘œ νŒλ‹¨ ν•  수 μžˆμ—ˆλ‹€. 물금 μ§€μ μ˜ BOD λ†λ„λŠ” Seasonal Kendall κ²°κ³Ό μ‹œκ°„μ— 따라 β€œκ°œμ„ β€λ˜λŠ” κ²½ν–₯을 λ‚˜νƒ€λ‚΄μ—ˆμœΌλ‚˜ μœ λŸ‰μ„ μ œκ±°ν•œ 후에 μžˆμ–΄μ„œλŠ” S ν†΅κ³„λŸ‰μ΄ 각각 -55, -71, p-valueλŠ” 0.1684, 0.1762둜써 μœ μ˜λ―Έν•œ 증감 κ²½ν–₯을 λ‚˜νƒ€λ‚΄μ§€ μ•ŠλŠ” κ²ƒμœΌλ‘œ λΆ„μ„λ˜μ–΄ μœ λŸ‰μ΄ 수질 변화에 긍정적 효과λ₯Ό λ‚˜νƒ€ λ‚Έ κ²ƒμœΌλ‘œ νŒλ‹¨λ˜μ—ˆλ‹€. COD λ†λ„μ˜ 경우 ν™©κ°• μœ μ—­μ˜ 상 λ₯˜μ— μœ„μΉ˜ν•œ ν™©κ°•1 μ§€μ μ˜ Seasonal Kendall testκ²°κ³Ό S톡 κ³„λŸ‰μ€ 94, p-valueλŠ” 0.1304둜 β€œμœ μ§€β€ μƒνƒœλ₯Ό λ‚˜νƒ€λ‚΄κ³  있 μœΌλ‚˜ μœ λŸ‰μ„ μ œκ±°ν•œ ν›„ Sν†΅κ³„λŸ‰μ€ 99, 기울기 ν†΅κ³„λŸ‰ Ξ² λŠ” 0.0464둜 μœ μ˜λ―Έν•œ β€œμ¦κ°€β€ κ²½ν–₯을 λ‚˜νƒ€λ‚΄μ–΄ μœ λŸ‰μ— μ˜ν•œ 수 질 κ°œμ„  효과λ₯Ό λ‚˜νƒ€λ‚΄μ—ˆλ‹€. TN λ†λ„λŠ” λ³‘μ„±μ²œ-1, κΈˆν˜Έκ°•6 μ§€μ μ—μ„œ μƒμ΄ν•œ κ²°κ³Όλ₯Ό λ‚˜νƒ€λ‚΄μ—ˆλ‹€. 이 쀑 λ³‘μ„±μ²œ-1 지점 의 경우 Seasonal Kendall κ²°κ³Ό Sν†΅κ³„λŸ‰ -129, μœ μ˜μˆ˜μ€€(Ξ±) 0.1μ—μ„œ 기울기 ν†΅κ³„λŸ‰ Ξ² λŠ” -0.0968둜 μ‹œκ°„μ— 따라 β€œκ°œμ„ β€ 된 수질 κ²½ν–₯을 λ‚˜νƒ€λ‚΄κ³  μžˆμœΌλ‚˜ μœ λŸ‰μ„ μ œκ±°ν•œ ν›„ 뢄석 κ²°κ³ΌλŠ” β€œμœ μ§€β€ μƒνƒœλ₯Ό λ‚˜νƒ€λ‚΄μ–΄ μœ λŸ‰μ— μ˜ν•œ 수질 κ°œμ„  효 κ³Όλ₯Ό λ‚˜νƒ€λ‚΄μ—ˆλ‹€. κΈˆν˜Έκ°•6 μ§€μ μ—μ„œλ„ Seasonal Kendall κ²° κ³Ό Sν†΅κ³„λŸ‰μ€ 55, p-value 0.3308둜 μ‹œκ°„μ— 따라 β€œμœ μ§€β€ 상 νƒœλ₯Ό λ‚˜νƒ€λ‚΄κ³  μžˆμœΌλ‚˜ μœ λŸ‰ 제거 ν›„ Ξ² λŠ” 0.0995둜 수질 β€œμ¦κ°€β€ μΆ”μ„Έλ₯Ό λ‚˜νƒ€λ‚΄μ–΄ μœ λŸ‰μ— μ˜ν•œ 수질 κ°œμ„  효과λ₯Ό λ‚˜ νƒ€λƒˆμ—ˆλ‹€. TP λ†λ„λŠ” κΈˆν˜Έκ°•6, κ²½ν˜Έκ°•2μ—μ„œ μ„œλ‘œ λ‹€λ₯Έ κ²°κ³Ό λ₯Ό λ‚˜νƒ€λ‚΄μ—ˆλ‹€. κΈˆν˜Έκ°•6 μ§€μ μ˜ Seasonal Kendall κ²°κ³Ό S톡 κ³„λŸ‰μ€ -146이며 μ΄λ•Œ p-value 0.1724둜 μ‹œκ°„μ— 따라 β€œμœ  지” μƒνƒœλ₯Ό λ‚˜νƒ€λ‚΄κ³  μžˆμœΌλ‚˜ μœ λŸ‰ 제거 ν›„ Sν†΅κ³„λŸ‰μ€ λ”μš± κ°μ†Œλ˜μ—ˆμœΌλ©° Ξ² λŠ” -0.0231둜 μ‹œκ°„μ— 따라 μœ μ˜ν•œ β€œκ°œμ„ β€ κ²½ν–₯을 λ‚˜νƒ€λ‚΄μ—ˆλ‹€. 즉 μœ λŸ‰μ— μ˜ν•œ 수질 농도 증가가 이 루어지고 μžˆμŒμ„ μ•Œ 수 μžˆμ—ˆλ‹€. κ²½ν˜Έκ°•2 지점은 Sν†΅κ³„λŸ‰ -58, p-value 0.3373둜 ν†΅κ³„μ μœΌλ‘œ μœ μ˜ν•œ κ²½ν–₯을 λ‚˜νƒ€λ‚΄μ§€ μ•Šμ•˜μœΌλ‚˜ μœ λŸ‰ 제거 ν›„ S ν†΅κ³„λŸ‰μ€ -147, p-value 0.0178, κΈ° 울기 ν†΅κ³„λŸ‰ Ξ² λŠ” -0.0015둜 μ‹œκ°„μ— 따라 μˆ˜μ§ˆμ€ β€œκ°œμ„ β€λœ κ²½ν–₯을 λ‚˜νƒ€λ‚΄κ³  μžˆμ–΄ μœ λŸ‰μ— μ˜ν•œ 수질 농도 증가가 이루 μ–΄μ§€κ³  μžˆμŒμ„ μ•Œ 수 μžˆμ—ˆλ‹€.

Table 5. Comparison of Seasonal and flow-adjusted Seasonal Kendall trend tests
Station Variable Statistic S Seasonal Kendall Trend Statistic S flow-adjusted Seasonal Kendall Trend
Z-value p-value Slope(Ξ²) Z-value p-value Slope(Ξ²)

Yongjeoncheon2(Yongjeon A) BOD 75 2.108 0.1867 0.0250 ● 103 2.894 0.0802 0.0345 β–²
Yeonggang2-1(Yeonggang A) COD 104 2.927 0.1149 0.0625 ● 117 3.256 0.0845 0.0713 β–²
Byeongseongcheon-1 (Byeongseong A) TN -129 -3.593 0.0700 -0.0968 β–Ό -79 -2.190 0.2579 -0.0622 ●
Geumhogang6(Geumho C) TN 55 1.516 0.3308 0.0370 ● 93 2.583 0.0971 0.0995 β–²
Geumhogang6(Geumho C) TP -146 -4.075 0.1724 -0.0318 ● -163 -4.548 0.0570 -0.0231 β–Ό
Daeam-1(Nakbon G) BOD -107 -3.001 0.0260 -0.1000 β–Ό 52 1.463 0.2702 0.0108 ●
Hwanggang1(Hwanggang A) COD 94 2.633 0.1304 0.0667 ● 99 2.780 0.0740 0.0464 β–²
Hwanggang5(Hwanggang B) BOD -74 -2.123 0.1046 -0.0143 ● -112 -3.117 0.0076 -0.0243 β–Ό
Yongsan(Nakbon H) BOD -83 -2.323 0.1196 -0.0571 ● -83 -2.302 0.0636 -0.0735 β–Ό
Gyeonghogang2(Namgang B) TP -58 -1.610 0.3373 -0.0005 ● -147 -4.098 0.0178 -0.0015 β–Ό
Namgang4-1(Namgang E) BOD -82 -2.287 0.0938 -0.0778 β–Ό -55 -1.516 0.1684 -0.0502 ●
Mulgeum(Nakbon K) BOD -98 -2.745 0.0851 -0.0750 β–Ό -71 -1.965 0.1762 -0.0550 ●

[i] Water Quality Trend : Increase β–², constant ●, Decreased β–Ό, Ξ± < 0.1 statistically significant trends

4. Conclusion

λ³Έ μ—°κ΅¬μ—μ„œλŠ” 낙동강 μˆ˜κ³„μ˜ μΌλ°˜μˆ˜μ§ˆμΈ‘μ •λ§κ³Ό 수질였 μ—Όμ΄λŸ‰μΈ‘μ •λ§ 지점이 μ„œλ‘œ μ€‘λ³΅λ˜λŠ” 24개 지점을 λŒ€μƒμœΌλ‘œ 2004λ…„ 8μ›”λΆ€ν„° 2013λ…„ 12μ›”κΉŒμ§€ μ•½ 10λ…„κ°„μ˜ BOD, COD, TN TP ν•­λͺ©μ— λŒ€ν•˜μ—¬ μ‹œκ³΅κ°„μ  좔세뢄석을 ν†΅ν•œ μž₯κΈ° 수 μ§ˆλ³€λ™νŠΉμ„±μ„ μ‚΄νŽ΄λ³΄κ³ μž ν•˜μ˜€λ‹€. 이λ₯Ό μœ„ν•˜μ—¬ 전체 μˆ˜κ³„ 및 지점별 μˆ˜μ§ˆλ³€ν™”λ₯Ό 직선좔세λ₯Ό ν†΅ν•˜μ—¬ μ‚΄νŽ΄λ³΄μ•˜κ³  연ꡬ κΈ°κ°„ 쀑 수질의 증감 λ³€ν™”κ°€ λ‚˜νƒ€λ‚˜λŠ” 지점을 λŒ€μƒμœΌλ‘œ 수 질 변동을 λΆ„μ„ν•˜μ˜€λ‹€. λ”λΆˆμ–΄ 각 지점별 μœ λŸ‰μ„ μ œκ±°ν•œ ν›„(flow-adjusted Seasonal Kendall test)와 κ·Έλ ‡μ§€ μ•Šμ€ 경우 λ₯Ό λΉ„κ΅ν•˜μ˜€λ‹€.

μˆ˜κ³„ μ „λ°˜μ— 걸친 Regional Kendall teat κ²°κ³Ό BOD, COD, TN λ†λ„λŠ” β€œμ¦κ°€β€, TP λ†λ„λŠ” β€œκ°œμ„ β€ κ²½ν–₯을 λ‚˜νƒ€ λ‚΄μ—ˆλ‹€. 이λ₯Ό 각 μ§€μ λ³„λ‘œ Seasonal Kendall κ²°κ³Ό BOD 농 λ„λŠ” β€œκ°œμ„ β€ 16.7%, β€œμœ μ§€β€ 62.5%, β€œμ¦κ°€β€ 20.8%의 κ²½ν–₯을 λ‚˜νƒ€λ‚΄μ—ˆμœΌλ©° COD λ†λ„λŠ” β€œκ°œμ„ β€λœ κ²½ν–₯을 λ‚˜νƒ€λ‚΄λŠ” 지점 은 μ—†μ—ˆκ³  β€œμœ μ§€β€ 58.3%, β€œμ¦κ°€β€ 41.7%λ₯Ό λ‚˜νƒ€λ‚΄μ—ˆλ‹€. TN λ†λ„λŠ” β€œκ°œμ„ β€ 8.3%, β€œμœ μ§€β€ 83.3%, β€œμ¦κ°€β€ 8.3%λ₯Ό λ‚˜νƒ€λ‚΄ μ—ˆλ‹€. TP λ†λ„λŠ” β€œκ°œμ„ β€ 29.2% , β€œμœ μ§€β€ 70.8%λ₯Ό λ‚˜νƒ€λ‚΄μ—ˆ 으며 특이적으둜 λ‹€λ₯Έ ν•­λͺ©κ³Ό λ‹€λ₯΄κ²Œ β€œμ¦κ°€β€ κ²½ν–₯을 λ‚˜νƒ€ λ‚Έ 지점은 μ—†μ—ˆλ‹€. LOWESS 뢄석 κ²°κ³Ό λŒ€λΆ€λΆ„μ˜ 뢄석 ν•­ λͺ©κ³Ό μ§€μ μ—μ„œ λšœλ ·ν•œ μˆ˜μ§ˆλ³€λ™μ„ λ‚˜νƒ€λ‚΄μ§€ μ•Šμ•˜μœΌλ‚˜ 남강 4-1, ꡬ미, κΈˆν˜Έκ°•6 지점 λ“± 일뢀 μ§€μ μ—μ„œ 수질 변동 νŠΉμ„± 을 λ‚˜νƒ€λ‚΄μ—ˆλ‹€. 특히 남강 4-1 μ§€μ μ˜ BOD, COD λ†λ„λŠ” 2009λ…„ β€œκ°œμ„ β€ κ²½ν–₯을 λ‚˜νƒ€λ‚Έ λ’€ μ™„λ§Œνžˆ μœ μ§€λ˜λŠ” μƒνƒœλ₯Ό λ‚˜νƒ€λ‚΄μ—ˆμœΌλ©° TP λ†λ„λŠ” ꡬ미 μ§€μ μ—μ„œ 2011λ…„ 이후 β€œκ°œ μ„ β€λœ κ²½ν–₯을 λ‚˜νƒ€λ‚΄μ—ˆλ‹€. κΈˆν˜Έκ°•6 지점은 2008λ…„ β€œμ¦κ°€β€ ν›„ β€œκ°œμ„ β€ μƒνƒœλ₯Ό μœ μ§€ν•˜μ˜€λ‹€. λŒ€μ•”-1μ—μ„œλŠ” 2009λ…„ ν›„λ°˜ λ“€μ–΄ β€œκ°œμ„ β€λ˜λŠ” κ²½ν–₯이 λšœλ ·ν•˜μ˜€λ‹€. λ°€μ–‘κ°•3 지점도 2009 λ…„ 이후 점차 β€œκ°œμ„ β€λ˜λŠ” λ³€ν™”λ₯Ό λ‚˜νƒ€λ‚΄μ–΄ λ‹€λ₯Έ 해보닀 2009λ…„ 이후 수질 변동을 λͺ…ν™•νžˆ νŒŒμ•… ν•  수 μžˆμ—ˆμœΌλ©° κ·Έ μ™Έ μ§€μ μ—μ„œλŠ” λšœλ ·ν•œ 변동 없이 Seasonall Kendall test와 μœ μ‚¬ν•œ κ²°κ³Όλ₯Ό λ‚˜νƒ€λ‚΄μ—ˆλ‹€. λ˜ν•œ μœ λŸ‰μ„ μ œμ–΄ν•œ flowadjusted Seasonal Kendall κ²°κ³Ό, BOD λ†λ„λŠ” μš©μ „μ²œ2, 영 κ°•2-1, ν™©κ°•5 4개 μ§€μ μ—μ„œ μœ λŸ‰μ— μ˜ν•œ 영ν–₯으둜 β€œμ¦κ°€β€ν•˜ κ³  μžˆλŠ” κ²ƒμœΌλ‘œ λ‚˜νƒ€λ‚œ 반면 λŒ€μ•”-1, 물금 2개 μ§€μ μ—μ„œλŠ” μœ λŸ‰μ— μ˜ν•œ β€œκ°œμ„ β€μ΄ μ΄λ£¨μ–΄μ§€λŠ” λ“± 긍정적 효과λ₯Ό λ‚˜νƒ€ λ‚΄μ—ˆλ‹€. COD λ†λ„λŠ” ν™©κ°•1 1개 μ§€μ μ—μ„œ μœ λŸ‰μ— μ˜ν•œ β€œκ°œ 선” 효과λ₯Ό λ‚˜νƒ€λ‚΄μ—ˆμœΌλ©° TN λ†λ„λŠ” λ³‘μ„±μ²œ-1, κΈˆν˜Έκ°•6 μ§€ μ μ—μ„œ μœ λŸ‰μ— μ˜ν•œ β€œκ°œμ„ β€ 효과λ₯Ό λ‚˜νƒ€λ‚΄μ—ˆλ‹€. TP λ†λ„λŠ” κΈˆν˜Έκ°•6, κ²½ν˜Έκ°•2 μ§€μ μ—μ„œ μœ λŸ‰μ— μ˜ν•΄ β€œμ¦κ°€β€ κ²½ν–₯을 λ‚˜ 타내고 μžˆμŒμ„ νŒλ‹¨ν•  수 μžˆμ—ˆλ‹€. 즉 μœ μž… μœ λŸ‰μ΄ μˆ˜μ§ˆμ— λ―ΈμΉ˜λŠ” 영ν–₯이 각각의 지점 및 뢄석 ν•­λͺ©μ— 따라 λ‹€λ₯΄κ²Œ λ‚˜νƒ€λ‚˜κ³  μžˆμ—ˆλ‹€. λ”°λΌμ„œ 낙동강 μœ μ—­μ˜ 효과적인 μˆ˜μ§ˆκ΄€λ¦¬ λ₯Ό μœ„ν•΄μ„œλŠ” 쑰사기간 λ™μ•ˆ μ§€μ†μ μœΌλ‘œ 수질 농도 β€œμ¦κ°€β€ κ²½ν–₯을 λ‚˜νƒ€λ‚΄κ³  μžˆλŠ” 지점에 λŒ€ν•˜μ—¬ 수질 κ°œμ„ λŒ€μ±…μ΄ ν•„ μš”ν•  κ²ƒμœΌλ‘œ νŒλ‹¨λœλ‹€. λ˜ν•œ LOWESS 뢄석 κ²°κ³Ό 각 지점 별 뢄석 ν•­λͺ© 쀑 수질 농도 β€œμ¦κ°€β€ κ²½ν–₯을 λ‚˜νƒ€λ‚Έ ν•΄λ‹Ή μ—° 도에 λŒ€ν•œ 원인뢄석이 μˆ˜ν–‰ λ˜μ–΄μ•Όν•  κ²ƒμœΌλ‘œ νŒλ‹¨λœλ‹€.

λ³Έ μ—°κ΅¬μ—μ„œλŠ” κ·Έκ°„ 수질 κ²½ν–₯ 뢄석에 μ΄μš©λ˜μ–΄ μ™”λ˜ μ‹œ 간에 λ”°λ₯Έ 직선 및 곑선에 λŒ€ν•œ μΆ”μ„Έκ²°κ³Ό 외에 μˆ˜κ³„ μ „λ°˜ 에 걸친 수질 κ²½ν–₯κ³Ό μ™Έμƒλ³€μˆ˜λ₯Ό μ œκ±°ν•œ ν›„μ˜ μˆ˜μ§ˆλ§Œμ„ 이 μš©ν•œ μΆ”μ„Έ 뢄석을 μ‹€ν–‰ν•¨μœΌλ‘œμ¨ κ³Όκ±° 타 연ꡬ 방법을 ν•œ 단계 κ°œμ„ μ‹œν‚¬ 수 μžˆμ—ˆλ‹€. 이에 μž₯기적 수질 κ²½ν–₯ 평가에 λ³Έ 연ꡬ방법을 μ μš©ν•˜μ—¬ 보닀 합리적인 μˆ˜μ§ˆκ΄€λ¦¬ 및 μ •μ±… μˆ˜λ¦½μ„ μœ„ν•œ μ˜μ‚¬κ²°μ •μ˜ 기초자료둜 ν™œμš©λ  수 μžˆμ„ κ²ƒμœΌ 둜 νŒλ‹¨λœλ‹€. κ·ΈλŸ¬λ‚˜ λ³Έ 뢄석 κ²°κ³Ό 일뢀 κ²°κ³Όκ°’μ—μ„œ 기각 μ—­κ³Ό μ±„νƒμ—­μ˜ κ²€μ • ν†΅κ³„λŸ‰ κ°„ μ°¨κ°€ 크게 λ‚˜νƒ€λ‚˜μ§€ μ•Šμ•˜λ‹€. λ”°λΌμ„œ μž₯기적인 λͺ¨λ‹ˆν„°λ§ 자료의 확보가 κ²€μ • ν†΅κ³„λŸ‰μ˜ 정확도 ν–₯상에 ν•„μš”ν•  κ²ƒμœΌλ‘œ νŒλ‹¨λœλ‹€. λ˜ν•œ λ³Έ 연ꡬ κ²° 과에 λŒ€ν•œ λͺ…ν™•ν•œ 해석과 ν•¨κ»˜ λŒ€μƒ 지역에 μ ν•©ν•œ μˆ˜μ§ˆκ΄€ 리 μ •μ±… 자료λ₯Ό μ œμ‹œν•˜κΈ° μœ„ν•˜μ—¬ ν† μ§€Β·μƒν™œΒ·μ‚°μ—…κ³„ μ „λ°˜μ˜ μ˜€μ—Όμ› 자료 및 보닀 λ‹€μ–‘ν•œ μ •μ±… 자료λ₯Ό ν™•λ³΄ν•˜κ³  이에 λŒ€ν•œ λ©΄λ°€ν•œ κ²€ν† κ°€ ν•„μš”ν•  κ²ƒμœΌλ‘œ νŒλ‹¨λœλ‹€.

References

1 
Birsan M.V, Molnar P, Burlando P, Pfaundler M, 2005, Streamflow trends in Switzerland, Journal of Hydrology, Vol. 314, pp. 312-329DOI
2 
Choi J.H, Ha J.H, Park S.S, 2008, Estimation of the Effect of Water Quality Management Policy in Paldang Lake, [Korean Literature], Journal of Korean Society of Environmental Impact Assessment, Vol. 30, No. 12, pp. 1225-1230Google Search
3 
Helsel D.R, Frans L.M, 2006, Regional Kendall Test for trend, Environmental Science & Technology, Vol. 40, No. 13, pp. 4066-4073DOI
4 
Helsel D.R, Hirsch R.M, 2002, Statistical Methods in Water Resources Techniques of Water-Resources Investigations Book 4, Chapter A3, U. S. Geological Survey, pp. 226-230Google Search
5 
Hirsch R.M, Slack J.R, 1984, A Nonparametric Trend Test for Seasonal Data With Serial Dependence, Water Resources Research, Vol. 20, No. 6, pp. 727-732DOI
6 
Hirsch R.M, Slack J.R, Smith R.A, 1982, Techniques of Trend Analysis for Monthly Water Quality Data, Water Resources Research, Vol. 18, No. 1, pp. 107-121DOI
7 
Johnson N.M, Likens G.E, Bormann F.H, Fisher D.W, Pierce R.S, 1969, A Working Model for the Variation in Stream Water Chemistry at the Hubbard Brook Experimental Forest, New Hampshire, Water Resources Research, Vol. 5, No. 6, pp. 1353-1363DOI
8 
Karpouzos D.K, Kavalieratou S, Babajimopoulos C, 2010, Trend Analysis of Precipitation Data in Pieria Region (Greece), European Water, Vol. 30, pp. 31-40Google Search
9 
Kauffman J.G, Homsey R.A, Belden C.A, Sanchez R.J, 2011, Water Quality Trends in the Delware River Basin (USA) from 1980 to 2005, Environmental Monitoring and Assessment, Vol. 177, pp. 193-225DOI
10 
Kim E.J, Kim Y.S, Rhew D.H, Ryu J.C, Pakk B.K, 2014, A Study on the Water Quality Changes of TMDL Unit Watershed in Geum River Basin Using a Nonparametric Trend Analysis, [Korean Literature], Journal of Korean Society on Water Environment, Vol. 30, No. 2, pp. 148-158DOI
11 
Kim J.H, Park S.S, 2004, Long-Term Trend Analyses of Water Qualities in Nakdong River Based on Non-Parametric Statistical Methods, [Korean Literature], Journal of Korean Society on Water Environment, Vol. 20, No. 1, pp. 63-71Google Search
12 
Kim J.T, 2014, Lowess and outlier analysis of biological oxygen demand on Nakdong main stream river, [Korean Literature], Journal of Korean Data & Information Science Society, Vol. 25, No. 1, pp. 119-130DOI
13 
Korea Meteorological Administration (KMA), 2014, http://www.kma.go.kr (accessed Jan. 2015), National Climate Data Service System(NCDSS)
14 
Lee H.W, Park S.S, 2008, Long-Term Trend Analyses of Water Qualities in Mangyung Watershed, [Korean Literature], Journal of Korean Society on Water Environment, Vol. 24, No. 4, pp. 480-487Google Search
15 
Ministry of Environment (MOE), 2016, [Korean Literature], Watere Quality Monitoriung Program, 11-1480000-001223-10, Ministry of Environment, pp. 3-4
16 
Nakdong River Basin Environmental Office (NDG), 2012, [Korean Literature], Technical Support Casebook of Total Phosphorus Treatment Plant, 11-1480354-000058-01, Nakdong River Basin Environmental Office, pp. 23-26
17 
National Institute of Environmental Research (NIER), 2008, [Korean Literature], Performance on 3 Year Implementation and Future Tasks in the Management of Total Maximum Daily Load, 11-1480523-000357-01, National Institute of Environmental Research, pp. 1-3
18 
National Institute of Environmental Research (NIER), 2013a, [Korean Literature], Changes of Water Environment and Phytoplankton Community Structures in the nakdong River, 11-1480523-001712-01, National Institute of Environmental Research, pp. 3-5
19 
National Institute of Environmental Research (NIER), 2013b, http://water.nier.go.kr (accessed Jan. 2014), Water Information System (WEIS)
20 
National Institute of Environmental Research (NIER), 2014, Report of the National Pollution Source Survey, Based on the 2012, 11-1480523-000429-10, [Korean Literature], National Institute of Environmental Research, Vol. 14, pp. 122Google Search
21 
Smith R.A, Hirsch R.M, Slack J.R, 1982, A Study of Trends in Total Phosphorous Measurements at Stations in the NASQAN network, Technical Report Water Supply Paper 2190, U. S. Geological Survey, pp. 1-8Google Search
22 
Song E.S, Jeon S.M, Park D.J, Shin Y.S, 2012, Long-Term Trend Analysis of Chlorophyll a and Water Quality in the Yeongsan River, [Korean Literature], Korean Journal of Limnology, Vol. 45, No. 3, pp. 302-313Google Search
23 
U.S. Geological Survey (USGS), 2005, http:://pubs.usgs.gov/sir/2005/5275 (accessed Jan. 2014), Computer Program for the Kendall Family of Trend Tests
24 
Xu Z.X, Takeuchi K, Ishidaira H, 2003, Monotonic trend and step changes in Japaneseprecipitation, Journal of Hydrology, Vol. 279, pp. 144-150DOI
25 
Yenilmez F, Keskin F, Aksoy A, 2011, Water quality trend analysis in Eymir Lake, Ankara, Physics and Chemistry of the Earth, Vol. 36, pp. 135-140DOI