The Journal of
the Korean Society on Water Environment

The Journal of
the Korean Society on Water Environment

Bimonthly
  • ISSN : 2289-0971 (Print)
  • ISSN : 2289-098X (Online)
  • KCI Accredited Journal

Editorial Office


  1. ์ถฉ๋ถ๋Œ€ํ•™๊ต ํ™˜๊ฒฝ๊ณตํ•™๊ณผ, (Department of Environmental Engineering Chungbuk National University)
  2. K-water (K-water)



Algal bloom, Cyanobacteria Dominance, Data mining, Environmental factors, Weirs.

1. Introduction

๊ทธ ๋™์•ˆ ๊ตญ๋‚ด์—์„œ ๋…น์กฐ๋ฌธ์ œ๋Š” ๋Œ ์ €์ˆ˜์ง€์™€ ํ•˜๊ตฌํ˜ธ, ํ•˜์ฒœ์˜ ๊ตญ๋ถ€์  ์ •์ฒด์ˆ˜์—ญ์—์„œ ๊ฐ„ํ—์ ์œผ๋กœ ๋ฌธ์ œ๋ฅผ ์ผ์œผ์ผฐ์œผ๋‚˜, 4๋Œ€๊ฐ• ์‚ฌ์—…(2010 ~ 2011)์œผ๋กœ ํ•˜์ฒœ์— ๋ณด๊ฐ€ ์„ค์น˜ ๋œ ์ดํ›„ ๋‚™๋™๊ฐ•, ๊ธˆ ๊ฐ•, ์˜์‚ฐ๊ฐ• ๋“ฑ ํ•˜์ฒœ ๋ณธ๋ฅ˜์—์„œ๋„ ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ๋ฐœ์ƒ๋˜๊ณ  ์žˆ์–ด ์ค‘์š”ํ•œ ํ™˜๊ฒฝ์ , ์‚ฌํšŒ์  ์ด์Šˆ๋กœ ๋Œ€๋‘๋˜์—ˆ๋‹ค. ๋‹ด์ˆ˜์—์„œ ๋‚จ์กฐ๋ฅ˜ ๊ณผ์ž‰์ฆ์‹ ๋ฌธ์ œ(์ดํ•˜ ๋…น์กฐ๋ฌธ์ œ)๋Š” ์ˆ˜์ƒํƒœ๊ณ„์˜ ์ƒ๋ฌผ๋‹ค์–‘์„ฑ์„ ๊ฐ์†Œ์‹œํ‚ค๋ฉฐ, ๋จน๋Š”๋ฌผ์˜ ๋ง›๊ณผ ๋ƒ„์ƒˆ์˜ ์›์ธ๋ฌผ์งˆ์„ ๋ฐœ์ƒ์‹œ์ผœ ๋ฌผ ์ด์šฉ์— ์žฅํ•ด๊ฐ€ ๋œ๋‹ค(Parinet et al., 2010; Peter et al., 2009; Welch et al., 1988). ๋˜ํ•œ ๋…์†Œ๋ฅผ ์ƒ์‚ฐํ•˜๋Š” ์œ ํ•ด๋‚จ์กฐ๋ฅ˜๊ฐ€ ๋Œ€ ๋Ÿ‰ ์ฆ์‹ํ•  ๊ฒฝ์šฐ์—๋Š” ๊ฐ€์ถ•์ด๋‚˜ ์ธ๊ฐ„์˜ ๊ฑด๊ฐ•์— ์น˜๋ช…์  ํ•ด๋ฅผ ๋ผ ์น˜๊ธฐ๋„ ํ•œ๋‹ค(Paerl and Otten, 2013; Park, 2007; Zhang et al., 2016).

๋ณธ ์—ฐ๊ตฌ์˜ ๋Œ€์ƒ ํ•˜์ฒœ์ธ ๊ธˆ๊ฐ•๊ณผ ์˜์‚ฐ๊ฐ•์—์„œ๋„ 2012๋…„ ๋ณด๊ฐ€ ์„ค์น˜ ๋œ ์ดํ›„ ๋…น์กฐ๋ฌธ์ œ๊ฐ€ ๋นˆ๋นˆํ•˜๊ฒŒ ๋ฐœ์ƒํ•˜๊ณ  ์žˆ๋‹ค. 2012๋…„ ์ดํ›„ ๊ธˆ๊ฐ•์˜ ๋ฐฑ์ œ๋ณด์—์„œ ์ถœํ˜„ํ•œ ๋‚จ์กฐ๋ฅ˜ ์„ธํฌ์ˆ˜๋Š” ์ตœ๋Œ€ 398,820 cells/mL์˜€์œผ๋ฉฐ, ์˜์‚ฐ๊ฐ•์˜ ์ฃฝ์‚ฐ๋ณด๋Š” ์ตœ๋Œ€ 357,600 cells/mL์˜€๋‹ค. ๋ฐฑ์ œ๋ณด์™€ ์ฃฝ์‚ฐ๋ณด๋Š” ์ตœ๊ทผ์— ํ๋ฆ„ ์กฐ์ ˆ์„ ํ†ตํ•œ ๋…น์กฐ ์ €๊ฐ์„ ์œ„ํ•ด ๋ณด์˜ ์ˆ˜๋ฌธ์„ ๊ฐœ๋ฐฉํ•˜๊ฑฐ๋‚˜ ๊ด€๋ฆฌ์ˆ˜์œ„๋ฅผ ๋‚ฎ์ถ” ์–ด ์šด์˜ํ•˜๊ณ  ์žˆ๋‹ค.

ํ•œํŽธ, ํ•˜์ฒœ์— ์„ค์น˜๋œ ๋ณด ๊ตฌ๊ฐ„์—์„œ ๋นˆ๋ฒˆํžˆ ๋ฐœ์ƒํ•˜๋Š” ๋‚จ์กฐ๋ฅ˜ ๊ณผ์ž‰ ์ฆ์‹์˜ ์›์ธ์— ๋Œ€ํ•ด์„œ๋Š” ์ „์ง€๊ตฌ์  ๊ธฐ์˜จ์ƒ์Šน์— ๋”ฐ๋ฅธ ๊ธฐ ํ›„๋ณ€ํ™”์˜ ์˜ํ–ฅ์ด๋ผ๋Š” ์ฃผ์žฅ๊ณผ ์œ ์—ญ์œผ๋กœ๋ถ€ํ„ฐ ์˜์–‘์—ผ๋ฅ˜์˜ ๊ณผ๋„ ํ•œ ์œ ์ž…, ๊ฐ€๋ญ„์— ๋”ฐ๋ฅธ ์œ ๋Ÿ‰๊ฐ์†Œ, ๋ณด ์„ค์น˜์— ๋”ฐ๋ฅธ ์ฒด๋ฅ˜์‹œ๊ฐ„ ์ฆ ๊ฐ€ ๋“ฑ ๋‹ค์–‘ํ•œ ์˜๊ฒฌ์ด ์ œ์‹œ๋˜๊ณ  ์žˆ์œผ๋‚˜, ๋Œ€์ƒ ์œ ์—ญ๊ณผ ์ˆ˜์ฒด์˜ ํŠน์„ฑ์— ๋”ฐ๋ผ ๋…น์กฐ ๋ฐœ์ƒ์˜ ์›์ธ์ด ์ƒ์ดํ•˜๊ฑฐ๋‚˜ ๋˜๋Š” ๋ณตํ•ฉ์  ์š” ์ธ์ด ์ž‘์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋ณดํŽธ์ ์ด๊ณ  ํ†ต์ผ๋œ ํ•ด์„์ด ์–ด๋ ค์šด ๊ฒƒ ์ด ํ˜„์‹ค์ด๋‹ค. ๋…น์กฐํ˜„์ƒ์˜ ์›์ธ์€ ์กฐ์‚ฌ ์ง€์ ๊ณผ ํ™˜๊ฒฝ์— ๋”ฐ๋ผ ๋งค์šฐ ๋‹ค์–‘ํ•˜๋ฉฐ, ํฌ๊ฒŒ ๋ฌผ๋ฆฌ์ (Physical) ์š”์ธ, ์ƒ๋ฌผ์ง€๊ตฌํ™”ํ•™์  (Biogeochemical) ์š”์ธ, ๋‚จ์กฐ๋ฅ˜์˜ ์ƒ๋ฆฌํ•™์ (Physiological) ์š” ์ธ์œผ๋กœ ๊ตฌ๋ถ„๋œ๋‹ค(Paerl and Otten, 2013). ๋ฌผ๋ฆฌ์  ์š”์ธ์—๋Š” ๋†’ ์€ ์ˆ˜์˜จ, ์ฒด๋ฅ˜์‹œ๊ฐ„ ์žฅ๊ธฐํ™”, ์ˆ˜์ธต์˜ ์„ฑ์ธตํ™”, ์•ฝํ•œ ๋‚œ๋ฅ˜ ํ˜ผํ•ฉ ๋“ฑ์ด ์žˆ์œผ๋ฉฐ(Okino, 1974; Reynolds, 1973; Reynolds and Walsby, 1975), ์ƒ๋ฌผ์ง€๊ตฌํ™”ํ•™์  ์š”์ธ์—๋Š” ๊ณผ๋„ํ•œ ์˜์–‘์—ผ๋ฅ˜ ์œ ์ž…, ๋‚ฎ์€ N/P๋น„, ๊ณผ๋„ํ•œ ์œ ๊ธฐ๋ฌผ๋Ÿ‰, ์ฒ ๋ถ„๊ณผ ๋ชฐ๋ฆฌ๋ธŒ๋ด๊ณผ ๊ฐ™์€ ๋ฏธ๋Ÿ‰์˜์–‘์†Œ(micronutrients) ๋“ฑ์˜ ์˜ํ–ฅ์ด ํฌํ•จ๋˜๊ณ (Ahn et al., 2013; Health Canada, 2002; Schindler, 1977; Schindler et al., 2008), ์ƒ๋ฆฌํ•™์  ์š”์ธ์—๋Š” ํŠน์ • ๋‚จ์กฐ๋ฅ˜ ์ข…์ด ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ์งˆ์†Œ๊ณ ์ •, ๋…์†Œ ์ƒ์„ฑ, ๋ถ€๋ ฅ ์กฐ์ ˆ, ๊ตฐ์ฒด ํ˜•์„ฑ ๋“ฑ์˜ ๊ธฐ๋Šฅ์ด ์žˆ ๋‹ค(Carpenter and Kitchell, 1993; Konopka et al., 1993; Fujimoto and Sudo, 1997; Thomas and Walsby, 1986).

์ด์™€ ๊ฐ™์ด ๋…น์กฐ๋ฐœ์ƒ์˜ ์š”์ธ์€ ๋งค์šฐ ๋‹ค์–‘ํ•˜๊ณ , ๋ช‡๋ช‡ ์š”์ธ๋“ค ์€ ๋Œ€์ƒ ์œ ์—ญ์˜ ์˜ค์—ผ๋ถ€ํ•˜๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๊ณ„์ ˆ์ ์ธ ๊ธฐ์ƒยท์ˆ˜๋ฌธ ์กฐ ๊ฑด ๋ณ€ํ™”์—๋„ ์˜ํ–ฅ์„ ๋ฐ›์œผ๋ฉฐ, ์‹œ๊ณต๊ฐ„์  ์˜์–‘์—ผ๋ฅ˜ ๋ถ„ํฌ์™€ ์ˆ˜๋ฆฌ ํ•™์  ํ˜ผํ•ฉํŠน์„ฑ, ์ถœํ˜„ ์กฐ๋ฅ˜ ์ข…์˜ ์ƒ๋ฆฌ์  ํŠน์„ฑ ๋“ฑ ๋งค์šฐ ๋ณต์žกํ•œ ์š”์ธ๋“ค์ด ๋ณตํ•ฉ์ ์œผ๋กœ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋ฏ€๋กœ ์—ญํ•™์  ๋ชจ๋ธ๋ง ๋ฐฉ๋ฒ• ์œผ๋กœ ์ธ๊ณผ๊ด€๊ณ„๋ฅผ ๊ทœ๋ช…ํ•˜๊ธฐ๊ฐ€ ์‰ฝ์ง€ ์•Š๋‹ค. ๋”ฐ๋ผ์„œ ๋…น์กฐ๋ฐœ์ƒ์˜ ์›์ธ์ด ๋˜๋Š” ๋‹ค์–‘ํ•œ ์š”์ธ๋“ค์˜ ์ค‘์š”๋„๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•œ ๋Œ€์•ˆ ์œผ๋กœ ํ†ต๊ณ„์  ๊ธฐ๋ฒ•๊ณผ ๋ฐ์ดํ„ฐ ๋ชจ๋ธ๋ง ๊ธฐ์ˆ ์ด ํ™œ์šฉ๋˜๊ณ  ์žˆ๋‹ค (Isles et al., 2017; Recknagel et al., 1997; Rowe et al., 2015; Tian et al., 2017). ๊ทธ๋Ÿฌ๋‚˜ ํ˜ธ์ˆ˜์™€ ์ €์ˆ˜์ง€์™€ ๊ฐ™์€ ์ •์ฒด์ˆ˜์—ญ์— ์„œ ๋…น์กฐ ๋ฐœ์ƒ์˜ ํ™˜๊ฒฝ์š”์ธ์„ ํ‰๊ฐ€ํ•˜๋Š” ์—ฐ๊ตฌ๋Š” ๋‹ค์ˆ˜ ์ˆ˜ํ–‰๋˜์—ˆ ์ง€๋งŒ, ๊ฐ•์ˆ˜๋Ÿ‰๊ณผ ์œ ๋Ÿ‰ ๋ณ€ํ™”์— ๋”ฐ๋ผ ๋ฌผ๋ฆฌ์ , ์ดํ™”ํ•™์  ํ™˜๊ฒฝ์ด ๊ธ‰๊ฒฉํžˆ ๋ณ€ํ™”๋˜๋Š” ํ•˜์ฒœ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋…น์กฐ์˜ ์›์ธ ํ•ด์„์€ ์—ฐ ๊ตฌ๊ฐ€ ๋ถ€์กฑํ•œ ์‹ค์ •์ด๋‹ค. ๋”ฐ๋ผ์„œ, ๊ตญ๋‚ด ํ•˜์ฒœ์—์„œ ๋…น์กฐ๋ฐœ์ƒ์˜ ์›์ธ์ด ๋˜๊ณ  ์žˆ๋Š” ๋‚จ์กฐ๋ฅ˜์˜ ์šฐ์ ์— ๋ฏธ์น˜๋Š” ํ•˜์ฒœ์˜ ๋ฌผ๋ฆฌ์ , ์ดํ™”ํ•™์  ์˜ํ–ฅ์ธ์ž๋“ค์˜ ์ƒํ˜ธ๊ด€๊ณ„๋ฅผ ๋ฐ์ดํ„ฐ๋งˆ์ด๋‹์„ ํ†ตํ•ด ํ•ด ์„ํ•˜๊ณ  ๋…น์กฐ์ œ์–ด๋ฅผ ์œ„ํ•œ ์ค‘์š” ์กฐ์ ˆ๋ณ€์ˆ˜๋ฅผ ์ข…ํ•ฉ์ ์œผ๋กœ ๋„์ถœ ํ•˜๋Š” ์—ฐ๊ตฌ๋Š” ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค.

๋ณธ ์—ฐ๊ตฌ์˜ ๋ชฉ์ ์€ 2012๋…„ ๋ณด ์„ค์น˜ ์ดํ›„ ๋‚จ์กฐ๋ฅ˜์— ์˜ํ•œ ๋…น ์กฐํ˜„์ƒ์ด ๋นˆ๋ฒˆํžˆ ๋ฐœ์ƒํ•˜๊ณ  ์žˆ๋Š” ์˜์‚ฐ๊ฐ• ์ฃฝ์‚ฐ๋ณด์™€ ๊ธˆ๊ฐ•์˜ ๋ฐฑ ์ œ๋ณด๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์ง‘์ค‘์ ์ธ ํ˜„์žฅ์กฐ์‚ฌ์™€ ์‹คํ—˜๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜๊ณ , ์ˆ˜์ง‘๋œ ๊ธฐ์ƒ, ์ˆ˜๋ฌธ, ์ˆ˜์งˆ, ๋ถ„๋ฅ˜๊ตฐ(class)๋ณ„ ์กฐ๋ฅ˜ ์ž๋ฃŒ์— ๋Œ€ํ•ด ํ†ต๊ณ„๋ถ„์„๊ณผ ๋ฐ์ดํ„ฐ๋ชจ๋ธ๋ง ๊ธฐ๋ฒ•์„ ์ ์šฉํ•˜์—ฌ ๋ณด ๊ตฌ๊ฐ„์˜ ๋‚จ์กฐ ๋ฅ˜ ์šฐ์  ํ™˜๊ฒฝ์กฐ๊ฑด์„ ๋ถ„์„ํ•˜๊ณ , ๋ณด๋ณ„ ํ™˜๊ฒฝ์กฐ๊ฑด์„ ๊ณ ๋ คํ•œ ํšจ๊ณผ ์ ์ธ ๋…น์กฐ์ œ์–ด ์กฐ์ ˆ๋ณ€์ˆ˜๋ฅผ ๋„์ถœํ•˜๋Š”๋ฐ ์žˆ๋‹ค. ์—ฐ๊ตฌ๋Œ€์ƒ ๋ณด ๋ณ„ ์ˆ˜์งˆ๊ณผ ์‹๋ฌผํ”Œ๋ž‘ํฌํ†ค์˜ ์ •์„ฑ ๋ฐ ์ •๋Ÿ‰ ์‹คํ—˜์€ 2017๋…„ 5์›”๋ถ€ ํ„ฐ 2018๋…„ 11์›”๊นŒ์ง€ 2๋…„์— ๊ฑธ์ณ ์‹ค์‹œํ•˜์˜€์œผ๋ฉฐ, ๋‚จ์กฐ๋ฅ˜ ์„ธํฌ ์ˆ˜์™€ ํ™˜๊ฒฝ์š”์ธ๊ณผ์˜ ์ƒ๊ด€์„ฑ ๋ถ„์„์„ ์‹ค์‹œํ•˜๊ณ , ๋‹จ๊ณ„์  ๋‹ค์ค‘ํšŒ ๊ท€๋ชจ๋ธ(Step-wise Multiple Linear Regressions, SMLR), ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ(Random Forests, RF) ๋ชจ๋ธ๊ณผ ์žฌ๊ท€์  ๋ณ€์ˆ˜ ์ œ๊ฑฐ ๊ธฐ๋ฒ•(Recursive Feature Elimination using Random Forest, RFE-RF)์„ ์ด์šฉํ•œ ๋ณ€์ˆ˜์ค‘์š”๋„ ํ‰๊ฐ€, ์˜์‚ฌ๊ฒฐ์ •๋‚˜๋ฌด(Decision Tree), ์ฃผ์„ฑ๋ถ„๋ถ„์„(PCA) ๊ธฐ๋ฒ• ๋“ฑ ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ๋งˆ์ด๋‹ ๊ฒฐ๊ณผ ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๊ฐ ๋ณด๋ณ„ ๋‚จ์กฐ๋ฅ˜ ์šฐ์  ํ™˜๊ฒฝ์š”์ธ์„ ์ข…ํ•ฉ์ ์œผ๋กœ ํ•ด ์„ํ•˜์˜€๋‹ค.

2. Materials and Methods

2.1. Description of site

๋ณธ ์—ฐ๊ตฌ์˜ ๋Œ€์ƒ์ง€์—ญ์€ ๊ธˆ๊ฐ•์— ์„ค์น˜๋œ ๋ฐฑ์ œ๋ณด(BJW)์™€ ์˜์‚ฐ ๊ฐ•์— ์„ค์น˜๋œ ์ฃฝ์‚ฐ๋ณด(JSW)์ด๋ฉฐ, ๋ชจ๋‘ 4๋Œ€๊ฐ•์‚ฌ์—…์˜ ์ผํ™˜์œผ๋กœ ๊ฑด์„ค๋˜์—ˆ๋‹ค(Fig. 1). ๋ฐฑ์ œ๋ณด๋Š” ๊ธˆ๊ฐ•์— ์„ค์น˜๋œ 3๊ฐœ๋ณด(์„ธ์ข…, ๊ณต ์ฃผ, ๋ฐฑ์ œ) ์ค‘ ๊ฐ€์žฅ ํ•˜๋ฅ˜์— ์œ„์น˜ํ•˜๋ฉฐ, ๋งŒ์ˆ˜์œ„ ๊ธฐ์ค€ ์ €์ˆ˜์šฉ๋Ÿ‰์€ 24.2๋ฐฑ๋งŒ m3์ด๋‹ค. ๋ฐฑ์ œ๋ณด๋Š” ์šฐ์•ˆ์— ๋„“์€ ๋งŒ๊ณก๋ถ€๊ฐ€ ํ˜•์„ฑ๋˜์–ด ์žˆ์œผ๋ฉฐ, ์†Œ์ˆ˜๋ ฅ ๋ฐœ์ „์†Œ๊ฐ€ ์ขŒ์•ˆ์— ์œ„์น˜ํ•˜์—ฌ ์šฐ์•ˆ์€ ํ๋ฆ„์ด ์ • ์ฒด๋œ๋‹ค. ๋ฐฑ์ œ๋ณด์˜ ์œ ๋Ÿ‰๊ณผ ์ˆ˜์งˆ์€ ์ฃผ๋กœ ๊ธˆ๊ฐ• ๋ณธ๋ฅ˜๋กœ ์œ ์ž…๋˜๋Š” ๋Œ€์ฒญํ˜ธ ๋ฐฉ๋ฅ˜์ˆ˜์™€, ๊ฐ‘์ฒœ ๋ฐ ๋ฏธํ˜ธ์ฒœ์˜ ์œ ๋Ÿ‰ ๋ฐ ์ˆ˜์งˆ๋ณ€ํ™”์— ์˜ ํ–ฅ์„ ๋ฐ›๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค(Han and An, 2013). ์ฃฝ์‚ฐ๋ณด๋Š” ์˜์‚ฐ๊ฐ• 2๊ฐœ๋ณด(์Šน์ดŒ, ์ฃฝ์‚ฐ) ์ค‘ ํ•˜๋ฅ˜์— ์œ„์น˜ํ•˜๋ฉฐ, ๋งŒ์ˆ˜์œ„ ๊ธฐ์ค€ ์ €์ˆ˜ ์šฉ๋Ÿ‰์€ 25.7๋ฐฑ๋งŒ m3์ด๋‹ค. ์ฃฝ์‚ฐ๋ณด๋Š” ๋ณด ์ƒ๋ฅ˜ 540 m ์ขŒ์•ˆ ์ง€์ ์— ์†Œ์ˆ˜๋ ฅ ๋ฐœ์ „์†Œ๊ฐ€ ์œ„์น˜ํ•˜์—ฌ ๋ณธ๋ฅ˜ ํ๋ฆ„์ด ๋ณด ๊ตฌ๊ฐ„์œผ๋กœ ํ˜•์„ฑ๋˜์ง€ ์•Š์•„ ๋ณด๋ฅผ ์›”๋ฅ˜ํ•˜์—ฌ ๋‚˜๊ฐ€๋Š” ์œ ๋Ÿ‰์ด ์ ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณด ๊ตฌ์กฐ๋ฌผ ์ธ๊ทผ์— ์ •์ฒด์ˆ˜์—ญ์ด ํ˜•์„ฑ๋˜๋ฉฐ, ์ฃผ๋กœ ๋ณด ์šฐ์•ˆ์— ์กฐ ๋ฅ˜๊ฐ€ ๊ณผ์ž‰ ์„ฑ์žฅํ•œ๋‹ค. ์ฃฝ์‚ฐ๋ณด์˜ ์ˆ˜์งˆ์€ ๋Œ€๋ถ€๋ถ„ ๊ด‘์ฃผํ•˜์ˆ˜์ฒ˜๋ฆฌ ์žฅ ๋ฐฉ๋ฅ˜์ˆ˜์™€ ์ฃผ๋ณ€ ๋†๊ฒฝ์ง€ ๋“ฑ์—์„œ ๋ฐฐ์ถœ๋˜๋Š” ์˜ค์—ผ๋ถ€ํ•˜์˜ ์˜ํ–ฅ ์„ ๋ฐ›๋Š”๋‹ค(Son et al., 2018).

Fig. 1. Locations of study sites and monitoring stations in BJW and JSW.
../../Resources/kswe/KSWE.2019.35.3.257/JKSWE-35-257_F1.jpg

2.2. Sampling and analysis

๋ถ„์„์— ์‚ฌ์šฉ๋œ ์‹œ๋ฃŒ๋Š” 2017๋…„ 5์›” 16์ผ๋ถ€ํ„ฐ 2018๋…„ 11 ์›” 23์ผ๊นŒ์ง€ ์—ฐ๊ตฌ๋Œ€์ƒ ๋ณด์˜ ์ƒ๋ฅ˜ 500 m ์ง€์  ์ค‘์•™์˜ ์ƒ์ธตยท ์ค‘์ธตยทํ•˜์ธต์—์„œ ์ฑ„์ทจํ•˜์˜€๋‹ค. ๋ฐฑ์ œ๋ณด๋Š” ์ด 35ํšŒ(105๊ฐœ ์‹œ๋ฃŒ), ์ฃฝ์‚ฐ๋ณด๋Š” ์ด 37ํšŒ(111๊ฐœ ์‹œ๋ฃŒ)์˜ ์‹คํ—˜์ด ์ด๋ฃจ์–ด์กŒ๋‹ค. ์‹œ๋ฃŒ ๋Š” Van Dorn ์ฑ„์ทจ๊ธฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ, ํ•˜์ฒœ ์ค‘์•™์˜ ์ƒ์ธต, ์ค‘์ธต, ํ•˜์ธต์—์„œ ๊ฐ๊ฐ ์ฑ„์ทจํ•˜์˜€๋‹ค. ์ˆ˜์˜จ(Temp, ยฐC), pH, ์šฉ์กด์‚ฐ์†Œ (DO, mg/L), ์ „๊ธฐ์ „๋„๋„(EC, ฮผS/cm)๋Š” ์‹œ๋ฃŒ ์ฑ„์ทจ ์‹œ ํ˜„์žฅ์— ์„œ ๋‹คํ•ญ๋ชฉ ์ˆ˜์งˆ์ธก์ •๊ธฐ(YSI-EXO, YSI-6600, YSI Pro plus) ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ˆ˜์‹ฌ๋ณ„๋กœ ์ธก์ •ํ•˜์˜€์œผ๋ฉฐ, ์„ผ์„œ๋“ค์— ๋Œ€ํ•œ ๋ณด์ •์€ ์ฃผ๊ฐ„ ๋‹จ์œ„๋กœ ์‹ค์‹œํ•˜์˜€๋‹ค. ์ฑ„์ทจ๋œ ์‹œ๋ฃŒ๋Š” 4 ยฐC ์ดํ•˜๋กœ ๋ณด๊ด€ ํ•˜์—ฌ ์‹คํ—˜์‹ค๋กœ ์šด๋ฐ˜ํ•œ ํ›„, ์ˆ˜์งˆ์˜ค์—ผ๊ณต์ •์‹œํ—˜๊ธฐ์ค€(ME, 2017) ์— ๋”ฐ๋ผ ๋ถ„์„ํ•˜์˜€๋‹ค.

์กฐ๋ฅ˜ ์ข…๋ณ„ ์„ธํฌ์ˆ˜ ๋ถ„์„์„ ์œ„ํ•œ ์‹œ๋ฃŒ๋Š” Lugol ์šฉ์•ก์œผ๋กœ ํ˜„ ์žฅ์—์„œ ์กฐ๋ฅ˜๋ฅผ ๊ณ ์ •ํ•œ ํ›„ ์‹œ๋ฃŒ๋ฅผ ์‹คํ—˜์‹ค๋กœ ์šด๋ฐ˜ํ•˜์—ฌ, ์ˆ˜์งˆ ์˜ค์—ผ๊ณต์ •์‹œํ—˜๊ธฐ์ค€(ME, 2017)์˜ โ€œ์‹๋ฌผ์„ฑํ”Œ๋ž‘ํฌํ†ค-ํ˜„๋ฏธ๊ฒฝ๊ณ„ ์ˆ˜๋ฒ•(ES 04705.1b)โ€์— ์ค€ํ•˜์—ฌ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋‹ค๋งŒ Microcystis ์˜ ๊ฒฝ์šฐ colony๋ฅผ ํ˜•์„ฑํ•˜์—ฌ ๋ถˆ๊ท ์ผํ•˜๊ฒŒ ๋ถ„ํฌํ•จ์œผ๋กœ์จ ๊ณ„์ˆ˜ ๊ฒฐ๊ณผ์— ์˜ค์ฐจ๋ฅผ ์œ ๋ฐœํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ผ์ •๋Ÿ‰์˜ ์šฉ์•ก์œผ๋กœ๋ถ€ํ„ฐ Microcystis colony๋ฅผ ๋ถ„๋ฆฌํ•˜์—ฌ ๋ณ„๋„๋กœ ๊ณ„์ˆ˜ํ•˜์˜€๋‹ค.

๊ธฐ์ƒ์ž๋ฃŒ๋Š” ๊ธฐ์ƒ์ฒญ์˜ ๊ธฐ์ƒ์ž๋ฃŒ๊ฐœ๋ฐฉํฌํ„ธ์—์„œ ๊ณผ์—… ๊ตฌ๊ฐ„ ๋‚ด์— ์œ„์น˜ํ•œ ์ข…ํ•ฉ๊ธฐ์ƒ๊ด€์ธก์†Œ, ๋ฐฉ์žฌ๊ธฐ์ƒ๊ด€์ธก์†Œ๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์ˆ˜์ง‘ํ•˜์˜€์œผ๋ฉฐ, ๋Œ€์ƒ ์ง€์ ์€ ๊ธˆ๊ฐ• 1๊ฐœ์†Œ, ์˜์‚ฐ๊ฐ• 2๊ฐœ์†Œ์ด๋ฉฐ, ๊ฐ•์ˆ˜๋Ÿ‰(mm) ์ž๋ฃŒ๋ฅผ ์ˆ˜์ง‘ํ•˜์˜€๋‹ค. ์œ ๋Ÿ‰์ž๋ฃŒ๋Š” K-water ๋ฌผ์ • ๋ณดํฌํ„ธ์—์„œ ์ œ๊ณตํ•˜๋Š” ๋ณด๋ณ„ ์ˆ˜๋ฌธ์ž๋ฃŒ๋ฅผ ์ˆ˜์ง‘ํ•˜์˜€๋‹ค.

2.3. Statistical analyses

๋ณธ ์—ฐ๊ตฌ์˜ ์—ฐ๊ตฌ์ ˆ์ฐจ๋Š” Fig. 2์™€ ๊ฐ™์ด ๋‹จ๊ณ„๋ณ„๋กœ ์ˆ˜ํ–‰๋˜์—ˆ ์œผ๋ฉฐ ์ตœ์ข…์ ์œผ๋กœ ๊ฐ ๋ณด๋ณ„ ๋‚จ์กฐ๋ฅ˜ ์šฐ์  ํ™˜๊ฒฝ์„ ์ข…ํ•ฉ์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ๋‚จ์กฐ๋ฅ˜(Cyano), ๋…น์กฐ๋ฅ˜(Green), ๊ทœ์กฐ๋ฅ˜(Diatom) ์„ธํฌ์ˆ˜ ๋ฐ€๋„ ๋ฐ Chl-a ๋†๋„๋Š” ํ™˜๊ฒฝ์š”์ธ๊ณผ์˜ ๊ต์ฐจ ์ƒ๊ด€์„ฑ ๋ถ„์„์„ ์‹ค์‹œํ•˜์˜€๋‹ค. ๋ถ„์„์— ์‚ฌ์šฉํ•œ ํ˜„์žฅ ์ธก์ • ํ•ญ๋ชฉ์€ ์ˆ˜์˜จ, DO, EC์ด๋ฉฐ, ๋ฌผ๋ฆฌ์  ์ธ์ž๋Š” 7์ผ ํ‰๊ท  ์œ ๋Ÿ‰(Q7day), 7์ผ ๋ˆ„์ ๊ฐ•์šฐ๋Ÿ‰(APRCP7), ฮ”T(์ƒยทํ•˜์ธต ์ˆ˜์˜จ์ฐจ)์ด๋‹ค. ์˜์–‘์—ผ๋ฅ˜ ๋Š” TP (Total Phosphorus), TN (Total Nitrogen), NH3-N, NO3-N, ์œ ๊ธฐ๋ฌผ ๋ฐ ๋ฏธ๋Ÿ‰ ๋ฌผ์งˆ์€ BOD (Biochemical Oxygen Demand), COD (Chemical Oxygen Demand), TOC (Total Organic Carbon), Fe, SiO2๋ฅผ ํฌํ•จํ•˜์˜€๋‹ค. ์ˆœ๊ฐ„ ์œ ๋Ÿ‰์„ ์‚ฌ์šฉ ํ•˜์ง€ ์•Š๊ณ  Q7day๋ฅผ ์‚ฌ์šฉํ•œ ๊ฒƒ์€ ํ˜ธ์ฃผ์˜ ๋‚จ๋™์ชฝ์— ์œ„์น˜ํ•œ ํ•˜ ์ฒœ์—์„œ ์ˆ˜ํ–‰ํ•œ ์„ ํ–‰์—ฐ๊ตฌ(Mitrovic et al,. 2003; Sherman et al., 1998) ๊ฒฐ๊ณผ์—์„œ, ๋ณด ๊ตฌ๊ฐ„์˜ ๋‚จ์กฐ๋ฅ˜ ์šฐ์ ์ด ์ง€์†์ ์ธ ์œ  ๋Ÿ‰์˜ ๊ฐ์†Œ์™€ ์ˆ˜์˜จ์„ฑ์ธต ํ˜•์„ฑ์ด ์›์ธ์ด๋ผ๋Š” ๊ฒƒ์„ ์ฐธ๊ณ ํ•˜์˜€๋‹ค.

Fig. 2. The overall processes of this study.
../../Resources/kswe/KSWE.2019.35.3.257/JKSWE-35-257_F2.jpg

๋‚จ์กฐ๋ฅ˜๊ฐ€ ์šฐ์ ํ•˜๋Š” ํ™˜๊ฒฝ์˜ ์ค‘์š”๋ณ€์ˆ˜๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด SMLR ๋ชจ๋ธ๊ณผ ์•™์ƒ๋ธ”(Ensemble) ํ•™์Šต๊ธฐ๋ฒ• ์ค‘ RF๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๋ถ„์„์— ์‚ฌ์šฉ๋œ ์ข…์†๋ณ€์ˆ˜๋Š” ๋‚จ์กฐ๋ฅ˜ ์šฐ์ ๋„(C. dominance)์ด๋ฉฐ ๋…๋ฆฝ๋ณ€์ˆ˜๋Š” Temp, DO, EC, Q7day, APRCP7, ฮ”T, pH, NO3-N, NH3-N, TN, PO4-P, Fe์ด๋‹ค. C.dominance๋Š” ์ „์ฒด ์กฐ๋ฅ˜ ์„ธํฌ์ˆ˜ ๋ฐ€๋„์— ๋Œ€ํ•œ ๋‚จ์กฐ๋ฅ˜ ์„ธํฌ ์ˆ˜ ๋ฐ€๋„์˜ ๋น„๋กœ์จ ๋‚จ์กฐ๋ฅ˜ ์šฐ์ ์— ์˜ํ•œ ๋…น์กฐ๋ฐœ์ƒ์˜ ์œ„ํ—˜๋„ ๋ฅผ ๊ฐ„์ ‘์ ์œผ๋กœ ๋‚˜ํƒ€๋‚ธ๋‹ค.

SMLR์€ ๋‹จ๊ณ„์  ์ „์ง„ ๋ฐฉ๋ฒ•์„ ์ ์šฉํ•˜์˜€์œผ๋ฉฐ, ๋ชจ๋ธ์— ์‚ฌ์šฉ ํ•˜๋Š” ์ฒซ ๋ฒˆ์งธ ๋ณ€์ˆ˜๋Š” ์ข…์†๋ณ€์ˆ˜์™€ ์ƒ๊ด€์„ฑ์ด ๊ฐ€์žฅ ํฐ ๋…๋ฆฝ๋ณ€ ์ˆ˜๋ฅผ ์„ ํƒํ•œ๋‹ค. ๋‹ค์Œ ๋ณ€์ˆ˜๋„ ์ƒ๊ด€์„ฑ์ด ํฐ ๋…๋ฆฝ๋ณ€์ˆ˜๊ฐ€ ์ˆœ์ฐจ ์ ์œผ๋กœ ์ ์šฉ๋˜๋ฉฐ, ์ง„์ž… ๊ธฐ์ค€์— ๋งŒ์กฑํ•˜๋Š” ๋ณ€์ˆ˜๊ฐ€ ์—†์œผ๋ฉด ํ”„ ๋กœ์‹œ์ €๋Š” ์ค‘๋‹จ๋œ๋‹ค(Chung et al., 2014). ๋ถ„์„๊ฒฐ๊ณผ๋Š” ๊ฒฐ์ •๊ณ„ ์ˆ˜(R2), RMSE (Root Mean Square Error), Mallows์˜ CP ํ†ต ๊ณ„๋Ÿ‰, AIC (Akaike Information Criterion)์„ ์‚ฌ์šฉํ•˜์—ฌ ํ‰๊ฐ€ ํ•˜์˜€๋‹ค. SMLR ๊ฒฐ๊ณผ๋Š” RF ๋ชจ๋ธ ๊ฒฐ๊ณผ์™€ ๋น„๊ต๋ฅผ ํ†ตํ•ด ๋‚จ์กฐ๋ฅ˜ ์šฐ์ ๊ณผ ๊ด€๊ณ„๊ฐ€ ๋†’์€ ์ค‘์š” ๋ณ€์ˆ˜๋ฅผ ์„ ์ •ํ•˜๋Š”๋ฐ ํ™œ์šฉ๋˜์—ˆ๋‹ค.

RF ๋ชจ๋ธ์€ ์—ฌ๋Ÿฌ ์˜์‚ฌ๊ฒฐ์ •๋‚˜๋ฌด ๋ชจ๋ธ์˜ ์˜ˆ์ธก ๊ฒฐ๊ณผ๋“ค์„ ์ข… ํ•ฉํ•˜์—ฌ ์ •ํ™•๋„๋ฅผ ๋†’์ด๋Š” ์•™์ƒ๋ธ” ํ•™์Šต ๊ธฐ๋ฒ•์œผ๋กœ, ๋ถ„๋ฅ˜๋Š” ํˆฌ ํ‘œ(voting), ํšŒ๊ท€๋Š” ํ‰๊ท (averaging)์œผ๋กœ ๊ฒฐ๊ณผ๋ฅผ ์‚ฐ์ถœํ•œ๋‹ค (Breiman, 2001). RF ๋ชจ๋ธ์˜ ์ ์šฉ ์ ˆ์ฐจ๋Š” ํƒ์ƒ‰์  ๋ฐ์ดํ„ฐ ๋ถ„์„(Exploratory Data Analysis, EDA), ์ฆ‰ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘, ์ • ๋ ฌ ๋ฐ ๊ฒฐ์ธก๊ฐ’ ์ฒ˜๋ฆฌ ๋“ฑ๊ณผ ๊ฐ™์€ ์ „์ฒ˜๋ฆฌ ์ž‘์—… ์ˆ˜ํ–‰ ํ›„์— ๊ฒฐ๊ณผ ๋ฅผ ์ถ”์ •ํ•˜์˜€๋‹ค. ๋˜ํ•œ RF ๋ชจ๋ธ ๊ฐœ๋ฐœ๊ณผ์ • ์ค‘ ๊ณผ์ ํ•ฉ์„ ๋ฐฉ์ง€ ํ•˜๊ณ  ์˜ˆ์ธก์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด k-fold ๊ต์ฐจ ๊ฒ€์ •(Cross validation)์„ 10-fold, 3ํšŒ ๋ฐ˜๋ณต์œผ๋กœ ์‹ค์‹œํ•˜์˜€๋‹ค. RF ๋ชจ๋ธ์€ ๋ชฉํ‘œ๋ณ€์ˆ˜์˜ ๊ฐ’์„ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•ด ์˜์‚ฌ๊ฒฐ์ •๋‚˜๋ฌด ๋ชจํ˜•์„ ์ตœ๋Œ€ ๋ช‡ ๊ฐœ ์‚ฌ์šฉํ•  ๊ฒƒ์ธ์ง€(ntree), ์˜์‚ฌ๊ฒฐ์ •๋‚˜๋ฌด์˜ ๊ฐ ๋งˆ๋””์—์„œ ์„ค ๋ช…๋ณ€์ˆ˜๋ฅผ ๋ช‡ ๊ฐœ ๋กœ ํ•  ๊ฒƒ์ธ์ง€(mtry) ๋“ฑ์„ ์—ฐ๊ตฌ์ž๊ฐ€ ์ง์ ‘ ์„  ํƒํ•˜์—ฌ์•ผ ํ•œ๋‹ค. RF ๋ชจ๋ธ์˜ ntree ๊ฐ’์€ Breiman and Cutler (2015)์— ๋”ฐ๋ผ ์ดˆ๊ธฐ๊ฐ’์ธ 500์œผ๋กœ ์„ค์ •ํ•˜์˜€์œผ๋ฉฐ, mtry๋Š” Liaw and Wiener (2002)์— ์˜ํ•œ ๋ฐฉ๋ฒ•์— ์˜ํ•ด ๊ฒฐ์ •ํ•˜์˜€๋‹ค. mtry ์˜ ๊ฐœ์ˆ˜๋Š” ๋ฐฑ์ œ๋ณด๋Š” 2 ~ 4๊ฐœ, ์ฃฝ์‚ฐ๋ณด๋Š” 2 ~ 5๊ฐœ๊นŒ์ง€ ์„ค์ •ํ•˜ ์—ฌ RF ๋ชจ๋ธ์— ์ ์šฉํ•˜์˜€๋‹ค. ๋ชจ์˜๊ฒฐ๊ณผ ์˜ˆ์ธก ์˜ค์ฐจ๋Š” mtry๊ฐ€ ์ฆ๊ฐ€ํ• ์ˆ˜๋ก ๊ฐ์†Œํ•˜์˜€์œผ๋ฉฐ, ๋ฐฑ์ œ๋ณด๋Š” mtry๊ฐ€ 4๊ฐœ์ธ ๋ชจ๋ธ์— ์„œ RMSE ๊ฐ’์ด 0.077 %, ์ฃฝ์‚ฐ๋ณด๋Š” mtry๊ฐ€ 5๊ฐœ์ธ ๋ชจ๋ธ์—์„œ RMSE ๊ฐ’์ด 0.066 %๋กœ ๊ฐ€์žฅ ๋‚ฎ์€ ํŽธ์ฐจ๋ฅผ ๋ณด์—ฌ, ์ตœ์ข… ๋งค๊ฐœ ๋ณ€์ˆ˜๋กœ ์„ ์ •ํ•˜์˜€๋‹ค.

์ตœ์†Œ์˜ ๋ณ€์ˆ˜๋กœ ์˜ˆ์ธก ์„ฑ๋Šฅ์ด ๊ฐ€์žฅ ์ข‹์€ RF ๋ชจ๋ธ์„ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด RFE ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ, C.dominance ์˜ˆ์ธก์— ์‚ฌ์šฉ ํ•œ ๋…๋ฆฝ๋ณ€์ˆ˜๋Š” ฮ”T, Temp, EC, Q7day, APRCP7, TOC, TP, PO4-P, TN, Fe์ด๋‹ค. RFE๋Š” Backward ๋ฐฉ์‹ ์ค‘ ํ•˜๋‚˜๋กœ, ๋ณ€์ˆ˜ ์ค‘ ์ค‘์š”๋„๊ฐ€ ๋‚ฎ์€ ๋ณ€์ˆ˜๋ฅผ ํ•˜๋‚˜์”ฉ ์ œ๊ฑฐํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค.

RF ๋ชจ๋ธ์„ ์ด์šฉํ•œ ๋‚จ์กฐ๋ฅ˜ ์šฐ์ ๊ณผ ๊ด€๋ จ๋œ ์ค‘์š” ๋ณ€์ˆ˜ ์ถ”์ถœ ๊ณผ ํ•จ๊ป˜, ๋‚จ์กฐ๋ฅ˜ ์šฐ์ ๋„๊ฐ€ ๋†’์€ ํ™˜๊ฒฝ์กฐ๊ฑด์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด ์˜์‚ฌ๊ฒฐ์ •๋‚˜๋ฌด(Decision Tree, ์ดํ•˜ DT) ๋ถ„์„์„ ์‹ค์‹œํ•˜์˜€๋‹ค. ๋ถ„์„์— ์‚ฌ์šฉ๋œ ์ข…์†๋ณ€์ˆ˜๋Š” C.dominance์ด๋ฉฐ ์„ค๋ช…๋ณ€์ˆ˜๋Š” RF ๋ชจ๋ธ ์ค‘์š”๋„ ํ‰๊ฐ€ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์„ ์ •๋œ ๋ณ€์ˆ˜๋“ค์„ ์ ์šฉ ํ•˜์˜€๋‹ค. DT ๋ชจ๋ธ์€ ๊ฐ ๋ณ€์ˆ˜๋ฅผ ์ด๋ถ„ํ™” ํ•˜๋Š” ๊ณผ์ •์„ ๋ฐ˜๋ณตํ•˜ ์—ฌ ๋‚˜๋ฌด๋ชจํ˜•์„ ํ˜•์„ฑํ•˜๋ฉฐ, ์ข…์†๋ณ€์ˆ˜๊ฐ€ ๋ฒ”์ฃผํ˜•์ธ ๊ฒฝ์šฐ ๋ถ„๋ฅ˜, ์—ฐ์†ํ˜•์ธ ๊ฒฝ์šฐ ํšŒ๊ท€๋ถ„์„์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ๋…๋ฆฝ๋ณ€์ˆ˜๋“ค์€ ๋ฒ”์ฃผํ˜• ๋˜๋Š” ์—ฐ์†ํ˜• ๋ชจ๋‘์— ์ ์šฉ๋  ์ˆ˜ ์žˆ์œผ๋ฉฐ ์ด ๊ณผ์ •์„ ๋ฐ˜๋ณตํ•œ ํ›„ ์ ์ ˆํ•œ ๋‚˜๋ฌด๋ชจํ˜•์„ ์ฐพ๊ธฐ ์œ„ํ•œ ๊ฐ€์ง€์น˜๊ธฐ(Pruning)๋ฅผ ํ†ตํ•ด ์ตœ์ข…๋ชจํ˜•์„ ์„ ํƒํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ DT ๋ชจ๋ธ์€ Rํ”„๋กœ๊ทธ๋žจ ์˜ rpart package (Breiman et al., 1984)๋ฅผ ์‚ฌ์šฉํ•˜์˜€๊ณ , RF ๋ชจ๋ธ์€ randomForest package(Breiman and Cutler, 2015)๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค.

๋…น์กฐ ๋ฐœ์ƒ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ํ™˜๊ฒฝ์š”์ธ์˜ ๊ตฐ์ง‘๋ถ„์„์„ ์œ„ํ•ด ์ฃผ์„ฑ๋ถ„๋ถ„์„(Principal component analysis, PCA)์„ ์‚ฌ์šฉํ•˜์˜€ ๋‹ค. ๋ถ„์„์— ์‚ฌ์šฉํ•œ ์ž๋ฃŒ๋Š” C.dominance, Temp, DO, EC, Q7day, APRCP7, ฮ”T, pH, NO3-N, NH3-N, TN, TP, PO4-P, Chl-a, Fe, BOD, COD, TOC, SiO2๋ฅผ ํฌํ•จํ•˜์˜€๋‹ค. ์ฃผ์„ฑ๋ถ„ ์ˆ˜์˜ ๊ฒฐ์ •์€ ์ฃผ์„ฑ๋ถ„ ์ถ•์— ์ •์‚ฌ๋œ ์ž๋ฃŒ์˜ ๋ถ„์‚ฐ ํฌ๊ธฐ๋ฅผ ๋‚˜ํƒ€ ๋‚ด๋Š” ๊ณ ์œ ์น˜(eigenvalue)๊ฐ€ 1.0 ์ด์ƒ์ธ ๊ฐ’์„ ๊ฐ–๋Š” ์ฃผ์„ฑ๋ถ„ ์ถ• ๋งŒ์„ ๊ณ ๋ คํ•˜์˜€์œผ๋ฉฐ(Box and Cox, 1964; Jung et al., 2012; Soltani et al., 2012), ์ถ•์„ ํšŒ์ „ํ•˜๋Š” ๋ฐฉ๋ฒ•์€ ๋ณ€์ˆ˜์™€ ์š”์ธ๊ฐ„ ์˜ ๊ด€๊ณ„๋ฅผ ๊ฐ€์žฅ ๋ช…ํ™•ํžˆ ์„ค๋ช…ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ง„ Varimax ํšŒ์ „๋ฐฉ๋ฒ•์„ ์ ์šฉํ•˜์˜€๋‹ค(Husson, 2010). ๋˜ํ•œ, ์›์ž๋ฃŒ๊ฐ€ ์ฃผ ์„ฑ๋ถ„ ๋ถ„์„์— ํƒ€๋‹นํ•œ ๋ฐฉ๋ฒ•๋ก ์ธ์ง€ ํŒ๋‹จํ•˜๊ธฐ ์œ„ํ•ด Bartlett ๊ตฌ ํ˜•๋„ ๊ฒ€์ • ๋ฐ KMO (Kaiser-Meyer-Olkin) test (KMO)๋ฅผ ์‚ฌ ์šฉํ•˜์˜€๋‹ค. KMO test ๊ฒฐ๊ณผ๋Š” ๋ถ„์„์— ์‚ฌ์šฉ๋œ ๋ณ€์ˆ˜์™€ ์ž๋ฃŒ์— ๋‚ด์žฌ๋œ ์š”์ธ๋“ค ๊ฐ„์˜ ๊ณต๋ถ„์‚ฐ ์ •๋„๋ฅผ ๋‚˜ํƒ€๋‚ธ ์ฒ™๋„๋กœ์จ 1์— ๊ฐ€๊นŒ์šธ์ˆ˜๋ก ๋ถ„์„์˜ ํƒ€๋‹น์„ฑ์ด ๋†’๊ณ  ์ตœ์†Œ 0.5 ์ด์ƒ ๋˜์–ด์•ผ ๋ถ„ ์„์ด ๊ฐ€๋Šฅํ•˜๋‹ค(Jung and Kim, 2017). KMO ๊ฒ€์ •๊ฒฐ๊ณผ, ๋ฐฑ์ œ๋ณด ๋Š” ์ด 1๊ฐœ(COD), ์ฃฝ์‚ฐ๋ณด๋Š” ์ด 4๊ฐœ(pH, PO4-P, TN, NO3-N) ์˜ ๋ณ€์ˆ˜๊ฐ€ KMO ๊ธฐ์ค€ ๊ฐ’(0.5 ๋ฏธ๋งŒ)์„ ๋งŒ์กฑํ•˜์ง€ ๋ชปํ•˜์—ฌ ์ด ๋“ค ๋ณ€์ˆ˜๋ฅผ ๋ฐฐ์ œํ•˜๊ณ  ๋ถ„์„ํ•˜์˜€๋‹ค. ์ตœ์ข…์ ์œผ๋กœ ์„ ์ •๋œ ๋ณ€์ˆ˜๋กœ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, ๋ฐฑ์ œ๋ณด์˜ KMO ๊ฐ’์€ 0.74 (p โ‰ช 0.05), ์ฃฝ์‚ฐ๋ณด ๋Š” KMO ๊ฐ’์€ 0.68 (p โ‰ช 0.05)๋กœ ๋ชจ๋“  ๋ณด์—์„œ ๊ธฐ์ค€ ๊ฐ’์„ ๋งŒ์กฑํ•˜์˜€๋‹ค.

3. Results and Discussion

3.1. Descriptive statistics of experiment data

์—ฐ๊ตฌ๋Œ€์ƒ 2๊ฐœ๋ณด์—์„œ ์‹ค์ธกํ•œ ์ˆ˜์งˆ ๋ฐ ์กฐ๋ฅ˜ ์ž๋ฃŒ์™€ ํ•จ๊ป˜ ์œ ๋Ÿ‰ ์ž๋ฃŒ์˜ ๊ธฐ์ˆ ํ†ต๊ณ„ ์ž๋ฃŒ๋ฅผ Table 1์— ์ œ์‹œํ•˜์˜€๋‹ค. pH๋Š” 2๊ฐœ๋ณด์—์„œ ๋ชจ๋‘ ํ‰๊ท  8.7 ~ 8.8๋กœ ์œ ์‚ฌํ•œ ๊ฐ’์„ ๋‚˜ํƒ€๋ƒˆ์œผ๋ฉฐ, ๋ฐฑ์ œ๋ณด์—์„œ DO, EC, SS, NO3-N ๊ฐ’์€ ๊ฐ๊ฐ 8.51(ยฑ 2.81) mg/L, 303.9(ยฑ 111.9) ฮผS/cm, 24.21(ยฑ 5.55) mg/L, 1.89(ยฑ 0.63) mg/L๋กœ ์ฃฝ์‚ฐ๋ณด์˜ 7.30(ยฑ 2.79) mg/L, 260.5(ยฑ 84.7) ฮผS/cm, 16.07(ยฑ 9.62) mg/L, 1.51(ยฑ 0.45) mg/L๋ณด๋‹ค ๋†’์•˜๋‹ค. ๋ฐฑ์ œ๋ณด์— ๋น„ํ•ด ์ฃฝ์‚ฐ๋ณด๋Š” ์œ ๊ธฐ๋ฌผ๊ณผ ์ธ ํ•ญ๋ชฉ ๋†๋„๋„ ๋†’์•˜์œผ๋ฉฐ, BOD๊ฐ€ 3.56(ยฑ 1.70) mg/L, TP์™€ PO4-P๊ฐ€ ๊ฐ๊ฐ 0.153(0.050 ~ 0.490) mg/L, 0.078 (0.009 ~ 0.139) mg/L ๋ฒ”์œ„์˜€๋‹ค. Chl-a๋Š” ๋ฐฑ์ œ ๋ณด, ์ฃฝ์‚ฐ๋ณด์—์„œ ๊ฐ๊ฐ 33.2(ยฑ 21.6), 39.1(ยฑ 39.5) mg/m3๋กœ ์œ  ์‚ฌํ•˜์˜€์œผ๋ฉฐ, ๋‚จ์กฐ๋ฅ˜ ์„ธํฌ์ˆ˜๋Š” ๋ฐฑ์ œ๋ณด์™€ ์ฃฝ์‚ฐ๋ณด์—์„œ ๊ฐ๊ฐ 4,296(0 ~ 73,467) cells/mL, 5,098(0 ~ 108,258) cells/mL๋กœ ์ฃฝ ์‚ฐ๋ณด์—์„œ ๋†’์•˜๋‹ค.

Table 1. Descriptive statistics of data used in this study
Variable name Unit BJW (Guem River) JSW (Yeongsan River)
Min Max Mean Standard deviation Min Max Mean Standard deviation
Sample size n 105 111
Temperature ยฐC 8.0 33.9 23.7 5.2 15.3 32.7 24.7 4.0
pH - 6.2 10.8 8.7 1.0 6.6 10.6 8.8 1.0
DO mg/L 0.74 15.63 8.52 2.81 0.31 13.60 7.33 2.80
EC ฮผS/cm 32.2 541.8 303.2 111.7 100.0 466.1 259.2 85.0
SS mg/L 2.70 438.67 24.16 51.26 2.60 59.30 16.10 9.61
BOD mg/L 0.20 6.70 2.72 1.32 0.60 9.68 3.56 1.70
TOC mg/L 2.20 6.40 4.14 0.93 3.15 15.20 4.82 1.38
TN mg/L 1.50 4.39 2.75 0.59 2.00 6.10 3.23 0.75
NH3-N mg/L 0.023 0.788 0.229 0.181 0.065 3.070 1.044 0.732
NO3-N mg/L 0.63 3.20 1.88 1.63 0.01 2.34 1.51 0.45
TP mg/L 0.039 0.555 0.123 0.080 0.050 0.490 0.153 0.060
PO4-P mg/L 0 0.156 0.050 0.036 0.009 0.214 0.077 0.044
Chl-a mg/m3 2.8 95.5 33.5 21.7 3.1 315.8 39.3 39.5
Cyano cells/mL 0 73,467 4,289 9,400 0 108,258 5,393 12,684
Green cells/mL 21 21,101 3,359 3,108 39 60,422 6,958 7,558
Diatom cells/mL 8 12,217 3,341 2,408 0 27,248 3,161 4,469
Outflow7 m3/s 49.82 583.62 166.29 153.25 13.75 462.67 59.23 78.59
APRCP7 mm 0 166.0 30.2 42.4 0 170.6 29.8 41.3
ฮ”T ยฐC 0.1 6.7 1.1 0.9 -0.1 6.8 1.0 1.0
Fe mg/L 0 0.36 0.11 0.07 0 0.47 0.13 0.09
SiO2 mg/L 0.08 11.01 3.84 3.22 0.07 11.17 4.85 2.80

* mean (ยฑ standard deviation)

๋ฐฑ์ œ๋ณด์™€ ์ฃฝ์‚ฐ๋ณด์—์„œ 2017๋…„(Fig. 3a)๊ณผ 2018๋…„(Fig. 3b)์˜ ๋‚จ์กฐ๋ฅ˜ ์„ธํฌ์ˆ˜์˜ ์‹œ๊ณ„์—ด ๋ณ€ํ™”๋ฅผ ๋ณด๋ฉด ๋‚จ์กฐ๋ฅ˜๊ฐ€ ์šฐ์ ํ•˜๋Š” ์‹œ๊ธฐ๊ฐ€ ์„œ๋กœ ๋‹ค๋ฅธ ๊ฒƒ์„ ๋ณผ ์ˆ˜ ์žˆ๋‹ค(Fig. 3). ์ด๋Š” ์—ฐ๊ตฌ๋Œ€์ƒ 2๊ฐœ ๋ณด์—์„œ ์šฐ์ ํ•˜๋Š” ์กฐ๋ฅ˜์˜ ์ฒœ์ดํŠน์„ฑ์ด ๋‹นํ•ด ์—ฐ๋„์˜ ๊ฐ•์šฐ -์œ ์ถœ ํŒจํ„ด๊ณผ ๋ฐ€์ ‘ํ•œ ๊ด€๊ณ„๊ฐ€ ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค. ๋ฐฑ์ œ๋ณด์—์„œ ๋Š” 2017๋…„ 5์›” ~ 6์›”๊ณผ 8์›” ๋ง๋ถ€ํ„ฐ 9์›” ์ดˆ, 10์›” ์ดํ›„์— ๊ฐ• ์ˆ˜๋Ÿ‰์ด ๋งค์šฐ ์ ์—ˆ์œผ๋ฉฐ, 7์›” ~ 8์›”์— ๊ฐ•์ˆ˜๋Ÿ‰์ด ๋งŽ์•˜๋‹ค. ๊ทธ ๊ฒฐ ๊ณผ 2017๋…„ 9์›” ์ดˆ์™€ 10์›” ๋ง์— ๋‚จ์กฐ๋ฅ˜๊ฐ€ ์ผ์‹œ์ ์œผ๋กœ ์šฐ์  ํ•˜์˜€์œผ๋‚˜, ์„ธํฌ์ˆ˜ ๋ฐ€๋„๋Š” ๋‚ฎ๊ฒŒ ์œ ์ง€๋˜์—ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  10์›” ๋ง ์— ๋‚จ์กฐ๋ฅ˜ Aphanocapsa๊ฐ€ ๋‹ค์‹œ ์šฐ์ ํ•˜์˜€์œผ๋‚˜, ์ด๋“ค์€ ์กฐ๋ฅ˜ ๊ฒฝ๋ณด์ œ์˜ ๋Œ€์ƒ์ธ ์œ ํ•ด๋‚จ์กฐ๋ฅ˜์— ํฌํ•จ๋˜์ง€ ์•Š๋Š”๋‹ค. ๋ฐ˜๋ฉด 2018๋…„์—๋Š” ์žฅ๋ฏธ๊ธฐ๊ฐ„์ธ 6์›” ๋ง๋ถ€ํ„ฐ 7์›” ์ดˆ, ๊ทธ๋ฆฌ๊ณ  8์›” ๋ง ๋ถ€ํ„ฐ 9์›” ์ดˆ์— ๊ฐ•์ˆ˜๋Ÿ‰์ด ๋งŽ์•˜์œผ๋ฉฐ, 7์›” ์ดˆ์— ์žฅ๋งˆ๊ฐ€ ์กฐ๊ธฐ ์ข…๋ฃŒ๋จ์œผ๋กœ์จ 7์›” ์ค‘์ˆœ๋ถ€ํ„ฐ 8์›” ๋ง๊นŒ์ง€ ๊ฐ•์ˆ˜๋Ÿ‰์ด ์ ๊ณ  ํญ ์—ผ์ด ์ง€์†๋˜์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ํ˜„์ƒ์œผ๋กœ 2018๋…„์—๋Š” ๋†’์€ ์ˆ˜์˜จ ์ด ์ง€์†๋˜๋Š” 7์›” ์ค‘์ˆœ๋ถ€ํ„ฐ ๋‚จ์กฐ๋ฅ˜๊ฐ€ ์šฐ์ ํ•˜๋ฉด์„œ ๋…น์กฐ๊ฐ€ ๋ฐœ ์ƒ๋˜๊ธฐ ์‹œ์ž‘ํ•˜์˜€๊ณ , 8์›” ๋ง์— ํฐ ๊ฐ•์šฐ๊ฐ€ ๋ฐœ์ƒ๋˜๋ฉด์„œ ์†Œ๋ฉธ ๋˜์—ˆ๋‹ค.

Fig. 3. Temporal variations of precipitation and cell density of each algae group (surface layer) in (a) BJW and (b) JSW Weirs
../../Resources/kswe/KSWE.2019.35.3.257/JKSWE-35-257_F3.jpg

์ฃฝ์‚ฐ๋ณด์—์„œ๋Š” 2017๋…„ 5์›”๋ถ€ํ„ฐ 6์›” ์ค‘์ˆœ๊ณผ, 9์›” ์ค‘์ˆœ๋ถ€ํ„ฐ 10์›” ๋ง๊นŒ์ง€ ๊ฐ•์ˆ˜๋Ÿ‰์ด ๋งค์šฐ ์ ์—ˆ์œผ๋ฉฐ, ๋ฐฑ์ œ๋ณด์™€ ๊ฐ™์ด ์ˆ˜์˜จ ์ด ๋†’์€ 7์›”~8์›”์—๋Š” ๊ฐ•์ˆ˜๋Ÿ‰์ด ๋งŽ์•˜๋‹ค. ๊ทธ ๊ฒฐ๊ณผ 2017๋…„์— ๋Š” 6์›” ๋ง๊ณผ 9์›” ์ค‘์ˆœ์— ๋‚จ์กฐ๋ฅ˜๊ฐ€ ์ผ์‹œ์ ์œผ๋กœ ์šฐ์ ํ•˜์˜€์œผ ๋‚˜, ์„ธํฌ์ˆ˜ ๋ฐ€๋„๋Š” 20,000 cells/mL ๋ฏธ๋งŒ์œผ๋กœ ๋‚ฎ์•˜๊ณ  ์ˆ˜์˜จ์ด ๊ฐ€์žฅ ๋†’์€ 7์›” ~ 8์›”์—๋„ ๊ฐ•์šฐ์˜ ์˜ํ–ฅ์œผ๋กœ ๋ชจ๋“  ์กฐ๋ฅ˜ ๊ทธ๋ฃน ์ด ๋‚ฎ์€ ์„ธํฌ์ˆ˜ ๋ฐ€๋„๋ฅผ ๋ณด์ด๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, 2018๋…„์—๋Š” ๋ฌด๊ฐ•์šฐ ์ผ์ˆ˜๊ฐ€ ์ง€์†๋œ 7์›” ~ 8์›” ์ค‘์ˆœ์— ๋‚จ์กฐ๋ฅ˜๊ฐ€ ์šฐ์ ํ•˜์—ฌ ์„ธํฌ์ˆ˜ ๋ฐ€๋„๋Š” 108,258 cells/mL๊นŒ์ง€ ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. ์กฐ์‚ฌ๊ธฐ๊ฐ„ ๋™์•ˆ ๋ฐฑ์ œ๋ณด์™€ ์ฃฝ์‚ฐ๋ณด ๋ชจ๋‘ ๋‚จ์กฐ๋ฅ˜๊ฐ€ ์šฐ์ ํ•˜๋ฉด์„œ 20,000 cells/mL ์ด์ƒ์œผ๋กœ ๊ณผ์ž‰์„ฑ์žฅํ•œ ์‹œ๊ธฐ๋Š” ๋ฌด๊ฐ•์šฐ ์ผ์ˆ˜๊ฐ€ ์ง€์† ๋œ 2018๋…„ 7์›”~ 8์›” ์ค‘์ˆœ์— ๋‚˜ํƒ€๋‚ฌ๋‹ค.

3.2. Correlation analysis of environmental factors

Table 2์— ๊ฐ๊ฐ ๋ณ€์ˆ˜๋“ค ๊ฐ„์˜ Spearman ์ƒ๊ด€๊ณ„์ˆ˜(r)๋ฅผ ์ œ ์‹œํ•˜์˜€๋‹ค. ๋ถ„์„๊ฒฐ๊ณผ ๋ชจ๋“  ๋ณด์—์„œ ๋‚จ์กฐ๋ฅ˜ ์„ธํฌ์ˆ˜๋Š” Temp, ฮ”T, EC, DO์™€ ์–‘์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์˜€์œผ๋ฉฐ, ์œ ๋Ÿ‰๊ณผ ๊ฐ•์ˆ˜๋Ÿ‰์€ ์Œ์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ํ•˜์ฒœ์—์„œ ๊ฐ•์ˆ˜๋Ÿ‰๊ณผ ์œ ๋Ÿ‰์˜ ๊ฐ์†Œ๋กœ ์ฒด๋ฅ˜์‹œ๊ฐ„์ด ๊ธธ์–ด์ง€๊ณ  ๊ณ ์˜จ์˜ ์•ˆ์ •๋œ ์ˆ˜์ฒด๊ฐ€ ์œ ์ง€๋˜๋Š” ๊ฒฝ์šฐ ๋‚จ์กฐ๋ฅ˜๊ฐ€ ๋‹ค๋ฅธ ์กฐ๋ฅ˜๋ณด๋‹ค ์„ฑ์žฅ์ด ์œ ๋ฆฌํ•˜๋‹ค๋Š” ์„ ํ–‰์—ฐ๊ตฌ๊ฒฐ๊ณผ(An and Jones, 2000; Horne and Goldman, 1994)์™€ ์ผ์น˜ํ•œ๋‹ค. ์ˆ˜์˜จ์€ ๋ฐฑ์ œ๋ณด์—์„œ ๋‚จ์กฐ๋ฅ˜ ์„ธํฌ์ˆ˜์™€ r = 0.42 (p < 0.01)๋กœ ๊ฐ€์žฅ ๋†’์€ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ์ˆ˜์˜จ ์„ฑ์ธต๊ฐ•๋„๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ฮ”T๋Š” ์ฃฝ์‚ฐ๋ณด์—์„œ r = 0.59 (p < 0.01) ๋กœ ๋‚จ์กฐ๋ฅ˜ ์„ธํฌ์ˆ˜์™€ ๊ฐ€์žฅ ๋†’์€ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์˜€๋‹ค. ๋ชจ๋“  ๋ณด์—์„œ ๋‚จ์กฐ๋ฅ˜์™€ ๋…น์กฐ๋ฅ˜ ์„ธํฌ์ˆ˜๋Š” ์–‘์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋‚˜ํƒ€๋ƒˆ ์œผ๋ฉฐ, ๋‚จ์กฐ๋ฅ˜์™€ ๊ทœ์กฐ๋ฅ˜ ์„ธํฌ์ˆ˜๋Š” ์ฃฝ์‚ฐ๋ณด์—์„œ ์–‘์˜ ์ƒ๊ด€๊ด€๊ณ„ ๋ฅผ ๋ฐฑ์ œ๋ณด์—์„œ ์Œ์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋‚˜ํƒ€๋ƒˆ๋‹ค. ์ด๋Š” ์กฐ์‚ฌ๊ธฐ๊ฐ„ ๋™์•ˆ ํŠน์ • ์กฐ๋ฅ˜ ๋ถ„๋ฅ˜๊ตฐ์ด ๋ฐฐํƒ€์ ์œผ๋กœ ์šฐ์ ํ•˜๊ธฐ๋ณด๋‹ค๋Š” ์—ฌ๋Ÿฌ ๋ถ„๋ฅ˜๊ตฐ์ด ๊ฒฝ์Ÿํ•˜๋ฉฐ ์„ฑ์žฅํ•˜์˜€๊ธฐ ๋•Œ๋ฌธ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค(Fig. 3).

Table 2. Bi-variables correlation analysis between variables observed in BJW (right-gray) and JSW (left-white) weir.
Statistics APRCP7 Q7day Temp ฮ”T DO pH EC BOD COD TOC SS TP PO4P TN NH3-N NO3-N Fe SiO2 Chla Cyano Green Diatom
APRCP7 1.00 0.72** 0.11 -0.18 -0.39** -0.34** -0.75* -0.28** 0.38** -0.15 0.36** 0.45** 0.50** 0.28** 0.10 0.34** 0.33** 0.68** -0.45** -0.18 -0.28** -0.04
Q7day 0.87** 1.00 0.00 -0.11 -0.18 -0.05 -0.75** -0.39** 0.38** -0.28** 0.47** 0.18 0.20* 0.34** -0.14 0.45** 0.20* 0.71** -0.42** -0.19* -0.29** -0.03
Temp 0.03 -0.04 1.00 0.38** -0.20* 0.24* 0.26** 0.39** -0.02 0.13 0.00 0.22* 0.23* -0.51** -0.04 -0.54** -0.05 -0.11 0.12 0.42** 0.49** -0.47**
ฮ”T -0.16 -0.18 0.46** 1.00 0.27* 0.24* 0.25** 0.28** -0.27** -0.10 -0.21* -0.14 -0.10 -0.31** -0.18 -0.13 -0.17 -0.13 -0.06 0.21* 0.42** -0.28**
DO -0.14 -0.08 -0.25** 0.29** 1.00 0.31** 0.20* 0.25* -0.12 0.00 -0.18 -0.35** -0.54** 0.20* -0.46** 0.29** -0.15 -0.09 0.39** 0.20* 0.19 0.25*
pH -0.17 -0.06 0.51** 0.14 -0.09 1.00 0.40** 0.33** -0.04 0.21* 0.02 -0.39** -0.39** -0.14 -0.40** -0.04 -0.10 -0.30** 0.38** 0.30** 0.47** 0.05
EC -0.48** -0.51** 0.32** 0.47** 0.09 0.12 1.00 0.46** -0.25* 0.33** 0.29** -0.28** -0.36** -0.44** -0.12 -0.56** -0.36** -0.80** 0.48** 0.39** 0.48** -0.25**
BOD -0.11 -0.19 0.28** 0.43** 0.25** 0.23* 0.48** 1.00 0.07 0.43** 0.00 -0.10 -0.32** -0.36** -0.11 -0.41** -0.25** -0.43** 0.57** 0.44** 0.54** 0.01
COD 0.23* 0.09 0.27** 0.22* 0.07 -0.10 0.30** 0.31** 1.00 -0.02 0.85** 0.15 0.06 0.25** 0.04 0.04 -0.02 0.23* -0.03 0.00 -0.16 0.07
TOC 0.00 -0.03 0.24* 0.56** 0.22* 0.08 0.45** 0.34** 0.24* 1.00 -0.05 0.05 -0.05 -0.14 0.08 -0.37** -0.01 -0.44** 0.37** 0.41** 0.43** 0.03
SS 0.61** 0.57** -0.19* -0.09 0.06 -0.14 -0.23* 0.09 0.21* 0.22* 1.00 0.09 0.13 0.21* 0.07 0.05 0.04 0.34** -0.16 -0.08 -0.17 0.03
TP 0.29** 0.20* 0.33** 0.33** -0.17 0.15 0.13 0.39** 0.36** 0.58** 0.35** 1.00 0.71** 0.17 0.28** -0.04 0.19 0.34** -0.29** 0.00 -0.12 -0.20*
PO4P 0.24* 0.05 0.22* -0.05 -0.62** 0.01 -0.02 -0.04 0.18 0.13 0.17 0.63** 1.00 0.02 0.56** -0.12 0.27** 0.37** -0.49** -0.08 -0.18 -0.33**
TN -0.17 -0.17 -0.27** 0.02 0.19* -0.43** 0.47** 0.34** 0.41** 0.14 0.10 0.03 -0.14 1.00 -0.09 0.77** -0.05 0.39** -0.10 -0.33** -0.42** 0.45**
NH3-N -0.17 -0.27** -0.11 -0.06 -0.25** -0.47** 0.48** 0.15 0.32** 0.00 -0.09 0.09 0.32** 0.66** 1.00 -0.29** 0.23* -0.06 0.32** -0.23* -0.16 -0.09
NO3-N -0.11 -0.04 -0.21* -0.16 0.28** -0.03 -0.17 -0.12 -0.04 -0.17 -0.01 -0.42** -0.53** 0.20* -0.17 1.00 0.01 0.56** -0.19 -0.41** -0.40** 0.44**
Fe 0.44** 0.53** 0.06 -0.18 -0.28** -0.13 -0.12 -0.18 0.15 0.15 0.39** 0.20* 0.20* 0.11 0.18 -0.01 1.00 0.20* -0.30** -0.19* -0.25** -0.02
SiO2 0.11 0.08 -0.19* -0.25** -0.09 -0.16 -0.57** -0.42** -0.7 -0.47** -0.12 -0.26** 0.02 -0.33** -0.26** -0.04 -0.27** 1.00 -0.40** -0.30** -0.34** 0.15
Chla -0.27** -0.24 0.10 0.33** 0.48** 0.26** 0.33** 0.56** 0.14 0.35** 0.11 0.11 -0.30** 0.18 -0.07 0.09 -0.20* -0.29** 1.00 0.42** 0.45** 0.30**
Cyano -0.14 -0.14 0.33** 0.59** 0.20* 0.30** 0.37** 0.41** 0.13 0.63** 0.06 0.33** -0.05 0.01 -0.14 -0.10 -0.10 -0.23* 0.66** 1.00 0.70** -0.26**
Green -0.23* -0.23* 0.23* 0.18 0.22* 0.12 0.24* 0.11 0.30** 0.05 -0.23* -0.02 -0.06 0.13 0.08 0.07 -0.20* 0.06 0.20* 0.07 1.00 -0.16
Diatom -0.14 -0.04 -0.35** -0.22* 0.30** 0.15 -0.12 0.11 -0.22* 0.01 0.23* -0.13 -0.38** 0.12 -0.25** 0.42** -0.09 -0.29** 0.33** 0.00 -0.14 1.00

* Spearman correlation coeffcient R: significant at p-value < 0.05 (two-tailed test),

** Spearman correlation coeffcient R: significant at p-value < 0.01 (two-tailed test)

Chl-a๋Š” ๋ชจ๋“  ๋ณด์—์„œ ์œ ๊ธฐ๋ฌผ ํ•ญ๋ชฉ์ธ BOD, TOC์™€ ์–‘์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋‚˜ํƒ€๋ƒˆ์œผ๋ฉฐ, ํŠนํžˆ, BOD์™€ ๋†’์€ ์–‘์˜ ์ƒ๊ด€๊ด€๊ณ„ (r = 0.56 ~ 0.57)๋ฅผ ๋‚˜ํƒ€๋ƒˆ๋‹ค. ์ด๊ฒƒ์€ ์ˆ˜์ฒด ๋‚ด์—์„œ ์กฐ๋ฅ˜์˜ ์„ฑ์žฅ์— ๋”ฐ๋ฅธ ๋‚ด๋ถ€ ์œ ๊ธฐ๋ฌผ ๋ถ€ํ•˜๊ฐ€ BOD์™€ TOC์˜ ๋†๋„๋ฅผ ์ƒ์Šน ์‹œํ‚จ ๊ฒฐ๊ณผ๋กœ ํ•ด์„๋œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๋ชจ๋“  ๋ณด์—์„œ Fe ๋†๋„ ๋Š” ๋‚จ์กฐ๋ฅ˜, ๋…น์กฐ๋ฅ˜ ๋ฐ ๊ทœ์กฐ๋ฅ˜ ์„ธํฌ์ˆ˜์™€ ์Œ์˜ ์ƒ๊ด€๊ด€๊ณ„(r = -0.25 ~ -0.02)๋ฅผ ๋‚˜ํƒ€๋ƒˆ๋‹ค. Fe๋Š” ๋‚จ์กฐ๋ฅ˜์˜ ๊ด‘ํ•ฉ์„ฑ์„ ์ด‰์ง„ํ•˜ ๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ์œผ๋‚˜, ์ƒ๊ด€์„ฑ ๋ถ„์„์—์„œ๋Š” ์œ ์˜ํ•œ ๊ด€๊ณ„ ๊ฐ€ ๋‚˜ํƒ€๋‚˜์ง€ ์•Š์•˜๋‹ค. SiO2์™€ ๊ทœ์กฐ๋ฅ˜ ์„ธํฌ์ˆ˜์™€ ์ƒ๊ด€์„ฑ์€ ๋ฐฑ ์ œ๋ณด์—์„œ๋Š” r = 0.15๋กœ ์–‘์˜ ๊ด€๊ณ„๋ฅผ ๋ณด์˜€์œผ๋‚˜ ํ†ต๊ณ„์  ์œ ์˜ ์„ฑ์ด ์—†์—ˆ์œผ๋ฉฐ, ์ฃฝ์‚ฐ๋ณด์—์„œ ์Œ์˜ ์ƒ๊ด€์„ฑ(r = -0.29, p < 0.05) ์„ ๋ณด์˜€๋‹ค. SiO2๋Š” ๊ทœ์กฐ๋ฅ˜ ์„ฑ์žฅ์— ๋งค์šฐ ์ค‘์š”ํ•œ ์˜์–‘์—ผ๋ฅ˜๋กœ, ๊ทœ์กฐ๋ฅ˜ ์„ธํฌ๋ฒฝ์˜ ํ•ฉ์„ฑ์— ๊ธฐ์—ฌํ•˜๋ฉฐ, ์ €์ˆ˜์˜จ๊ธฐ์— ๊ทœ์กฐ๋ฅ˜์˜ ์ƒ ๋ฌผ๋Ÿ‰์„ ๊ฐ„์ ‘์ ์œผ๋กœ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ๋Š” ์ง€ํ‘œ๋กœ๋„ ์‚ฌ์šฉํ•œ๋‹ค. Wetzel (2001)์— ์˜ํ•˜๋ฉด SiO2๋Š” ๊ทœ์กฐ๋ฅ˜ ๋ฐ ๋‹ค๋ฅธ ์กฐ๋ฅ˜ ์ข…์˜ ๊ณ„์ ˆ์  ์ฒœ์ด์— ๊ธฐ์—ฌํ•˜๋ฉฐ, SiO2 ๋†๋„๊ฐ€ ์•ฝ 0.5 mg/L ์ดํ•˜์— ์„œ๋Š” ์ˆ˜์ฒด์—์„œ ๊ทœ์กฐ๋ฅ˜๊ฐ€ ๋‹ค๋ฅธ ์กฐ๋ฅ˜์ข…์— ๋น„ํ•ด ๋จน์ด ๊ฒฝ์Ÿ์— ์„œ ๋–จ์–ด์ง„๋‹ค๊ณ  ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ SiO2์™€ ๊ทœ์กฐ๋ฅ˜ ์„ธํฌ์ˆ˜ ๊ฐ„์˜ ์ƒ๊ด€์„ฑ์ด ๋‚ฎ์€ ์ด์œ ๋Š” ์กฐ์‚ฌ๊ธฐ๊ฐ„ ๋™์•ˆ SiO2 ๋†๋„๊ฐ€ ๋ฐฑ ์ œ๋ณด์—์„œ 3.81(0.08 ~ 10.79) mg/L, ์ฃฝ์‚ฐ๋ณด์—์„œ 4.51(0.07 ~ 9.96) mg/L๋กœ ๋งค์šฐ ๋†’์•„ ์„ฑ์žฅ ์ œํ•œ์š”์ธ์œผ๋กœ ์ž‘์šฉํ•˜์ง€ ์•Š์€ ๊ฒƒ์ด ์›์ธ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.

์—ฐ๊ตฌ ๋Œ€์ƒ ๋ณด ๊ตฌ๊ฐ„์—์„œ Chl-a์™€ ์˜์–‘์—ผ๋ฅ˜์˜ ๊ด€๊ณ„๋ฅผ Fig. 4 ๊ณผ Table 3์— ์ œ์‹œํ•˜์˜€๋‹ค. ์‹คํ—˜๊ฒฐ๊ณผ ๋ชจ๋“  ๋ณด์—์„œ TP์™€ TN ๋†๋„๋Š” Carlson ๋ถ€์˜์–‘ํ™” ๊ธฐ์ค€(TP = 0.03 mg/L, TN = 0.3 mg/L)์„ ์ดˆ๊ณผํ•  ์ •๋„๋กœ ์ถฉ๋ถ„ํžˆ ๋†’์•˜๋‹ค. Chl-a์™€ TP์˜ ์ƒ๊ด€ ๋ถ„์„ ๊ฒฐ๊ณผ, ๋ฐฑ์ œ๋ณด์™€ ์ฃฝ์‚ฐ๋ณด ๋ชจ๋‘์—์„œ ์ƒ๊ด€์„ฑ์ด ์—†๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. Chl-a์™€ TN์˜ ์ƒ๊ด€๋ถ„์„ ๊ฒฐ๊ณผ๋„ ๋ชจ๋“  ๋ณด์—์„œ ์ƒ๊ด€ ์„ฑ์ด ์—†๋Š” ๊ฒƒ์œผ๋กœ ํ‰๊ฐ€๋˜์—ˆ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ์ €์ˆ˜์ง€์™€ ํ˜ธ์ˆ˜์™€ ๊ฐ™์€ ์ •์ฒด์ˆ˜์—ญ์—์„œ ์กฐ๋ฅ˜์ƒ์ฒด๋Ÿ‰(Chl-a ๋†๋„)์€ TP์™€ ๋†’์€ ์ƒ ๊ด€์„ฑ์„ ๋ณด์ด๋ฉฐ, ์ €์ˆ˜์ง€ ํ‘œ์ธต์˜ ์œ ๊ด‘์ธต์œผ๋กœ ์ธ ๊ณต๊ธ‰์ด ์ฐจ๋‹จ๋  ๊ฒฝ์šฐ ์กฐ๋ฅ˜ ์„ฑ์žฅ์€ ์ธ ๋†๋„์— ์ œํ•œ์„ ๋ฐ›๋Š”๋‹ค (Hwang et al., 2003; Kim et al., 2007; Schindler, 1977). ๊ทธ๋Ÿฌ๋‚˜, ์ €์ˆ˜์ง€์™€ ๋‹ฌ๋ฆฌ ํ•˜์ฒœ์€ ์œ ์—ญ์œผ๋กœ๋ถ€ํ„ฐ ์˜์–‘์—ผ๋ฅ˜๊ฐ€ ์ƒ์‹œ ๊ณต๊ธ‰ ๋˜๊ณ  ๋†’์€ ๋†๋„๋ฅผ ์œ ์ง€ํ•˜๋ฏ€๋กœ ์ธ ๋†๋„์— ์˜ํ•œ ์กฐ๋ฅ˜ ์„ฑ์žฅ ์ œํ•œ์€ ์ €์œ ๋Ÿ‰ ์ด ์ง€์†๋˜๊ณ  ์ฒด๋ฅ˜์‹œ๊ฐ„์ด ์žฅ๊ธฐํ™” ๋˜๋Š” ํŠน์ •ํ•œ ๊ธฐ๊ฐ„์—๋งŒ ๋‚˜ํƒ€ ๋‚˜๊ธฐ ๋•Œ๋ฌธ์— ์ƒ๊ด€์„ฑ์ด ๋งค์šฐ ๋‚ฎ์€ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.

Fig. 4. The correlation between TP-Chl-a and TN-Chl-a at each weir.
../../Resources/kswe/KSWE.2019.35.3.257/JKSWE-35-257_F4.jpg
Table 3. Correlation analysis between nutrients and Chl-a at each weir
Weir TP vs. Chl-a TN vs. Chl-a
r p-value r p-value
BJW (n* = 105) 0.289 <0.05 0.102 0.302
JSW (n = 111) 0.106 0.267 0.179 0.060

* n = number of data

3.3. Selection of important environmental factors associated with cyanobacteria dominance

3.3.1. Step-wise Multiple Linear Regression (SMLR)

SMLR ๋ถ„์„๊ฒฐ๊ณผ(Table 4), ๋ฐฑ์ œ๋ณด๋Š” 12๊ฐœ ๋ชจ๋ธ ์ค‘ Temp, NH3-N, NO3-N, TN, ฮ”T๋ฅผ ๋…๋ฆฝ๋ณ€์ˆ˜๋กœ ์‚ฌ์šฉํ•œ Model์—์„œ ๊ฐ€์žฅ ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์˜€์œผ๋ฉฐ, ์ข…์†๋ณ€์ˆ˜์ธ ๋‚จ์กฐ๋ฅ˜ ์ ์œ ์œจ์˜ ๋ณ€๋™์„ฑ์„ 46.2 % (Adj.R2 0.462) ์žฌํ˜„ํ•˜์˜€๋‹ค. ์ฃฝ์‚ฐ๋ณด๋Š” 12 ๊ฐœ ๋ชจ๋ธ ์ค‘ ฮ”T, EC, TN, NH3-N๋ฅผ ์‚ฌ์šฉํ•œ Model์—์„œ ๊ฐ€ ์žฅ ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์˜€์œผ๋ฉฐ, ์ข…์†๋ณ€์ˆ˜์ธ ๋‚จ์กฐ๋ฅ˜ ์ ์œ ์œจ์˜ ๋ณ€ ๋™์„ฑ์„ 39.2 % (Adj.R2 0.392)์žฌํ˜„ํ•˜์˜€๋‹ค. ๊ฐ ๋ณด์—์„œ ์„ ์ • ๋œ ๋‹ค์ค‘ํšŒ๊ท€๋ชจ๋ธ์€ ์กฐ์ • ๊ฒฐ์ •๊ณ„์ˆ˜๊ฐ€ 0.5 ๋ฏธ๋งŒ์œผ๋กœ ๋‚ฎ์•„ ๋‚จ ์กฐ๋ฅ˜ ์šฐ์ ์œจ์˜ ๋ณ€๋™์„ฑ์„ ์ถฉ๋ถ„ํžˆ ์žฌํ˜„ํ•˜์ง€ ๋ชปํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Š” ๋‚จ์กฐ๋ฅ˜ ์šฐ์  ํ™˜๊ฒฝ์ด ๋‹ค์–‘ํ•œ ๋ณ€์ˆ˜๋“ค์˜ ๋ณต์žก ํ•œ ๋น„์„ ํ˜•์  ๊ด€๊ณ„์ด๊ธฐ ๋•Œ๋ฌธ์— ๋ณ€์ˆ˜๋“ค์˜ ์ƒํ˜ธ์ž‘์šฉ ํšจ๊ณผ๋ฅผ ๊ณ ๋ คํ•˜์ง€ ์•Š๋Š” ๋‹จ์ˆœ ๋‹ค์ค‘ํšŒ๊ท€๋ชจ๋ธ๋กœ๋Š” ์ถฉ๋ถ„ํžˆ ์„ค๋ช…ํ•˜๊ธฐ ์–ด ๋ ต๊ธฐ ๋•Œ๋ฌธ์œผ๋กœ ํ•ด์„๋œ๋‹ค.

Table 4. Subset regression variables that best matched the performance criterion
Weir Variables Adj.R2 RMSE CP AIC
BJW Temp, NH3-N, NO3-N, TN, ฮ”T 0.462 0.179 2.3 -63.2
JSW ฮ”T, EC, TN, NH3-N 0.392 0.170 5.2 -78.2

[i] Adj.R2 : Adjusted coefficient of determination

CP : Mallowโ€™s CP, smaller value means the model is relatively more precise

AIC : Akaike information Criteria, smaller value means the model is relatively more precise

3.3.2. Recursive feature elimination based on random forest model (RFE-RF)

RFE-RF ๋ถ„์„๊ฒฐ๊ณผ, ๋ฐฑ์ œ๋ณด์—์„œ๋Š” 4๊ฐœ์˜ ๋…๋ฆฝ๋ณ€์ˆ˜๋ฅผ ์‚ฌ์šฉ ํ•˜์˜€์„ ๋•Œ RMSE๊ฐ’์ด 0.156%๋กœ ๊ฐ€์žฅ ๋‚ฎ์•˜์œผ๋ฉฐ, ๋ณ€์ˆ˜ ์ค‘์š” ๋„๋Š” EC, Temp, Q7day, PO4-P ์ˆœ์œผ๋กœ ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ฃฝ ์‚ฐ๋ณด์—์„œ๋Š” 5๊ฐœ์˜ ๋…๋ฆฝ๋ณ€์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜์˜€์„ ๋•Œ, RMSE๊ฐ’์ด 0.145 %๋กœ ๊ฐ€์žฅ ๋‚ฎ์•˜์œผ๋ฉฐ ๋ณ€์ˆ˜ ์ค‘์š”๋„๋Š” ฮ”T, Temp, TOC, TN, EC ์ˆœ์œผ๋กœ ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

๋ณ€์ˆ˜์ค‘์š”๋„ ํ‰๊ฐ€์— ์‚ฌ์šฉ๋œ SMLR๋ชจ๋ธ๊ณผ RF๋ชจ๋ธ์˜ ์˜ˆ์ธก ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ ๋ณด๋ณ„ ๋‚จ์กฐ๋ฅ˜ ์ ์œ ์œจ์˜ ์‹คํ—˜ ์ธก์ • ๊ฐ’๊ณผ ์˜ˆ์ธก ๊ฐ’์˜ ๋น„๊ต๋ฅผ ์‹ค์‹œํ•˜์˜€๋‹ค(Fig. 5). SMLR ๊ฒฐ๊ณผ๋Š” ์ธก์ •๊ฐ’๊ณผ ํฐ ๋ถ„์‚ฐ์„ ๋ณด์˜€์œผ๋ฉฐ, ์ธก์ •๊ฐ’์˜ ๋ณ€๋™ํŠน์„ฑ์„ ์ž˜ ๋ฐ˜ ์˜ํ•˜์ง€ ๋ชปํ•˜์˜€๊ณ  ๋ชจ๋‘ ๋‚ฎ์€ ์กฐ์ • ๊ฒฐ์ •๊ณ„์ˆ˜(Adj.R2) ๊ฐ’์„ ๋ณด ์˜€๋‹ค(๋ฐฑ์ œ๋ณด 0.462, ์ฃฝ์‚ฐ๋ณด 0.392). ์ด์— ๋น„ํ•ด RF ๋ชจ๋ธ์„ ํ†ตํ•ด ์‚ฐ์ •๋œ ๋‚จ์กฐ๋ฅ˜ ์ ์œ ์œจ(%)์€ ์ธก์ •๊ฐ’์˜ ๋ณ€๋™ํŠน์„ฑ์„ ์ž˜ ๋ฐ˜์˜ํ•˜์˜€์œผ๋ฉฐ, ๋ชจ๋‘ SMLR ๋ชจ๋ธ์— ๋น„ํ•ด ๋งค์šฐ ๋†’์€ ์„ค๋ช…๋ ฅ ์„ ๋ณด์˜€๋‹ค(Adj.R2 ๋ฐฑ์ œ๋ณด 0.895, ์ฃฝ์‚ฐ๋ณด 0.900). ์ด๋Š” ๋‚จ์กฐ ๋ฅ˜ ์šฐ์ ํ™˜๊ฒฝ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๋‹ค์–‘ํ•œ ๋ณ€์ˆ˜๋“ค์˜ ๋ณต์žกํ•œ ๋น„ ์„ ํ˜• ๊ด€๊ณ„๋ฅผ SMLR ๋ชจ๋ธ๋ณด๋‹ค RF ๋ชจ๋ธ์ด ๋” ์ž˜ ์žฌํ˜„ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ํŒ๋‹จํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋”ฐ๋ผ์„œ RF-RFE ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•œ ๋‚จ์กฐ๋ฅ˜ ์šฐ์  ํ™˜๊ฒฝ ๊ด€๋ จ ๋ณ€์ˆ˜ ์ค‘์š”๋„ ํ‰๊ฐ€ ๋ฐฉ๋ฒ•์€ ์œ ์šฉํ•œ ์ ‘๊ทผ๋ฒ•์ด๋ผ ํ‰๊ฐ€๋œ๋‹ค.

Fig. 5. The comparison of measured cyanobacteria dominance with simulated results using SMLR and RF models.
../../Resources/kswe/KSWE.2019.35.3.257/JKSWE-35-257_F5.jpg

RF๋ชจ๋ธ์„ ํ†ตํ•ด ๊ฐ ๋ณด๋ณ„๋กœ ์„ ์ •๋œ ์ค‘์š” ๋ณ€์ˆ˜์— ๋Œ€ํ•ด ์–ด๋–ค ์กฐ๊ฑด์—์„œ ๋‚จ์กฐ๋ฅ˜ ์šฐ์ ๋„๊ฐ€ ๋†’์•„์ง€๋Š” ์ง€ ํ•ด์„ํ•˜๊ธฐ ์œ„ํ•ด partial dependence plot๋ฅผ ์ด์šฉํ•˜์˜€๋‹ค(Fig. 6). Partial dependence plot๋Š” ๋…๋ฆฝ๋ณ€์ˆ˜๊ฐ€ ์ข…์† ๋ณ€์ˆ˜์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ํŒŒ์•…ํ•˜๋Š” ๋ฐฉ ๋ฒ• ์ค‘ ํ•˜๋‚˜๋กœ, ๊ฐœ๋ณ„ ๋…๋ฆฝ๋ณ€์ˆ˜๊ฐ€ ์ข…์†๋ณ€์ˆ˜์— ๋ผ์น˜๋Š” ์˜ํ–ฅ์„ ์‹œ๊ฐํ™”ํ•œ๋‹ค(Breiman and Cutler, 2015). ๋ฐฑ์ œ๋ณด์˜ ๋‚จ์กฐ๋ฅ˜ ์  ์œ ์œจ์€ EC, ฮ”T๊ฐ€ ๋†’์„์ˆ˜๋ก ๊ทธ๋ฆฌ๊ณ  PO4-P๊ฐ€ ๋‚ฎ์„์ˆ˜๋ก ์ฆ ๊ฐ€ํ•˜์˜€์œผ๋ฉฐ, Q7day๊ฐ€ ๋†’์„์ˆ˜๋ก ๊ฐ์†Œํ•˜์˜€๋‹ค. ์ฃฝ์‚ฐ๋ณด์˜ ๋‚จ์กฐ ๋ฅ˜ ์ ์œ ์œจ์€ EC, ฮ”T, ์ˆ˜์˜จ, TOC๊ฐ€ ๋†’์„์ˆ˜๋ก ์ฆ๊ฐ€ํ•˜์˜€์œผ ๋ฉฐ, TN์ด ๋†’์„์ˆ˜๋ก ๊ฐ์†Œํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋‚จ์กฐ๋ฅ˜ ์šฐ์ ๋„ ์˜ˆ ์ธก์— ์ค‘์š”ํ•œ ๋ณ€์ˆ˜๊ฐ€ ๋…น์กฐํ˜„์ƒ์˜ ์›์ธ์ด ๋œ๋‹ค๋Š” ๋‹จ์ˆœํ•œ ํ•ด ์„์€ ์œ„ํ—˜ํ•˜๋‹ค. ์ผ๋ถ€ ๋ณ€์ˆ˜๋Š” ๋‚จ์กฐ๋ฅ˜ ์šฐ์ ํ™˜๊ฒฝ์„ ์•ผ๊ธฐํ•˜๋Š” ์›์ธ์ด ๋  ์ˆ˜ ์žˆ์œผ๋‚˜, ์–ด๋–ค ๋ณ€์ˆ˜๋Š” ๋‚จ์กฐ๋ฅ˜๊ฐ€ ๊ณผ์ž‰์„ฑ์žฅํ•œ ๊ฒฐ๊ณผ๋กœ ๋‚˜ํƒ€ ๋‚ ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์˜ˆ๋กœ์จ ๋‚จ์กฐ๋ฅ˜ ์ ์œ ์œจ์ด ๋†’์€ ํ™˜๊ฒฝ์—์„œ TOC๊ฐ€ ๋†’๊ณ  PO4-P๊ฐ€ ๋‚ฎ์€ ๊ฒƒ์€ ๋‚จ์กฐ๋ฅ˜ ๊ณผ ์ž‰์„ฑ์žฅ์˜ ์›์ธ์ด ์•„๋‹ˆ๋ผ ๊ฒฐ๊ณผ์ผ ์ˆ˜๋„ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ถ„์„๊ฒฐ ๊ณผ์— ๋Œ€ํ•œ ํ•ด์„์€ ์ „๋ฌธ๊ฐ€์  ํŒ๋‹จ์ด ํ•„์š”ํ•˜๋ฉฐ, ๋‹ค์–‘ํ•œ ๋ฐ์ด ํ„ฐ๋ชจ๋ธ๋ง ๋ถ„์„๊ฒฐ๊ณผ๋ฅผ ์ข…ํ•ฉํ•˜์—ฌ ๋„์ถœ ํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค.

Fig. 6. Partial dependence plots of the RF models, showing the marginal effects of a single variable on cyanobacteria dominance.
../../Resources/kswe/KSWE.2019.35.3.257/JKSWE-35-257_F6.jpg

3.3.3. Decision Tree model

๊ฐ ๋ณด๋ณ„ ๋‚จ์กฐ๋ฅ˜ ์šฐ์  ํ™˜๊ฒฝ ์กฐ๊ฑด์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด RFE-RF ๊ธฐ๋ฒ•์œผ๋กœ ์„ ์ •ํ•œ ์ค‘์š” ๋ณ€์ˆ˜๋“ค์„ ์ด์šฉํ•˜์—ฌ DT๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜ ์˜€๋‹ค. DT๋ฅผ ์‚ฌ์šฉํ•œ ๋ณ€์ˆ˜ ํ‰๊ฐ€ ๊ฒฐ๊ณผ๋ฅผ Fig. 7์— ์ œ์‹œํ•˜์˜€๋‹ค.

Fig. 7. Evaluation of environmental conditions that have influence on the cyanobacteria dominance by using a decision tree.
../../Resources/kswe/KSWE.2019.35.3.257/JKSWE-35-257_F7.jpg

๊ธˆ๊ฐ•์˜ ๋ฐฑ์ œ๋ณด์—์„œ EC๋Š” ๋‚จ์กฐ๋ฅ˜๊ฐ€ ์šฐ์ ํ•˜๋Š” ํ™˜๊ฒฝ์กฐ๊ฑด์„ ํ‰๊ฐ€ํ•˜๋Š” ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๋ณ€์ˆ˜์˜€์œผ๋ฉฐ, EC๊ฐ€ 418 ฮผS/cm๋ณด๋‹ค ํฌ๊ฑฐ๋‚˜ ๊ฐ™์€ ๊ฒฝ์šฐ ์ „์ฒด ์ž๋ฃŒ 105๊ฐœ ์ค‘ 19๊ฐœ(18 %)์—์„œ ๋‚จ ์กฐ๋ฅ˜์˜ ์ ์œ ์œจ์ด ํ‰๊ท  56 %์˜€๋‹ค. ๋ฐ˜๋ฉด, ์˜์‚ฐ๊ฐ•์˜ ์ฃฝ์‚ฐ๋ณด์— ์„œ๋Š” ฮ”T๊ฐ€ ๋‚จ์กฐ๋ฅ˜ ์šฐ์  ํ™˜๊ฒฝ์กฐ๊ฑด์„ ํ‰๊ฐ€ํ•˜๋Š” ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๋ณ€์ˆ˜๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, ฮ”T๊ฐ€ 2.1 ยฐC๋ณด๋‹ค ํฌ๊ฑฐ๋‚˜ ๊ฐ™์€ ๊ฒฝ์šฐ ์ „ ์ฒด ์ž๋ฃŒ 111๊ฐœ์˜ 11๊ฐœ(10 %)์—์„œ ํ‰๊ท  ์ ์œ ์œจ์ด 66 %์˜€๋‹ค.

๋ฐฑ์ œ๋ณด์—์„œ EC๊ฐ€ ๋‚จ์กฐ๋ฅ˜ ์šฐ์  ํ™˜๊ฒฝ์„ ํ‰๊ฐ€ํ•˜๋Š” ์ค‘์š”ํ•œ ๋ณ€์ˆ˜๋กœ ์„ ์ •๋œ ์›์ธ์€, EC ์ž์ฒด๊ฐ€ ๋‚จ์กฐ๋ฅ˜ ์„ฑ์žฅ์„ ์ด‰์ง„ํ–ˆ๋‹ค๊ธฐ ๋ณด๋‹ค EC๊ฐ€ ์œ ๋Ÿ‰์˜ ๋ณ€๋™์— ๋ฏผ๊ฐํ•œ ์ง€ํ‘œ์ด๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค(Fig. 8). Fig. 8์— ์ œ์‹œ๋œ ๋ฐ”์™€ ๊ฐ™์ด ๋ชจ๋“  ๋ณด์—์„œ EC๋Š” ํ•˜์ฒœ์œ ๋Ÿ‰์˜ ๊ฐ์†Œ์™€ ํ•จ๊ป˜ ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์ด๊ณ  ์žˆ์–ด EC๋Š” ํ•˜์ฒœ์˜ ์ง€์†๋œ ์ €์œ ๋Ÿ‰ ์ƒํƒœ๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ๊ฐ„์ ‘์ง€ํ‘œ๋กœ ํŒ๋‹จํ•  ์ˆ˜ ์žˆ๋‹ค. ์ฆ‰, ๊ฐ€๋ญ„์ด ์ง€์†๋˜๊ณ  ๊ฐ•์šฐ-์œ ์ถœ์— ์˜ํ•œ ์ž์—ฐ์œ ์ถœ ๋Ÿ‰์ด ๋ถ€์กฑํ•œ ๊ฒฝ์šฐ, ํ•˜์ฒœ์ˆ˜๋Š” ์ง€ํ•˜์ˆ˜์™€ ๋Œ€ํ˜• ํ•˜์ˆ˜์ฒ˜๋ฆฌ์žฅ ๋ฐฉ ๋ฅ˜์ˆ˜์˜ ์˜ํ–ฅ์„ ํฌ๊ฒŒ ๋ฐ›์œผ๋ฏ€๋กœ EC๊ฐ€ ์ฆ๊ฐ€ํ•˜๊ฒŒ ๋œ๋‹ค. ๋˜ํ•œ EC์˜ ์ฆ๊ฐ€๋Š” ์ˆ˜์˜จ์„ฑ์ธต์— ๋”ฐ๋ฅธ ์ˆ˜์ธต-ํ‡ด์ ์ธต ๊ฒฝ๊ณ„๋ฉด์˜ ํ˜๊ธฐ ํ™”์™€ ์ด์— ๋”ฐ๋ฅธ ์ด์˜จ์„ฑ ๋ฌผ์งˆ์˜ ์šฉ์ถœ ์˜ํ–ฅ์œผ๋กœ ์ฆ๊ฐ€ํ•  ์ˆ˜๋„ ์žˆ๋‹ค(Johnson et al., 1996; Moreira et al., 2016). ๋”ฐ๋ผ์„œ ๋ฐฑ ์ œ๋ณด์™€ ์ฃฝ์‚ฐ๋ณด์—์„œ EC์˜ ์ฆ๊ฐ€๋Š” ๋‚จ์กฐ๋ฅ˜๊ฐ€ ์šฐ์ ํ•˜๊ธฐ ์ข‹์€ ํ™˜๊ฒฝ์œผ๋กœ ๋ณ€ํ™”๋˜๋Š” ๊ณผ์ •์œผ๋กœ ํŒ๋‹จํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ๋ฐฑ์ œ ๋ณด์™€ ๊ฐ™์ด ์ƒ๋ฅ˜ ๋Œ€์ฒญ๋Œ์˜ ๋ฐฉ๋ฅ˜๋Ÿ‰์ด ํ•˜์ฒœ ์œ ๋Ÿ‰์— ๋งŽ์€ ์˜ํ–ฅ ์„ ์ฃผ๋Š” ๊ฒฝ์šฐ, ์œ ๋Ÿ‰๊ณผ EC ์ƒ๊ด€๊ด€๊ณ„์˜ ๋ณ€๋™์„ฑ์— ์˜ํ–ฅ์„ ์ค„ ์ˆ˜ ์žˆ๋‹ค.

Fig. 8. The correlation between EC (ฮผS/cm) and flow (m3/s) ((a): BJW, (b): JSW).
../../Resources/kswe/KSWE.2019.35.3.257/JKSWE-35-257_F8.jpg

3.4. PCA of environmental conditions associated with cyanobacteria dominance

๋‚จ์กฐ๋ฅ˜๊ฐ€ ์šฐ์ ํ•˜๋Š” ํ™˜๊ฒฝ๊ณผ ๊ด€๋ จ์ด ํฐ ๋ณ€์ˆ˜๋“ค์˜ ๊ตฐ์ง‘๋ถ„์„ ๊ณผ ๋‚จ์กฐ๋ฅ˜ ์„ธํฌ์ˆ˜ ๋ฐ€๋„๊ฐ€ 10,000 cells/mL ์ด์ƒ์˜ ํ™˜๊ฒฝํŠน์„ฑ ์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด PCA๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ž๋ฃŒ์˜ ๊ทธ๋ฃนํ™”๋ฅผ ์œ„ ํ•ด ์œ ํ•ด๋‚จ์กฐ๋ฅ˜์˜ ์ˆ˜์ค€(HAB Level)์€ Microcystis, Anabaena, Oscillatoria, Aphanizomenon์˜ ์ด ์„ธํฌ์ˆ˜๋กœ ์ •์˜ํ•˜์—ฌ normal (1,000 cells/mL ๋ฏธ๋งŒ), warning (1000 ~ 10,000 cells/mL), alarm (10,000 cells/mL ์ด์ƒ)์œผ๋กœ ๊ตฌ๋ถ„ํ•˜์—ฌ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค(Fig. 9). PCA ๊ฒฐ๊ณผ์—์„œ ๊ณ ์œ ๊ฐ’(eigenvalue)์ด 1.0 ์ด์ƒ์ธ ์ฃผ์ถ•์„ ์ฃผ ์„ฑ๋ถ„์œผ๋กœ ์ถ”์ถœํ•˜์˜€์œผ๋ฉฐ, ๋ฐฑ์ œ๋ณด๋Š” 5๊ฐœ, ์ฃฝ์‚ฐ๋ณด๋Š” 4๊ฐœ๋กœ ์„  ์ •๋˜์—ˆ๋‹ค. ์ „์ฒด ์ˆ˜์งˆ ๋ณ€๋™์— ๋Œ€ํ•˜์—ฌ ๋ฐฑ์ œ๋ณด๋Š” ์ œ1์ฃผ์„ฑ๋ถ„์ด 31.7 %, ์ œ2์ฃผ์„ฑ๋ถ„์ด 17.8 %, ์ œ3์ฃผ์„ฑ๋ถ„์ด 10.5 %, ์ œ4์ฃผ์„ฑ ๋ถ„์ด 7.7 %, ์ œ5์ฃผ์„ฑ๋ถ„์ด 6.0 % ๊ธฐ์—ฌํ•˜์˜€๋‹ค. ์ฃฝ์‚ฐ๋ณด๋Š” ์ œ1 ์ฃผ์„ฑ๋ถ„์ด 32.0 %, ์ œ2์ฃผ์„ฑ๋ถ„์ด 20.5 %, ์ œ3์ฃผ์„ฑ๋ถ„์ด 9.6 %, ์ œ4์ฃผ์„ฑ๋ถ„์ด 7.9 % ๊ธฐ์—ฌํ•˜์˜€๋‹ค.

Fig. 9. Bi-plots of PCA results grouped by season and HAB level.
../../Resources/kswe/KSWE.2019.35.3.257/JKSWE-35-257_F9.jpg

๊ฐ ๋ณด๋ณ„ Bi-plot์„ ๋ณด๋ฉด ๋ฐฑ์ œ๋ณด์—์„œ APRC7์™€ Q7day๋Š” ์ œ 1์ฃผ์„ฑ๋ถ„๊ณผ ์ œ3์ฃผ์„ฑ๋ถ„์— ๊ฐ€์žฅ ํฐ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค. ์ด๋ฅผ ๋Œ€์ƒ ์œผ๋กœ PC1-PC3 ์ถ•์— ๋Œ€ํ•œ Bi-plot์„ ๋ณด๋ฉด APRC7์™€ Q7day ๋Š” ๋™์ผํ•œ ๊ตฐ์ง‘์„ ์ด๋ฃจ๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ PC1์ถ•์€ APRC7๊ณผ Q7day๊ฐ€ ํฐ ๊ฒฝ์šฐ์™€ ์ž‘์€ ๊ฒฝ์šฐ๋กœ ๊ตฌ๋ถ„๋˜์—ˆ๊ณ , ๊ฐ• ์ˆ˜๋Ÿ‰๊ณผ ์œ ๋Ÿ‰์ด ์ž‘์€ ๊ฒฝ์šฐ์— ๋‚จ์กฐ๋ฅ˜๊ฐ€ ์šฐ์ ํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด ์—ฌ์ค€๋‹ค(Fig. 9c). C.dominance๋Š” ์ œ3์ฃผ์„ฑ๋ถ„ ์ถ•์—์„œ 8.38 %, ์ œ2์ฃผ์„ฑ๋ถ„ ์ถ•์—์„œ 4.26 %๋กœ ์ฃผ์„ฑ๋ถ„ ์ถ• ์ค‘ ๊ฐ€์žฅ ํฐ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋ฉฐ, PC1-PC3 ํˆฌ์˜๋ฉด์„ ๊ธฐ์ค€์œผ๋กœ C.dominance ๋ฒกํ„ฐ๋Š” Temp, delT (ฮ”T), pH, EC, BOD, DO, Chla์™€ ๋™์ผํ•œ ๋ฐฉ ํ–ฅ์œผ๋กœ ๊ตฐ์ง‘ํ•˜๊ณ , ๋Œ€์ฒด๋กœ APRCP7, Q7day์™€ ์˜์–‘์—ผ๋ฅ˜ ํ•ญ๋ชฉ ๋“ค์˜ ๋ฒกํ„ฐ์™€๋Š” ๋ฐ˜๋Œ€๋ฐฉํ–ฅ์œผ๋กœ ๊ตฐ์ง‘ํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋‚จ์กฐ๋ฅ˜ ์„ธํฌ ์ˆ˜ ๋ฐ€๋„๊ฐ€ 10,000 cells/mL ์ด์ƒ์„ ๊ฐ–๋Š” ์ž๋ฃŒ๋Š” ์ˆ˜์˜จ์ด ๋†’๊ณ  ๋‚จ์กฐ๋ฅ˜ ์ ์œ ์œจ์ด ๋†’์€ ์ƒํƒœ์—์„œ ์ฃผ๋กœ ๋‚˜ํƒ€๋‚˜๊ณ  ์žˆ๋‹ค(Fig. 9e). ์ฃฝ์‚ฐ๋ณด์—์„œ APRC7๋Š” ์ œ2์ฃผ์„ฑ๋ถ„๊ณผ ์ œ4์ฃผ์„ฑ๋ถ„์— ๊ฐ€์žฅ ํฐ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋ฉฐ, Q7day๋Š” ์ œ2์ฃผ์„ฑ๋ถ„๊ณผ ์ œ1์ฃผ์„ฑ๋ถ„์— ๊ฐ€์žฅ ํฐ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค. PC2์ถ•์€ APRC7๊ณผ Q7day๊ฐ€ ํฐ ๊ฒฝ์šฐ์™€ ์ž‘ ์€ ๊ฒฝ์šฐ๋กœ ๊ตฌ๋ถ„๋˜์—ˆ๋‹ค(Fig 9b). ์ฃฝ์‚ฐ๋ณด์—์„œ C.dominance๋Š” ์ œ3์„ฑ๋ถ„๊ณผ ์ œ1์„ฑ๋ถ„์— ๊ฐ€์žฅ ํฐ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋ฉฐ, PC1-PC3 ํˆฌ ์˜๋ฉด์„ ๊ธฐ์ค€์œผ๋กœ Bi-plot์„ ๋ณด๋ฉด C.dominance ๋ฒกํ„ฐ๋Š” Temp, ฮ”T์™€ ๋™์ผํ•œ ๋ฐฉํ–ฅ์œผ๋กœ ๊ตฐ์ง‘์„ ์ด๋ฃจ๊ณ  ์žˆ๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ๋‚จ์กฐ๋ฅ˜ ์„ธํฌ์ˆ˜ ๋ฐ€๋„๊ฐ€ 10,000 cells/mL ์ด์ƒ์„ ๊ฐ–๋Š” ์ž๋ฃŒ๋Š” ์ˆ˜์˜จ์ด ๋†’๊ณ , ์ˆ˜์˜จ์„ฑ์ธต์ด ๊ฐ•ํ•˜๊ฒŒ ํ˜•์„ฑ๋˜๋ฉฐ ๋‚จ์กฐ ๋ฅ˜ ์ ์œ ์œจ์ด ๋†’์€ ์ƒํƒœ์—์„œ ์ฃผ๋กœ ๋‚˜ํƒ€๋‚˜๊ณ  ์žˆ๋‹ค(Fig. 9d).

3.5. Comprehensive evaluation of the environmental conditions forming cyanobacteria dominance

๊ฐ ๋ณด๋ณ„ ๋‚จ์กฐ๋ฅ˜ ์šฐ์ ํ™˜๊ฒฝ์— ๋Œ€ํ•œ ์ข…ํ•ฉ์  ํ‰๊ฐ€์™€ ํšจ๊ณผ์  ๋…น์กฐ ์ œ์–ด ๋ณ€์ˆ˜๋ฅผ ์ œ์‹œํ•˜๊ธฐ ์œ„ํ•ด ์ง€๊ธˆ๊นŒ์ง€ ๋ถ„์„๋œ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ฉํ•˜์—ฌ Table 5์— ์ •๋ฆฌํ•˜์˜€๋‹ค. ์ข…ํ•ฉํ‰๊ฐ€๋Š” ์ƒ๊ด€๋ถ„์„ (r > |0.5|), ์ตœ์  RF์—์„œ ์„ ์ •๋œ ๋ณ€์ˆ˜ ์ค‘์š”๋„ ์ˆœ์„œ, DT๋ชจ๋ธ์—์„œ ๋‚จ์กฐ๋ฅ˜ ์ ์œ ์œจ 50 % ์ด์ƒ ์กฐ๊ฑด, PCA๋ถ„์„ ๊ฒฐ๊ณผ ๋‚จ์กฐ๋ฅ˜ ์šฐ ์ ์ƒํƒœ๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. SMLR ๋ชจ๋ธ ๊ฒฐ๊ณผ๋Š” RF-RFE๋ณด๋‹ค ๋‚จ ์กฐ๋ฅ˜ ์šฐ์ ์œจ ์˜ˆ์ธก ์„ฑ๋Šฅ์ด ๋‚ฎ์•„ ์ข…ํ•ฉ๋ถ„์„์—์„œ๋Š” ์ œ์™ธํ•˜์˜€๋‹ค.

Table 5. Integration of study results for comprehensive interpretation
Weir Correlation Analysis
(r > |0.5|)
Recursive Feature Elimination
(Variable importance rank)
Decision Tree
(c.dominance > 50 % conditions)
PCA
(Clustering)
1st 2nd 3rd 1st 2nd 3rd 4th 5th 1st Positive Negative
BJW Green - - EC Temp Q7day PO4-P - EC โ‰ฅ 418 ฮผS/cm Temp
ฮ”T
pH
BOD
TN
NH3-N
JSW Chl-a TOC ฮ”T ฮ”T TOC Temp EC TN ฮ”T โ‰ฅ 2.1 ยฐC Temp
ฮ”T
EC
BOD
TOC
SiO2

์ข…ํ•ฉ๋ถ„์„ ๊ฒฐ๊ณผ, ๋ฐฑ์ œ๋ณด์—์„œ ๋‚จ์กฐ๋ฅ˜์˜ ์šฐ์ ํ™˜๊ฒฝ๊ณผ ๊ด€๊ณ„๊ฐ€ ๋†’์€ ๋ณ€์ˆ˜๋Š” EC, Temp, Q7day, PO4-P ์ˆœ์ด์—ˆ์œผ๋ฉฐ, ๋‚จ์กฐ๋ฅ˜ ์šฐ์ ์œจ์ด ๋†’์€ ํ™˜๊ฒฝ์กฐ๊ฑด์€ EC๊ฐ€ 418 ฮผS/cm ์ด์ƒ์œผ๋กœ ๋†’์€ ์ƒํƒœ์˜€๋‹ค. ์œ ๋Ÿ‰์˜ ์ง์ ‘์ ์ธ ์ง€ํ‘œ์ธ Q7day๋ณด๋‹ค EC๊ฐ€ ๋” ํฐ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์›์ธ์€ Q7day๋Š” 7์ผ๊ฐ„์˜ ์œ ๋Ÿ‰์ƒํƒœ๋ฅผ ๋‚˜ํƒ€ ๋‚ด๋Š” ๋ฐ˜๋ฉด, EC๋Š” ์žฅ๊ธฐ๊ฐ„์˜ ๊ฐ•์šฐ-์œ ์ถœ ๊ฐ์†Œ๋ฅผ ๊ฐ„์ ‘์ ์œผ๋กœ ๋‚˜ํƒ€๋‚ด๊ธฐ ๋•Œ๋ฌธ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ์กฐ๊ฑด์€ ์ง€์†์ ์œผ๋กœ ์œ  ๋Ÿ‰์ด ์ ์€ ํ™˜๊ฒฝ์— ํ•ด๋‹นํ•˜๋ฉฐ, ์ˆ˜์˜จ์„ฑ์ธต์ด ํ˜•์„ฑ๋  ๊ฒฝ์šฐ ์ˆ˜์ธต- ํ‡ด์ ์ธต ๊ฒฝ๊ณ„๋ฉด์˜ ํ˜๊ธฐํ™”์™€ ์ด์— ๋”ฐ๋ฅธ ์ด์˜จ์„ฑ ๋ฌผ์งˆ์˜ ์šฉ์ถœ ์˜ํ–ฅ์œผ๋กœ EC๊ฐ€ ์ฆ๊ฐ€ํ•  ์ˆ˜๋„ ์žˆ๋‹ค. ๋ฐ˜๋ฉด, ์ฃฝ์‚ฐ๋ณด์˜ ๋‚จ์กฐ๋ฅ˜ ์šฐ์ ํ™˜๊ฒฝ๊ณผ ๊ด€๊ณ„๊ฐ€ ๋†’์€ ๋ณ€์ˆ˜๋Š” ฮ”T, TOC, Temp, EC, TN ์ˆœ์ด์—ˆ์œผ๋ฉฐ, ๋‚จ์กฐ๋ฅ˜ ์šฐ์ ์œจ์ด ๋†’์€ ํ™˜๊ฒฝ์กฐ๊ฑด์€ ฮ”T โ‰ฅ 2.1 ยฐC์ธ ์ƒํƒœ์˜€๋‹ค. ๋ฐฑ์ œ๋ณด์™€ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ์ฃฝ์‚ฐ๋ณด์—์„œ๋„ ์˜์–‘์—ผ ๋ฅ˜ ๋†๋„์™€ ๊ฐ™์€ ํ™”ํ•™์  ์š”์ธ๋ณด๋‹ค ๋ฌผ๋ฆฌ์  ์š”์ธ์ด ์ค‘์š”ํ•˜์˜€ ์œผ๋ฉฐ, ํ•˜์ฒœ ์œ ๋Ÿ‰์ด ์ ๊ณ  ์ˆ˜์˜จ์ด ๋†’์œผ๋ฉฐ ์ˆ˜์˜จ์„ฑ์ธต์ด ๊ฐ•ํ™”๋œ ์ƒํƒœ์—์„œ ๋‚จ์กฐ๋ฅ˜๊ฐ€ ์šฐ์ ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ ๋Š” ๊ทœ์กฐ๋ฅ˜์™€ ๋…น์กฐ๋ฅ˜์— ๋น„ํ•ด ๊ณ ์˜จ๊ณผ ์•ˆ์ •ํ™”๋œ ์ˆ˜์ฒด์—์„œ ์„ฑ์žฅ ์ด ์œ ๋ฆฌํ•œ ๋‚จ์กฐ๋ฅ˜์˜ ํŠน์„ฑ์„ ๋ฐ˜์˜ํ•œ ๊ฒƒ์œผ๋กœ ํ•ด์„๋˜๋ฉฐ(Paerl and Otten, 2013), ๋ณด๊ฐ€ ์—ฐ์†ํ•˜์—ฌ ์„ค์น˜๋œ ํ˜ธ์ฃผ์˜ ํ•˜์ฒœ์—์„œ ์—ฐ๊ตฌํ•œ ๋…น์กฐ์›์ธ ํ•ด์„ ๊ฒฐ๊ณผ์™€ ๋งค์šฐ ์ž˜ ์ผ์น˜ํ•œ๋‹ค(Mitrovic et al,. 2003; Sherman et al., 1998). ์ด๋“ค ์—ฐ๊ตฌ๋Š” ํ•˜์ฒœ ์œ ๋Ÿ‰ ๊ณผ ๋‚จ์กฐ๋ฅ˜ ์„ธํฌ๋ฐ€๋„์˜ ๋ฐ˜๋น„๋ก€ ๊ด€๊ณ„๋ฅผ ์ œ์‹œํ•œ ๋ฐ” ์žˆ์œผ๋ฉฐ, ์œ ๋Ÿ‰ ๊ฐ์†Œ์— ๋”ฐ๋ฅธ ์ˆ˜์˜จ ์„ฑ์ธต ๋ฐœ์ƒ์ด ๋‚จ์กฐ๋ฅ˜ ์šฐ์ ๊ณผ ๋ฐ€์ ‘ํ•œ ๊ด€๋ จ์ด ์žˆ์Œ์„ ๋ฐํžŒ ๋ฐ” ์žˆ๋‹ค.

PCA ๊ฒฐ๊ณผ, ๋ฐฑ์ œ๋ณด์—์„œ ๋‚จ์กฐ๋ฅ˜ ์šฐ์ ๋„์™€ pH, BOD๊ฐ€ ๋™ ์ผํ•œ ๊ตฐ์ง‘์„ ์ด๋ฃจ๊ณ , ์ฃฝ์‚ฐ๋ณด์—์„œ BOD, TOC๊ฐ€ ๋™์ผํ•œ ๊ตฐ ์ง‘์„ ์ด๋ฃจ๊ณ  ์žˆ๋Š” ๊ฒƒ์€ ๋‚จ์กฐ๋ฅ˜ ๊ณผ์ž‰์„ฑ์žฅ์˜ ์›์ธ์ด๋ผ๊ธฐ ๋ณด ๋‹ค๋Š” ๊ฒฐ๊ณผ๋กœ ํ•ด์„ํ•˜๋Š” ๊ฒƒ์ด ํƒ€๋‹นํ•  ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ์ฆ‰, ๋ณด ๊ตฌ๊ฐ„ ๋‚ด ์กฐ๋ฅ˜์˜ ๊ณผ์ž‰ ์„ฑ์žฅ์€ ์ˆ˜์ฒด ๋‚ด๋ถ€์˜ ์œ ๊ธฐ๋ฌผ ๋ถ€ํ•˜ ๋ฅผ ๋†’์ด๋ฉฐ, ๋”ฐ๋ผ์„œ ์กฐ๋ฅ˜์˜ ์ƒ์ฒด๋Ÿ‰์€ BOD์™€ TOC ๋†๋„์™€ ๋†’์€ ์ƒ๊ด€์„ฑ์„ ๋ณด์ด๊ฒŒ ๋œ๋‹ค(Table 2 ์ฐธ์กฐ).

๋ณธ ์—ฐ๊ตฌ์—์„œ ๋‚จ์กฐ๋ฅ˜ ์šฐ์ ํ™˜๊ฒฝ์— ์ค‘์š”ํ•œ ๋ณ€์ˆ˜๋กœ ์„ ์ •๋œ ์ˆ˜์˜จ์„ฑ์ธต ๊ฐ•๋„๋Š” ์‹œ๋ฃŒ ์ฑ„์ทจ ๋‹น์ผ์˜ ์ž๋ฃŒ๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๊ทธ ๋Ÿฌ๋‚˜, ์ˆ˜์˜จ์„ฑ์ธต ๊ฐ•๋„๋Š” ์ผ์‹œ์  ์˜ํ–ฅ๋ณด๋‹ค ์ง€์†์  ์˜ํ–ฅ์ด ์ค‘ ์š”ํ•˜๋ฏ€๋กœ ๊ณ ๋นˆ๋„ ์ˆ˜์˜จ ์ž๋ฃŒ๋ฅผ ์ด์šฉํ•˜์—ฌ 5์ผ ์—ฐ์† ๋ˆ„์  ์„ฑ ์ธต๊ฐ•๋„ ๋“ฑ์„ ์ด์šฉ ํ•  ๊ฒฝ์šฐ ๊ทธ ์˜ํ–ฅ์€ ๋” ํด ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ ๋กœ ์˜ˆ์ƒ๋œ๋‹ค(Isles et al., 2017).

4. Conclusions

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” 2017๋…„ 5์›”๋ถ€ํ„ฐ 2018๋…„ 11์›”๊นŒ์ง€ ๊ธˆ๊ฐ• ๋ฐฑ์ œ๋ณด์™€ ์˜์‚ฐ๊ฐ• ์ฃฝ์‚ฐ๋ณด๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์ˆ˜์ง‘ํ•œ ๊ธฐ์ƒ, ์œ ๋Ÿ‰, ์ˆ˜ ์งˆ ๋ฐ ์กฐ๋ฅ˜์ธก์ • ์ž๋ฃŒ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ ๋งˆ์ด๋‹ ๊ธฐ ๋ฒ•์œผ๋กœ ๋ถ„์„ํ•˜๊ณ , ๊ฐ ๋ณด๋ณ„๋กœ ๋‚จ์กฐ๋ฅ˜ ์šฐ์ ๊ณผ ๊ด€๊ณ„๋œ ์ค‘์š”ํ•œ ๋ณ€์ˆ˜๋ฅผ ์ถ”์ถœํ•˜๊ณ  ๋…น์กฐํ˜„์ƒ์ด ๋ฐœ์ƒ๋˜๋Š” ์›์ธ์„ ์ข…ํ•ฉ์ ์œผ๋กœ ํ•ด์„ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ๋„์ถœ๋œ ์ฃผ์š” ๊ฒฐ๋ก ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

  1. RF ๋ชจ๋ธ์˜ ๋ณ€์ˆ˜ ์ค‘์š”๋„ ๋ถ„์„ ๊ฒฐ๊ณผ, ๊ฐ ๋ณด๋ณ„ ๋‚จ์กฐ๋ฅ˜ ์šฐ ์ ๊ณผ ๊ด€๊ณ„๊ฐ€ ๋†’์€ ํ™˜๊ฒฝ๋ณ€์ˆ˜๋Š” ๋ฐฑ์ œ๋ณด๋Š” EC, Temp, Q7day, PO4-P, ์ฃฝ์‚ฐ๋ณด๋Š” ฮ”T, TOC, Temp, EC, TN ์ˆœ ์ด์—ˆ์œผ๋ฉฐ, DT ๋ถ„์„ ๊ฒฐ๊ณผ, ๋‚จ์กฐ๋ฅ˜๊ฐ€ ์šฐ์ ํ•˜๋Š” ํ™˜๊ฒฝ์กฐ๊ฑด ์€ ํ•˜์ฒœ ์œ ๋Ÿ‰์ด ์ ๊ณ  ์ˆ˜์˜จ์ด ๋†’์œผ๋ฉฐ ์ˆ˜์˜จ์„ฑ์ธต์ด ๊ฐ•ํ™”๋œ ์ƒํƒœ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

  2. ๊ตญ๋‚ด ์ €์ˆ˜์ง€์—์„œ ์ด์ธ์ด ์กฐ๋ฅ˜์„ฑ์žฅ์˜ ์ค‘์š”ํ•œ ์ œํ•œ์ธ์ž๋กœ ๋‚˜ํƒ€๋‚˜๋Š” ๊ฒƒ๊ณผ ๋Œ€์กฐ์ ์œผ๋กœ ์—ฐ๊ตฌ๋Œ€์ƒ ํ•˜์ฒœ์˜ ๋ณด ๊ตฌ๊ฐ„์— ์„œ๋Š” ์ด์ธ๊ณผ Chl-a์˜ ์ƒ๊ด€์„ฑ์ด ๋‚ฎ์•˜์œผ๋ฉฐ, ๊ฐ•์ˆ˜๋Ÿ‰, ์œ ๋Ÿ‰, ์ˆ˜์˜จ๊ณผ ๊ฐ™์€ ๋ฌผ๋ฆฌ์  ์š”์ธ์ด ์กฐ๋ฅ˜ ์ƒ์ฒด๋Ÿ‰ ๋ณ€ํ™”์˜ ์ค‘์š”ํ•œ ์š”์ธ์œผ๋กœ ํ‰๊ฐ€๋˜์—ˆ๋‹ค.

  3. EC๋Š” ๋ฐฑ์ œ๋ณด์™€ ์ฃฝ์‚ฐ๋ณด์—์„œ ๋ชจ๋‘ ๋‚จ์กฐ๋ฅ˜ ์šฐ์ ๊ณผ ๋ฐ€์ ‘ํ•œ ๊ด€๊ณ„๋ฅผ ๋ณด์˜€์œผ๋ฉฐ, EC๊ฐ€ ๋†’์€ ๊ฒฝ์šฐ ๋‚จ์กฐ๋ฅ˜ ์šฐ์ ์œจ๋„ ๋†’ ์•˜๋‹ค. EC๋Š” ํ•˜์ฒœ์œ ๋Ÿ‰์˜ ๊ฐ์†Œ์™€ ํ•จ๊ป˜ ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์ด๊ณ  ์žˆ์–ด EC๋Š” ํ•˜์ฒœ์˜ ์ง€์†์ ์ธ ์ €์œ ๋Ÿ‰ ์ƒํƒœ๋ฅผ ๋‚˜ ํƒ€๋‚ด๋Š” ๊ฐ„์ ‘์ง€ํ‘œ๋กœ ํŒ๋‹จํ•  ์ˆ˜ ์žˆ๋‹ค. EC๋Š” ์„ผ์„œ๋กœ ๊ณ„์ธก ์ด ๊ฐ€๋Šฅํ•˜๋ฏ€๋กœ ์ˆ˜์˜จ๊ณผ ํ•จ๊ป˜ ๊ณ ๋นˆ๋„ ์ธก์ • ์ž๋ฃŒ๋ฅผ ์‹ค์‹œ๊ฐ„ ์œผ๋กœ ํ™•๋ณดํ•œ๋‹ค๋ฉด, ๋…น์กฐ ์˜ˆ์ธก์— ์žˆ์–ด์„œ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๋ณ€์ˆ˜ ๋กœ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.

  4. PCA ๊ฒฐ๊ณผ ์—ฌ๋ฆ„์ฒ ์— ๊ฐ•์šฐ-์œ ์ถœ๋Ÿ‰์ด ์ ๊ณ  ๊ณ ์ˆ˜์˜จ๊ณผ ์ˆ˜์˜จ ์„ฑ์ธต์ด ํ˜•์„ฑ๋˜๋Š” ๊ธฐ๊ฐ„์— ๋‚จ์กฐ๋ฅ˜๊ฐ€ ์šฐ์ ํ•˜์˜€์œผ๋ฉฐ, ์ด๋Ÿฌํ•œ ์กฐ๊ฑด์—์„œ ์œ ํ•ด๋‚จ์กฐ์„ธํฌ์ˆ˜๊ฐ€ 10,000 cells/mL ์ด์ƒ์ธ ์ž ๋ฃŒ๊ฐ€ ๋ถ„ํฌํ•˜๋Š” ํŠน์„ฑ์„ ๋ณด์˜€๋‹ค.

  5. ๋ณ€์ˆ˜์ค‘์š”๋„ ํ‰๊ฐ€๋ฅผ ์œ„ํ•ด ์ ์šฉํ•œ SMLR๋ฐฉ๋ฒ•์€ RFE-RF ๋ฐฉ๋ฒ•์— ๋น„ํ•ด ์˜ˆ์ธก ์„ฑ๋Šฅ์ด ๋–จ์–ด์กŒ์œผ๋ฉฐ, ๊ทธ ์ด์œ ๋Š” ๋‚จ์กฐ ๋ฅ˜ ์šฐ์  ํ™˜๊ฒฝ์ด ๋‹ค์–‘ํ•œ ๋ณ€์ˆ˜๋“ค์˜ ๋ณต์žกํ•œ ๋น„์„ ํ˜•์  ๊ด€๊ณ„ ์ด๊ธฐ ๋•Œ๋ฌธ์— ๋ณ€์ˆ˜๋“ค์˜ ์„ ํ˜•์กฐํ•ฉ์„ ๊ฐ€์ •ํ•˜๋Š” ํšŒ๊ท€๋ชจ๋ธ๋กœ ๋Š” ์„ค๋ช…ํ•˜๊ธฐ ์–ด๋ ต๊ธฐ ๋•Œ๋ฌธ์œผ๋กœ ํ•ด์„๋œ๋‹ค.

  6. ์—ฐ๊ตฌ๊ฒฐ๊ณผ๋ฅผ ์ข…ํ•ฉํ•ด ๋ณผ ๋•Œ, ๋ฐฑ์ œ๋ณด์™€ ์ฃฝ์‚ฐ๋ณด์—์„œ ๋‚จ์กฐ๋ฅ˜ ๊ฐ€ ์šฐ์ ํ•˜๋Š” ํ™˜๊ฒฝ์„ ํšจ๊ณผ์ ์œผ๋กœ ์ œ์–ดํ•˜๊ณ  ๋…น์กฐ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ ์ •ํ•œ ์œ ๋Ÿ‰(๋˜๋Š” ์œ ์†) ์œ ์ง€๋ฅผ ํ†ตํ•œ ํ•˜์ฒœ์˜ ํ๋ฆ„ ๊ฐœ์„ ์ด ํ•„์š”ํ•˜๋ฉฐ, ์ฃฝ์‚ฐ๋ณด์—์„œ๋Š” ์ •์ฒด๋œ ์ˆ˜ ์—ญ์˜ ์ˆ˜์˜จ์„ฑ์ธต ํ•ด์†Œ๊ฐ€ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.

  7. ์ตœ๊ทผ ๊ตญ๋‚ดยท์™ธ์ ์œผ๋กœ HAB ์›์ธ๋ถ„์„์„ ์œ„ํ•ด ๋ฐ์ดํ„ฐ๋งˆ์ด ๋‹๊ณผ ๊ธฐ๊ณ„ํ•™์Šต ๋ฐฉ๋ฒ•์ด ํ™œ๋ฐœํžˆ ์ ์šฉ๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ๋ณธ ์—ฐ ๊ตฌ๊ฒฐ๊ณผ๋Š” ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์˜ ์œ ์šฉ์„ฑ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์‚ฌ์šฉํ•œ 2๋…„๊ฐ„์˜ ์‹คํ—˜์ž๋ฃŒ๋Š” ์—ฐ๊ตฌ๋Œ€์ƒ ๋ณด์— ์„œ ์ผ์–ด๋‚  ์ˆ˜ ์žˆ๋Š” ๋‹ค์–‘ํ•œ ๊ธฐ์ƒยท์ˆ˜๋ฌธ ์กฐ๊ฑด์„ ์ผ๋ฐ˜ํ™”ํ•˜ ๋Š”๋ฐ ํ•œ๊ณ„๊ฐ€ ์žˆ์œผ๋ฏ€๋กœ ํ–ฅํ›„ ์žฅ๊ธฐ๊ฐ„์˜ ๊ด€์ธก์„ ํ†ตํ•œ ๋ฐ์ด ํ„ฐ ๋ถ„์„์ด ์ง€์†์ ์œผ๋กœ ์ด๋ฃจ์–ด์ ธ์•ผ ํ•œ๋‹ค.

Acknowledgement

๋ณธ ์—ฐ๊ตฌ๋Š” ๊ตญํ† ๊ตํ†ต๋ถ€/๊ตญํ† ๊ตํ†ต๊ณผํ•™๊ธฐ์ˆ ์ง„ํฅ์›์˜ ์ง€์›์œผ ๋กœ ์ˆ˜ํ–‰๋˜์—ˆ์Œ(๊ณผ์ œ๋ฒˆํ˜ธ 18AWMP-B083066-05).

References

1 
Ahn C.Y., Lee J.Y., Oh H.M., 2013, Control of microalgal growth and competition by N:P ratio manipulation, Korean Journal of Environmental Biology, Vol. 31, No. 2, pp. 61-68Google Search
2 
An K.G., Jones J.R., 2000, Factors regulating bluegreen dominance in a reservoir directly influenced by the Asian monsoon, Hydrobiologia, Vol. 432, pp. 37-48Google Search
3 
Box G., Cox D., 1964, An analysis of transformations, Journal of the Royal Statistical Society. Series B(Methodological), Vol. 26, No. 2, pp. 211-252Google Search
4 
Breiman L., 2001, Random forests, Machine Learning, Vol. 45, pp. 5-32Google Search
5 
Breiman L., Friedman J.H., Olshen R.A., Stone C.J., 1984, Classification and decision trees
6 
Breiman L., Cutler A., 1984, http://www.stat.berkeley.edu/~breiman/RandomForests (accessed Dec. 2018), Breiman and Cutlerโ€™s random forests for classification and regressio
7 
Carpenter S.R., Kitchell J.R., 1993, Cascading trophic interactions and lake productivity, Bioscience, Vol. 35, pp. 634-639Google Search
8 
Chung S.W., Imberger J., Hipsey M.R., Lee H.S., 2014, The influence of physical and physiological processes on the spatial heterogeneity of a Microcystis bloom in a stratified reservoir, Ecological Modeling, Vol. 289, pp. 133-149Google Search
9 
Fujimoto N., Sudo R., 1997, Nutrient-limited growth of Microcystis aeruginosa and Phormidium tenue and competition under various N:P supply ratios and temperature, Limnology and Oceanography, Vol. 42, pp. 250-256Google Search
10 
Han J.H., An K.G., 2013, Chemical water quality and fish community characteristics in the mid- to downstream reach of Geum river, Korean Society of Environmental Biology, Vol. 31, No. 3, pp. 180-188Google Search
11 
Horne A.J., Goldman C.R., 1994, ISBN 9780070236738, Limnology, McGraw-Hill, pp. 465
12 
Health Canada, 2002, http://whttp://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/doc_supappui/index_e.html (accessed Dec. 2018), Water quality and health bureau, (healty) environments and consumer safety branch, Health Canada
13 
Husson F., Le S., Pages J., 2010, Exploratory multivariate analysis by example using R, Chapman and Hall
14 
Hwang S.J., Kwun S.K., Yoon C.G., 2003, Water quality and limnology of Korean reservoirs, Paddy and Water Environment, Vol. 1, No. 1, pp. 43-52Google Search
15 
Isles P.D.F., Rizzo D.M., Xu Y., Schroth A.W., 2017, Modeling the drivers of interannual variability in cyanobacterial bloom severity using self-organizing maps and high-frequency data, Inland Waters, Vol. 7, No. 3, pp. 333-347Google Search
16 
Johnson T.C., Odada E., Whittaker K.T., 1996, ISBN 2884492348, The limnology, climatology and paleoclimatology of the East African lakes, Gordon and Breach Publishers
17 
Jung S.J., Lee D.J., Hwang K.S., Lee K.H., Choi K.C., Im S.S., Lee Y.H., Lee J.Y., Lim B.J., 2012, Evaluation of pollutant characteristics in Yeongsan river using multivariate analysis, The Korean Society of Limnology, Vol. 45, No. 4, pp. 368-377Google Search
18 
Jung S.Y., Kim I.K., 2017, Analysis of water quality factor and correlation between water quality and Chl-a in middle and downstream weir section of Nakdong river, Journal of Korean Society of Environmental Engineers, Vol. 39, No. 2, pp. 89-96Google Search
19 
Kim B.C., Sa S.H., Kim M.S., Lee Y.K., Kim J.K., 2007, The limiting nutrient of eutrophication in reservoirs of Korea and suggestion of a reinforced phosphorus standard for sewage treatment effluent, Journal of Korean Society on Water Environment, Vol. 23, No. 4, pp. 512-517Google Search
20 
Konopka A.E., Klemer A.R., Walsby A.E., Ibelings B.W., 1993, Effects of macronutrients upon buoyancy regulation by metalimnetic oscillatoria agardhii in Deming lake, Minnesota, Journal of Plankton Research, Vol. 15, No. 9, pp. 1019-1034Google Search
21 
Liaw A., Wiener M., 2002, Classification and regression by randomforest, R News, Vol. 2, pp. 18-22Google Search
22 
Ministry of Environment (ME), 2017, [Korean Literature], Standard Methods for Analysis of Water Pollution, Ministry of Environment
23 
Mitrovic S.M., Oliver R.L., Rees C., Bowling L.C., Buckney R.T., 2003, Critical flow velocities for the growth and dominance of Anabaena circinalis in some turbid freshwater rivers, Freshwater Biology, Vol. 48, pp. 164-174Google Search
24 
Moreira S., Schultze M., Rahn K., Boehrer B., 2016, A practical approach to lake water density from electrical conductivity and temperature, Hydrology and Earth System Sciences, Vol. 20, No. 7, pp. 2975Google Search
25 
Okino T., 1974, Studies on the blooming of Microcystis aeruginosa II: rapid accumulation of phosphate by Microcystis aeruginosa, Journal of the Faculty of Science Shinshu University, Vol. 8, No. 2, pp. 135-145Google Search
26 
Paerl H.W., Otten T.G., 2013, Harmful cyanobacterial blooms: Causes, consequences, and controls, Microbial Ecology, Vol. 65, No. 4, pp. 995-1010Google Search
27 
Parinet J., Rodriguez M.J., Serodes J., 2010, Influence of water quality on the presence of off-flavour compounds (geosmin and 2-methylisoborneol), Water Research, Vol. 44, pp. 5847-5856Google Search
28 
Park H.K., 2007, Survey method relating freshwater phytoplankton for the management of water resources, Journal of Korean Society of Environmental Engineers, Vol. 29, No. 6, pp. 593-609Google Search
29 
Peter A., Kรถster O., Schildknecht A., Von Gunten U., 2009, Occurrence of dissolved and particle-bound taste and odor compounds in Swiss lake waters, Water Research, Vol. 43, No. 8, pp. 2191-2200Google Search
30 
Recknagel F., French M., Harkonen P., Yabunaka K.I., 1997, Artificial neural network approach for the modelling and prediction of algal blooms, Ecological Modelling, Vol. 96, pp. 11-28Google Search
31 
Reynolds C.S., 1973, Growth and buoyancy of Microcystis aeruginosa Kutz. emend. Elenkin in a shallow Eutrophic Lake, (Preceedings) Biological Sciences, Vol. 184, No. 1074, pp. 29-50Google Search
32 
Reynolds C.S., Walsby A.E., 1975, Water-blooms, Biological Reviews of the Cambridge Philosophical Society, Vol. 50, No. 4, pp. 437-481Google Search
33 
Rowe M.D., Anderson E.J., Wang J., Vanderploeg H.A., 2015, Modeling the effect of invasive quagga mussels on the spring phytoplankton bloom in Lake Michigan, Journal of Great Lakes Research, Vol. 41, pp. 49-65Google Search
34 
Schindler D.W., 1977, Evolution of phosphorus limitation in lakes, Science, Vol. 195, No. 4275, pp. 260-262Google Search
35 
Schindler D.W., Hecky R.E., Findlay D.L., Stainton M.P., Parker B.P., Paterson M.J., Beaty K.G., Lyng M., Kasian S., 2008, Eutrophication of lakes cannot be controlled by reducing nitrogen input:Results of a 37-year whole-ecosystem experiment, Vol. 105, No. 32, pp. 11254-11258
36 
Sherman B.S., Webster I.T., Jones G.J., Oliver R.L., 1998, Transitions between Aulacoseira and Anabaena dominance in a turbid river weir pool, Limnology and Oceanography, Vol. 43, pp. 1902-1915Google Search
37 
Soltani N., Khodaei K., Alnajar N., Shahsavari A., Ashja Ardalan A., 2012, Cyanobacterial community patterns as water quality Bioindicators, Iranian Journal of Fisheries Sciences, Vol. 11, No. 4, pp. 876-891Google Search
38 
Son M.S., Jung H.S., Park C.H., Park J.H., Im C.H., Kim K.H., 2018, The change of phytoplankton community structure and water quality in the Juksan Weir of the Yeongsan River watershed, Korean Journal of Environmental Biology, Vol. 36, No. 4, pp. 591-600Google Search
39 
Thomas R.H., Walsby A.E., 1986, The effects of temperature on recovery of buoyancy by Microcystis, Journal of General Microbiology, Vol. 132, pp. 1665-1672Google Search
40 
Tian D., Xie G., Tian J., Tseng K.H., Shum C.K., Lee J.Y., Liang S., 2017, Spatiotemporal variability and environmental factors of harmful algal blooms(HABs) over western Lake Erie, PLoS One, Vol. 12, No. 6, pp. 1932-6203Google Search
41 
Welch E.B., Jacoby J.M., Horner R.R., Seeley M.R., 1988, Nuisance biomass levels of periphytic algae in streams, Hydrobiologia, Vol. 157, No. 2, pp. 161-168Google Search
42 
Wetzel R.G., 2001, Limnology, Lake and River Ecosystems, Academic Press
43 
Zhang M., Zhang Y., Yang Z., Wei L., Yang W., Chen C., Kong F., 2016, Spatial and seasonal shifts in bloom-forming cyanobacteria in Lake Chaohu: Patterns and driving factors, Phycological Research, Vol. 64, pp. 44-55Google Search