The Journal of
the Korean Society on Water Environment

The Journal of
the Korean Society on Water Environment

Bimonthly
  • ISSN : 2289-0971 (Print)
  • ISSN : 2289-098X (Online)
  • KCI Accredited Journal

Editorial Office


  1. ์ถฉ๋ถ๋Œ€ํ•™๊ต ํ™˜๊ฒฝ๊ณตํ•™๊ณผ (Department of Environmental Engineering, Chungbuk University)



CO2 emission, Data mining, Nakdong river, Net atmospheric flux, River pCO2

1. Introduction

์‚ฐ์—…ํ™” ์ดํ›„ ์ด์‚ฐํ™”ํƒ„์†Œ(CO2), ๋ฉ”ํƒ„(CH4), ์•„์‚ฐํ™”์งˆ์†Œ(N2O) ์™€ ๊ฐ™์€ ์˜จ์‹ค๊ฐ€์Šค(Greenhouse Gases)์˜ ๋†๋„๋Š” ์ง€์†์ ์œผ๋กœ ์ฆ๊ฐ€ํ•ด์™”๋‹ค. ์ด ์ค‘ CO2๋Š” ์˜จ์‹ค๊ฐ€์Šค ๋ฐœ์ƒ๋Ÿ‰ ์ค‘ ๊ฐ€์žฅ ๋†’์€ ๋น„ ์œจ์„ ์ฐจ์ง€ํ•˜๋ฉฐ ๊ฐ€์žฅ ํฐ ๋ณต์‚ฌ๊ฐ•์ œ๋ ฅ์„ ๊ฐ€์ง„๋‹ค. ๋Œ€๊ธฐ ์ค‘ CO2 ๋†๋„๋Š” 2002-2011๋…„ ๋™์•ˆ ํ‰๊ท  2.0ยฑ0.1 ppm/year์˜ ์†๋„๋กœ ์ฆ๊ฐ€ํ–ˆ์œผ๋ฉฐ, ์ตœ๊ทผ์—๋Š” ๊ณผ๊ฑฐ๋ณด๋‹ค ๋น ๋ฅด๊ฒŒ ์ฆ๊ฐ€ํ•˜๋Š” ์ถ”์„ธ๋ฅผ ๋ณด ์ธ๋‹ค(IPCC, 2013). ์ด์— ๋”ฐ๋ผ, ์ „ ์ง€๊ตฌ์ ์ธ ํƒ„์†Œ์ˆœํ™˜ ํŒŒ์•…๊ณผ ์ €๊ฐ๋Œ€์ฑ… ์ˆ˜๋ฆฝ์„ ์œ„ํ•ด ์œก์ƒ๊ณผ ํ•ด์–‘์—์„œ์˜ ํƒ„์†Œ์ˆ˜์ง€ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค(Abril et al., 2015; Cole et al., 2007; IPCC, 2013; Tranvik et al., 2009).

์œก์ƒ ๋‹ด์ˆ˜๋Š” ๋Œ€๊ธฐ ์ค‘ CO2 ์ฆ๊ฐ€์˜ ์ฃผ์š”ํ•œ ๋ฐœ์ƒ์›์œผ๋กœ ์ฃผ๋ชฉ ๋˜๊ณ  ์žˆ๋‹ค(Cole et al., 1994; Raymond et al., 2013; Stallard, 1998; St. Louis et al., 2000; Weyhenmeyer et al., 2015). ๊ทธ ์ด์œ ๋Š” ์œ ์—ญ ๋‚ด ๋ฌด๊ธฐํƒ„์†Œ๊ฐ€ ์ง€ํ•˜์ˆ˜๋ฅผ ํ†ตํ•ด ๋‹ด์ˆ˜๋กœ ์œ ์ž…ํ•˜๊ฑฐ ๋‚˜ ๋‹ค์–‘ํ•œ ์œ ๊ธฐ๋ฌผ์ด ํ•˜์ฒœ๊ณผ ํ˜ธ์ˆ˜๋กœ ์ˆ˜์†ก, ์ €๋ฅ˜, ํ‡ด์ ๋œ ํ›„ ๋ถ„ ํ•ด๋œ ์ตœ์ข…์‚ฐ์ถœ๋ฌผ์ธ CO2์™€ CH4์ด ๋Œ€๊ธฐ ์ค‘์œผ๋กœ ๋ฐฐ์ถœ๋˜๊ธฐ ๋•Œ ๋ฌธ์ด๋‹ค(Battin et al., 2009; Chung et al., 2016; Guerin et al., 2006; Wetzel, 2001). ์œก์ƒ ๋‹ด์ˆ˜์˜ CO2 ๋†๋„๋Š” ๋Œ€๊ธฐ์™€์˜ ๊ธฐ ์ฒด๊ตํ™˜์— ์˜ํ•ด ํ‰ํ˜•์ƒํƒœ๋ฅผ ์œ ์ง€ํ•˜๋Š” ํŠน์„ฑ์ด ์žˆ์ง€๋งŒ, ์ˆ˜์ฒด ๋‚ด ๊ณผ๋„ํ•œ ์œ ๊ธฐ๋ฌผ์˜ ๋ถ„ํ•ด๊ฐ€ ๋ฐœ์ƒํ•˜๋ฉด ๊ณผํฌํ™” ์ƒํƒœ๊ฐ€ ๋˜๋ฉฐ, ์‹๋ฌผ ํ”Œ๋ž‘ํฌํ†ค์ด ๊ณผ์ž‰์„ฑ์žฅํ•˜๋Š” ์‹œ๊ธฐ์—๋Š” ํฌํ™”๋†๋„ ์ดํ•˜๋กœ ๋–จ์–ด์ง€ ๊ธฐ๋„ ํ•œ๋‹ค(Einsele et al., 2001; Kortelainen et al., 2006). ๋”ฐ ๋ผ์„œ ์œก์ƒ ๋‹ด์ˆ˜์˜ CO2 ์ˆœ๋ฐฐ์ถœํ”Œ๋Ÿญ์Šค(Net Atmospheric Flux, NAF)์˜ ์ •ํ™•ํ•œ ์‚ฐ์ •์„ ์œ„ํ•ด์„œ๋Š” ๋‹ค์–‘ํ•œ ์ˆ˜์ฒด์— ๋Œ€ํ•œ NAF ์˜ ๋™์ ๋ณ€ํ™”๋ฅผ ํŒŒ์•…ํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค.

๋Œ€๊ธฐ ์ค‘ ํƒ„์†Œ ๋ฐฐ์ถœ์›์œผ๋กœ์„œ ์œก์ƒ๋‹ด์ˆ˜์˜ ์—ญํ• ์ด ์ค‘์š”ํ•˜๊ฒŒ ๋˜์–ด ์ „ ์„ธ๊ณ„์ ์œผ๋กœ ํ™œ๋ฐœํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋Š” ๊ฒƒ๊ณผ ๋Œ€์กฐ ์ ์œผ๋กœ ๊ทธ ๋™์•ˆ ๊ตญ๋‚ด์—์„œ๋Š” ์ด์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ๋งค์šฐ ๋ถ€์กฑํ•˜ ๋‹ค. ๊ตญ๋‚ด ํ•˜์ฒœ๊ณผ ์ €์ˆ˜์ง€ ๋‚ด ๋ฌผ์งˆ์ˆœํ™˜ ์—ฐ๊ตฌ๋Š” ๋Œ€๋ถ€๋ถ„ ๋ถ€์˜์–‘ ํ™”์™€ ์‹๋ฌผํ”Œ๋ž‘ํฌํ†ค ๋“ฑ ์ˆ˜์งˆ๊ด€๋ฆฌ ์ธก๋ฉด์˜ ์ดํ™”ํ•™์  ์ง€ํ‘œ(์œ ๊ธฐ ํƒ„์†Œ, ์งˆ์†Œ, ์ธ)์— ์ค‘์ ์„ ๋‘์–ด์™”๋‹ค(Choi et al., 2000; Chung et al., 2008; Seo, 1998; Yu et al., 1999). ํ•œํŽธ, Chung et al. (2016)์€ ๋Œ€์ฒญํ˜ธ๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์ผ๋ณ„ CO2 ๋ฐฐ์ถœ๋Ÿ‰ ๋ฐ ํก์ˆ˜๋Ÿ‰์„ ์‚ฐ์ •ํ•œ ๋ฐ” ์žˆ์œผ๋ฉฐ, Chung et al. (2018)์€ ๊ธˆ๊ฐ•๊ณผ ์ƒˆ๋งŒ๊ธˆํ˜ธ๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์ˆ˜์ฒด ๋‚ด ์ด์‚ฐํ™”ํƒ„์†Œ ๋ถ„์••(pCO2)์˜ ๊ณต๊ฐ„์ ์ธ ๋ณ€๋™ ํŠน์„ฑ์„ ๋ถ„์„ํ•˜๊ณ  pCO2์˜ ๋ณ€ํ™”์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์ธ์ž๋ฅผ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  Park and Chung (2018)์€ ๋Œ€์ฒญํ˜ธ๋ฅผ ๋Œ€์ƒ ์œผ๋กœ ์ˆ˜์‹ฌ๋ณ„ pCO2์˜ ๋™์  ๋ณ€ํ™”๋ฅผ ์‹คํ—˜์„ ํ†ตํ•ด ๊ทœ๋ช…ํ•˜์˜€์œผ ๋ฉฐ, ์ˆ˜์˜จ ์„ฑ์ธต์ด ํŒŒ๊ดด๋˜๊ณ  ์ „๋„ํ˜„์ƒ์ด ์ผ์–ด๋‚˜๋Š” ๊ธฐ๊ฐ„๋ถ€ํ„ฐ ์ € ์ˆ˜์ง€ํ‘œ๋ฉด์—์„œ ๋Œ€๊ธฐ ์ค‘์œผ๋กœ CO2๊ฐ€ ๋Œ€๊ทœ๋ชจ๋กœ ๋ฐฐ์ถœ๋˜๋Š” ํ˜„์ƒ (pulse emissions)์„ ๋ฐœ๊ฒฌํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ๊ฒฐ๊ณผ๋Š” ์ €์ˆ˜์ง€ ํ‘œ๋ฉด์„ ํ†ตํ•œ CO2 NAF์˜ ํฐ ๊ณ„์ ˆ์  ๋ณ€๋™์„ฑ์„ ๋ณด์—ฌ ์ฃผ์—ˆ๋‹ค.

์ง€๊ธˆ๊นŒ์ง€ ๊ตญ๋‚ด ๋‹ด์ˆ˜์—์„œ CO2 ๋ฐฐ์ถœ๋Ÿ‰ ์‚ฐ์ •์—ฐ๊ตฌ๋Š” ์„ฑ์ธตํ™”๋œ ์ €์ˆ˜์ง€๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์ˆ˜ํ–‰๋˜์—ˆ์œผ๋ฉฐ, ํ•˜์ฒœ์—์„œ์˜ ์กฐ์‚ฌ์—ฐ๊ตฌ๋Š” ๋ฏธ ํกํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์ „ ์ง€๊ตฌ์ ์ธ ๋‹ด์ˆ˜์˜ CO2 ๋ฐฐ์ถœ๋Ÿ‰ ์‚ฐ์ • ์—ฐ๊ตฌ ์— ์˜ํ•˜๋ฉด, ํ•˜์ฒœ์œผ๋กœ๋ถ€ํ„ฐ ๋ฐฐ์ถœ๋Ÿ‰์€ 1.8 PgC/year (Pg=1015g)์œผ ๋กœ์จ, ํ˜ธ์ˆ˜์™€ ์ €์ˆ˜์ง€์˜ 0.32 PgC/year์˜ ์•ฝ 5๋ฐฐ์— ๋‹ฌํ•œ๋‹ค (Raymond et al., 2013). ์ „์„ธ๊ณ„ ๋Œ€๋ถ€๋ถ„์˜ ํ•˜์ฒœ์€ CO2 ๋†๋„๊ฐ€ ๊ณผํฌํ™” ์ƒํƒœ(360 ฮผatm ์ด์ƒ)์ด๋ฉฐ ๋Œ€๊ธฐ ์ค‘์œผ๋กœ CO2๋ฅผ ๋ฐฐ์ถœํ•˜๋Š” ์‹œ์Šคํ…œ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค(Table 1). ํ‹ฐ๋ฒณ ๊ณ ์›์— ์œ„์น˜ํ•œ ํ•˜์ฒœ์— ์„œ pCO2๋Š” 864 ฮผatm์˜€์œผ๋ฉฐ, CO2 NAF๋Š” 3,452 mg-C/m2day๋กœ ์‚ฐ์ •๋˜์—ˆ๊ณ , ์ค‘๊ตญ์˜ ํ™ฉํ•˜๊ฐ•์˜ ๊ฒฝ์šฐ pCO2๋Š” 560-1,771 ฮผatm์˜ ๋ฒ”์œ„๋ฅผ ๋ณด์˜€๋‹ค(Qu et al., 2017). ์ค‘๊ตญ์˜ Yangtz ๊ฐ• ์ƒ๋ฅ˜์— ์œ„์น˜ ํ•œ Longchuan ๊ฐ•์—์„œ pCO2๋Š” 230-8,300 ฮผatm(ํ‰๊ท  1,230 ฮผ atm)์˜€๋‹ค(Li et al., 2012). ๋ถ๋ฏธ ์ง€์—ญ์ธ ์บ๋‚˜๋‹ค์™€ ๋ฏธ๊ตญ ๋“ฑ์˜ ํ•˜ ์ฒœ์—์„œ pCO2๋Š” 570-3,100 ฮผatm, 1,575-3,550 ฮผatm์˜ ๋ฒ”์œ„์ด ๋ฉฐ, ๋‚จ๋ฏธ์ง€์—ญ์˜ Amazon ๊ฐ•์˜ ํ•˜๋ฅ˜์—์„œ๋Š” 2,950-44,000 ฮผatm ์˜ ๋ฒ”์œ„๋ฅผ ๋ณด์˜€๋‹ค(Butman and Raymond, 2011, Richey et al., 2002, Teodoru et al., 2009). ๋™๋‚จ์•„์‹œ์•„ ์ง€์—ญ์˜ Mekong ๊ฐ• ํ•˜๋ฅ˜์—์„œ๋Š” pCO2๋Š” 224-5,970 ฮผatm(ํ‰๊ท  1,090 ฮผatm)์˜€์œผ๋ฉฐ, ํ•˜๋ฅ˜๋กœ ๊ฐˆ์ˆ˜๋ก ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์˜€๋‹ค(Li et al., 2013). ๊ตญ๋‚ด ํ•˜์ฒœ์—์„œ๋Š” ํ•œ๊ฐ•์œ ์—ญ์˜ ์„œ์šธ ๋„์‹ฌ์—์„œ ์ƒ๋ฅ˜์™€ ์ค‘๋ฅ˜์—์„œ pCO2 ๋Š” 100-730 ฮผatm์„ ๋ณด์˜€์œผ๋ฉฐ, ํ•˜๋ฅ˜์—์„œ๋Š” 1,500 ฮผatm์ด ๋„˜๋Š” ๊ฐ’์„ ๋ณด์˜€๋‹ค. ๋˜ํ•œ ๋Œ ๋ถ€๊ทผ์—์„œ๋Š” 288 ฮผatm๋กœ ์กฐ๋ฅ˜์˜ CO2 ํก ์ˆ˜๋กœ ์ธํ•˜์—ฌ ๋‹ค๋ฅธ ์œ„์น˜๋ณด๋‹ค ์ ์€ ๊ฐ’์„ ๋ณด์˜€๋‹ค(Yoon et al., 2017). Jin et al. (2018)์ด ์—ฐ๊ตฌํ•œ ๋ถํ•œ๊ฐ• ํ•˜๋ฅ˜ ์ง€์—ญ์˜ pCO2๋Š” 78-11,298ฮผatm์˜ ๋ฒ”์œ„๋ฅผ ๋ณด์˜€์œผ๋ฉฐ, Table 1์— ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค.

Table 1. The ranges of pCO2in streams and rivers reported in previous studies
Authors pCO2 (ฮผatm) Period Location Number Method
Qu et al. (2017) 864 2014-2015 Tibetan plateau 1 Headspace-TOC-VCPH
560-1,771 2014-2015 Yellow river 1 Headspace-TOC-VCPH
Li et al. (2012) 230-8,300(1,230) 2008-2009 Longchuan river 295 Calculation
Teodoru et al. (2009) 550-800 2005-2006 Eastmain river 70 Calculation
Butman and Raymond (2011) 1,575-3,550 1954-2006 Streams and rivers in united states Calculation
Richey et al. (2002) 2,950-44,000(3,200) 1995-1996 Amazon rivers 1800 Calculation
Li et al. (2013) 224-5,970(1,090) 1972-1998 Mekong river Calculation
Yoon et al. (2017) 100-1,500 2015-2016 Han river Measurement
Jin et al. (2018) 51-2,465 2014-2015 Han river Measurement

๊ตญ๋‚ด์˜ ๊ฒฝ์šฐ 4๋Œ€๊ฐ•์‚ฌ์—…์œผ๋กœ ํ•˜์ฒœ์—๋Š” ๋ณด๊ฐ€ ๋‹ค์ˆ˜ ๊ฑด์„ค๋˜์—ˆ์œผ ๋ฉฐ, ๋ณด ๊ตฌ๊ฐ„์˜ ์ˆ˜์‹ฌ๊ณผ ์ˆ˜๋ฉด์ ์ด ์ฆ๊ฐ€ํ•˜๊ณ  ์œ ์ˆ˜ํ™˜๊ฒฝ์ด ์ •์ˆ˜ํ™˜๊ฒฝ ์œผ๋กœ ๋ณ€ํ™”๋˜์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ณ€ํ™”๋Š” ์ˆ˜์ฒด ๋‚ด ๋ฌผ์˜ ์ฒด๋ฅ˜์‹œ๊ฐ„ ์ฆ๊ฐ€์™€ ์œ ๊ธฐ๋ฌผ ์ถ•์  ๋ฐ ๋ถ„ํ•ด์˜ ์ฆ๊ฐ€๋ฅผ ๊ฐ€์ ธ์˜ฌ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋”ฐ๋ผ์„œ ์ˆ˜์ฒด ๋‚ด CO2 ๋†๋„์˜ ๊ณผํฌํ™” ์ƒํƒœ๋ฅผ ์ดˆ๋ž˜ํ•  ์ˆ˜ ์žˆ๋‹ค. ํ•œํŽธ, 4๋Œ€๊ฐ•์‚ฌ์—… ์œผ๋กœ ๋ฌธ์ œ๊ฐ€ ๋˜๊ณ  ์žˆ๋Š” ์—ฌ๋ฆ„์ฒ  ๋‚จ์กฐ๋ฅ˜์˜ ๊ณผ์ž‰์„ฑ์žฅ์€ ์ˆ˜์ฒด ๋‚ด ์œ ๊ธฐ๋ฌผ์˜ ๋‚ด๋ถ€ ๋ถ€ํ•˜ ์ฆ๊ฐ€์˜ ์›์ธ์ด ๋˜๊ธฐ๋„ ํ•˜์ง€๋งŒ ์ˆ˜์ฒด ๋‚ด pH ์ƒ์Šน๊ณผ CO2 ๊ฐ์†Œ์˜ ์š”์ธ์œผ๋กœ ์ž‘์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์š”์ธ๋“ค์€ ํ•˜์ฒœ ์ˆ˜์ƒํƒœ๊ณ„์˜ ํƒ„์†Œ ์ˆœํ™˜์— ์ง€์†์ ์œผ๋กœ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋ฉฐ, ๋Œ€๊ธฐ- ์ˆ˜๋ฉด ๊ฒฝ๊ณ„๋ฉด์—์„œ์˜ CO2 NAF์˜ ๋™์  ๋ณ€ํ™”๋ฅผ ์ดˆ๋ž˜ํ•œ๋‹ค.

๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ณด ๊ฑด์„ค๋กœ ํ•˜์ฒœํ™˜๊ฒฝ์ด ๋ณ€ํ™”๋œ ๋‚™๋™ ๊ฐ• ์ค‘ํ•˜๋ฅ˜๋ฅผ ๋Œ€์ƒ์œผ๋กœ CO2 NAF์˜ ์‹œ๊ฐ„์  ๋ณ€๋™์„ฑ์„ ์กฐ์‚ฌํ•˜ ๊ณ ์ž ํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ์˜ ๋ชฉ์ ์€ ๋‚™๋™๊ฐ•์— ์„ค์น˜๋œ 4๊ฐœ ๋ณด(๊ฐ•์ •๊ณ  ๋ น๋ณด(GGW), ๋‹ฌ์„ฑ๋ณด(DSW), ํ•ฉ์ฒœ์ฐฝ๋…•๋ณด(HCW), ์ฐฝ๋…•ํ•จ์•ˆ๋ณด (CHW))๋ฅผ ๋Œ€์ƒ์œผ๋กœ 2017-2018๋…„ ํ˜„์žฅ์‹คํ—˜์„ ํ†ตํ•ด ์ˆ˜์ง‘๋œ ์ž๋ฃŒ๋ฅผ ์ด์šฉํ•˜์—ฌ ๋ณด ๊ตฌ๊ฐ„์—์„œ์˜ CO2 NAF์˜ ๋™์  ๋ณ€๋™ ํŠน์„ฑ ์„ ๋ถ„์„ํ•˜๊ณ , ๋ฐ์ดํ„ฐ๋งˆ์ด๋‹ ๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•˜์—ฌ CO2 NAF์— ์˜ ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ค‘์š” ํ™˜๊ฒฝ๋ณ€์ˆ˜๋ฅผ ์ถ”์ถœํ•˜๊ณ  ์˜ˆ์ธก๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜ ๋ฉฐ, ์ˆ˜์ฒด ๋‚ด ์กฐ๋ฅ˜(Chl-a)์˜ ๊ณผ์ž‰์ฆ์‹์ด CO2 NAF์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ํ‰๊ฐ€ํ•˜๋Š”๋ฐ ์žˆ๋‹ค.

2. Materials and Methods

2.1. ์—ฐ๊ตฌ๋Œ€์ƒ์ง€์—ญ

๋‚™๋™๊ฐ• 4๊ฐœ ๋ณด ๊ตฌ๊ฐ„์—์„œ CO์œผ๋กœ ๋ฌธ์ œ๊ฐ€ ๋˜๊ณ  ์žˆ๋Š” ์—ฌ๋ฆ„์ฒ  ๋‚จ์กฐ๋ฅ˜์˜ NAF๋ฅผ ์‚ฐ์ •ํ•˜๊ธฐ ์œ„ํ•ด 2017 ๋…„ 8์›” ~ 10์›”, 2018๋…„ 7์›” ~ 11์›” ๋™์•ˆ ํ˜„์žฅ ์‹คํ—˜๊ณผ ์‹คํ—˜์‹ค ๋ถ„์„์„ ์‹ค์‹œํ•˜์˜€๋‹ค. ๊ฐ•์ •๊ณ ๋ น๋ณด๋Š” ๋‚™๋™๊ฐ• 4๊ฐœ ๋ณด ์ค‘ ๊ฐ€์žฅ ์ƒ ๋ฅ˜์ด๋ฉฐ, ๊ฒฝ์ƒ๋ถ๋„ ๊ณ ๋ น๊ตฐ ๋‹ค์‚ฐ๋ฉด๊ณผ ๋Œ€๊ตฌ๊ด‘์—ญ์‹œ ๋‹ฌ์„ฑ๊ตฐ ๋‹ค์‚ฌ ์์— ์œ„์น˜ํ•œ๋‹ค(Fig. 1). ์œ ์—ญ๋ฉด์ ์€ 11,667 km2์ด๊ณ  ์ด ์ €์ˆ˜ ์šฉ๋Ÿ‰์€ 92๋ฐฑ๋งŒ m3์ด๋‹ค. ๋‹ฌ์„ฑ๋ณด๋Š” ๊ฒฝ์ƒ๋ถ๋„ ๊ณ ๋ น๊ตฐ ๊ฐœ์ง„๋ฉด๊ณผ ๋Œ€๊ตฌ๊ด‘์—ญ์‹œ ๋‹ฌ์„ฑ๊ตฐ ๋…ผ๊ณต์์— ์œ„์น˜ํ•˜๋ฉฐ, ์œ ์—ญ๋ฉด์ ์€ 14,248 km2์ด๊ณ  ์ด ์ €์ˆ˜์šฉ๋Ÿ‰์€ 59๋ฐฑ๋งŒ m3์ด๋‹ค. ํ•ฉ์ฒœ์ฐฝ๋…•๋ณด๋Š” ๊ฒฝ์ƒ ๋‚จ๋„ ํ•ฉ์ฒœ๊ตฐ ์ฒญ๋•๋ฉด๊ณผ ์ฐฝ๋…•๊ตฐ ์ด๋ฐฉ๋ฉด์— ์œ„์น˜ํ•œ๋‹ค. ์œ ์—ญ๋ฉด์  ์€ 15,074 km2์ด๊ณ  ์ด ์ €์ˆ˜์šฉ๋Ÿ‰์€ 70๋ฐฑ๋งŒ m3์ด๋‹ค. ์ฐฝ๋…•ํ•จ์•ˆ ๋ณด๋Š” ๋‚™๋™๊ฐ• ๋ณด ์ค‘ ๊ฐ€์žฅ ๋ง๋‹จ์— ์œ„์น˜ํ•˜๋ฉฐ, ๊ฒฝ์ƒ๋‚จ๋„ ์ฐฝ๋…•๊ตฐ ๊ธธ๊ณก๋ฉด๊ณผ ํ•จ์•ˆ๊ตฐ ์น ๋ถ๋ฉด์— ๊ฑธ์ณ์žˆ๋‹ค. ์œ ์—ญ๋ฉด์ ์€ 20,697 km2 ์ด๊ณ  ์ด ์ €์ˆ˜์šฉ๋Ÿ‰์€ 101๋ฐฑ๋งŒ m3์ด๋‹ค.

Fig. 1. The map of study areas and locations of sampling site.
../../Resources/kswe/KSWE.2019.35.4.316/JKSWE-35-316_F1.jpg

๊ฐ ์กฐ์‚ฌ ์ง€์ ๋ณ„(Table 2) ์ˆ˜์งˆํ˜„ํ™ฉ์„ ํŒŒ์•…ํ•˜๊ธฐ ์œ„ํ•ด ๊ตญ๋ฆฝํ™˜ ๊ฒฝ๊ณผํ•™์› ๋ฌผํ™˜๊ฒฝ์ •๋ณด์‹œ์Šคํ…œ(ME, 2017-2018)์—์„œ ๋ณธ ์—ฐ๊ตฌ์˜ ์กฐ์‚ฌ๊ธฐ๊ฐ„๊ณผ ๋™์ผํ•œ 2017๋…„ 8์›” ~ 2018๋…„ 11์›”๊นŒ์ง€์˜ ์ˆ˜์งˆ์ž ๋ฃŒ๋ฅผ ์ˆ˜์ง‘ํ•˜์—ฌ Table 3์— ์ œ์‹œํ•˜์˜€๋‹ค. ์ผ๋ณ„ ์ˆ˜์งˆ์ธก์ •๋ง ์ž๋ฃŒ๋ฅผ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ, ๊ฐ•์ •๊ณ ๋ น๋ณด๋Š” ๋‹ค์‚ฌ, ๋‹ฌ์„ฑ๋ณด๋Š” ๋…ผ๊ณต, ํ•ฉ์ฒœ์ฐฝ๋…•๋ณด ๋Š” ๋•๊ณก, ์ฐฝ๋…•ํ•จ์•ˆ๋ณด๋Š” ํ•จ์•ˆ์ง€์ ์˜ ์ž๋ฃŒ๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. pH๋Š” ํ•จ์•ˆ๋ณด(8.2)์—์„œ ๊ฐ€์žฅ ๋†’์€ ๊ฐ’์„ ๋ณด์˜€๊ณ , TP์˜ ๊ฒฝ์šฐ ๋‹ฌ์„ฑ๋ณด (0.050 mg/L)์—์„œ ๊ฐ€์žฅ ๋†’์€ ๊ฐ’์„ ๋ณด์˜€๋‹ค. Chl-a๋Š” ๊ฐ•์ •๊ณ ๋ น๋ณด 17.6 mg/m3, ๋‹ฌ์„ฑ๋ณด 22.3 mg/m3, ํ•ฉ์ฒœ๋ณด 26.2 mg/m3, ํ•จ์•ˆ๋ณด 30.9 mg/m3์œผ๋กœ ํ•˜๋ฅ˜๋กœ ๊ฐˆ์ˆ˜๋ก ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์˜€๋‹ค. ๊ฐ ๋ณด์˜ ์œ ์—ญ๋ฉด์ , ์ €์ˆ˜์šฉ๋Ÿ‰ ๋ฐ ์œ ๋Ÿ‰์ž๋ฃŒ๋Š” K-water ๋ฌผ์ •๋ณดํฌํ„ธ (K-water, 2018b)์—์„œ ์ˆ˜์ง‘ํ•˜์—ฌ ์‚ฌ์šฉํ•˜์˜€๋‹ค.

Table 2. The location of sampling sites
Code Location Latitude Longitude
GGW Upstream of Gangjeong-Goryeong weir 35ยฐ50'34.19"N 128ยฐ27'24.59"E
DSW Upstream of Dalseong weir 35ยฐ44'10.14"N 128ยฐ24'49.87"E
HCW Upstream of Hapcheon-Changnyeong weir 35ยฐ35'36.01"N 128ยฐ21'19.64"E
CHW Upstream of Changnyeong-Haman weir 35ยฐ22'50.77"N 128ยฐ32'54.38"E
Table 3. Water quality conditions of the study sites during the study period
Variable Unit GGW DSW HCW CHW
pH - 8.1*
(7-9.3)**
7.9
(6.6-9.1)
7.80
(6.8-9.4)
8.2
(6.9-9.7)
DO mg/L 9.9
(4.5-16.6)
10.5
(4.6-15.9)
11.1
(6.5-16.3)
11.4
(6.4-15.9)
BOD mg/L 1.8
(0.5-3.9)
2.0
(0.9-3.6)
2.1
(0.9-4.5)
2.3
(1-4.1)
COD mg/L 6.4
(4.7-9.7)
7.0
(5.5-10.5)
7.2
(5.3-12.1)
6.9
(5.6-12.8)
SS mg/L 9.5
(0.8-32.0)
10.0
(2-41.2)
10.8
(1.6-45.6)
10.4
(2.8-31.2)
TN mg/L 2.6
(1.7-3.9)
3.6
(2.5-6.7)
3.4
(1.8-5.7)
2.8
(1.2-5.0)
TP mg/L 0.045
(0.01-0.128)
0.050
(0.017-0.164)
0.048
(0.018-0.135)
0.042
(0.013-0.098)
TOC mg/L 4.6
(3.0-7.0)
5.1
(3.6-7.3)
5.2
(3.6-8.2)
4.9
(3.6-11.1)
EC ฮผmhos/cm 264.6
(127.0-415.0)
383.3
(167.0-712.0)
370.3
(165.0-694.0)
305.9
(152.0-524.0)
Chl-a mg/m3 17.6
(4.1-47.2)
22.3
(4.3-53.2)
26.2
(4.7-70)
30.9
(63-97.9)

* Average

** ( - ) is Min-Max, respectively.

2.2. ์ž๋ฃŒ์ˆ˜์ง‘ ๋ฐ ๋ถ„์„๋ฐฉ๋ฒ•

2017๋…„ 8์›” ~ 10์›”๊ณผ 2018๋…„ 7์›”๋ถ€ํ„ฐ 2018๋…„ 11์›”๊นŒ์ง€ ๊ฐ• ์ •๊ณ ๋ น๋ณด 18ํšŒ, ๋‹ฌ์„ฑ๋ณด 18ํšŒ, ํ•ฉ์ฒœ์ฐฝ๋…•๋ณด 16ํšŒ, ์ฐฝ๋…•ํ•จ์•ˆ๋ณด 14 ํšŒ์˜ ํ˜„์žฅ์กฐ์‚ฌ๋ฅผ ์‹ค์‹œํ•˜์˜€๋‹ค. ๊ฐ ๋ณด ๊ธฐ์ค€ ์ƒ๋ฅ˜ 500 m ์ง€์ ์— ์„œ ์‹œ๋ฃŒ๋Š” ํ‘œ์ธต 10 cm ๋ฒ”์œ„์˜ ๋ฌผ์„ grab sampling ๋ฐฉ๋ฒ•์œผ๋กœ ์ฑ„์ˆ˜ํ•˜์—ฌ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ, ์ฑ„์ˆ˜ ์‹œ YSI 6600 (YSI, Inc.)์œผ๋กœ ์ˆ˜ ์˜จ๊ณผ pH๋ฅผ ํ˜„์žฅ ์ธก์ •ํ•˜์˜€๋‹ค. UNESCO/IHA (2010)์˜ ํ˜„์žฅ ์ƒ˜ ํ”Œ๋ง ๋งค๋‰ด์–ผ์— ๋”ฐ๋ผ ์ด ๋ถ€ํ”ผ 1L์ธ ๋ฌด๊ท  ํ”Œ๋ผ์Šคํ‹ฑ ๋ณ‘์— ๊ธฐํฌ๊ฐ€ ์ƒ๊ธฐ์ง€ ์•Š๊ฒŒ ๊ฐ€๋“ ์ฑ„์›Œ ์ฑ„์ˆ˜ํ•˜๊ณ , ์‹คํ—˜์‹ค๊นŒ์ง€ ๋ƒ‰์žฅ ๋ณด๊ด€ํ•˜์—ฌ ์ด๋™ํ•˜์˜€๋‹ค. ์ฑ„์ˆ˜ํ•œ ์‹œ๋ฃŒ๋Š” YSI pH1200 (YSI, Inc.)์œผ๋กœ pH๋ฅผ ์žฌ์ธก์ •ํ•˜์˜€์œผ๋ฉฐ, ์ธก์ • ์˜ค์ฐจ๋Š” pH 7์—์„œ ยฑ0.02, pH 4, 10์—์„œ ยฑ0.01์ด๋‹ค. Alk(mg/L as CaCO3)๋Š” Standard Method (APHA, AWWA, WEF, 2005)์— ์ค€ํ•˜์—ฌ 4.5 end point ์ ์ •๋ฒ•์„ ์ด์šฉํ•˜ ์—ฌ ์ธก์ •ํ•˜์˜€๋‹ค. ํƒ๋„(NTU)๋Š” 2100P Turbidimeter๋กœ ์ธก์ •ํ•˜์˜€ ์œผ๋ฉฐ, Chl-a(mg/m3)๋Š” Standard Method์— ์ค€ํ•˜์—ฌ ๋ถ„์„ํ•˜์˜€๋‹ค.

์ผ๋ณ„ ํ’์†(m/s) ์ž๋ฃŒ๋Š” ๊ธฐ์ƒ์ฒญ ๊ธฐ์ƒ์ž๋ฃŒ๊ฐœ๋ฐฉํฌํ„ธ(KMA, 2017-2018)์—์„œ ์ œ๊ณตํ•˜๋Š” ์ž๋ฃŒ๋ฅผ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ, ๊ฐ•์ •๊ณ ๋ น๋ณด ์™€ ๋‹ฌ์„ฑ๋ณด๋Š” ๋‹ฌ์„ฑ, ํ•ฉ์ฒœ์ฐฝ๋…•๋ณด๋Š” ํ•ฉ์ฒœ, ์ฐฝ๋…•ํ•จ์•ˆ๋ณด๋Š” ๋„์ฒœ์ง€ ์ ์˜ ์ž๋ฃŒ๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค(Fig. 1).

2.3. NAF ์‚ฐ์ •๋ฐฉ๋ฒ•

CO2 NAF๋Š” ๋Œ€๊ธฐ-์ˆ˜๋ฉด ๊ฒฝ๊ณ„๋ฉด์—์„œ์˜ CO2 ๋ถ€๋ถ„์••(pCO2)์˜ ์ฐจ์— ๊ธฐ์ฒด์ „๋‹ฌ์†๋„๋ฅผ ๊ณฑํ•˜์—ฌ ์‚ฐ์ •ํ•œ๋‹ค(Cole and Prairie, 2009; Wanninkhof, 1992). ๋ณธ ์—ฐ๊ตฌ์—์„œ ๊ธฐ์ฒด์ „๋‹ฌ์†๋„๋Š” ํ’์†์˜ ํ•จ์ˆ˜ ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” Cole and Caraco (1998)๊ฐ€ ์ œ์•ˆํ•œ ์‹ (1)๊ณผ Raymond et al. (2012)์ด ์ œ์‹œํ•œ ์‹ (2), ์‹ (3)์„ ์‚ฌ์šฉํ•˜์—ฌ k600 ์„ ์‚ฐ์ •ํ•œ ํ›„, R package์ธ LakeMetabolizer(Winslow et al., 2018)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ CO2 ๊ธฐ์ฒด์™€ ์˜จ๋„์— ๋Œ€ํ•ด ๋ณด์ •๋œ kg๋ฅผ ์‚ฐ์ •ํ•˜ ์˜€๊ณ , kg ์‚ฐ์ •๋ฐฉ๋ฒ•์— ๋”ฐ๋ฅธ NAF์˜ ๋ฏผ๊ฐ๋„ ๋ถ„์„์„ ์‹ค์‹œํ•˜์˜€๋‹ค. ๋Œ€๊ธฐ-์ˆ˜๋ฉด ๊ฒฝ๊ณ„๋ฉด์„ ํ†ตํ•ด ๊ตํ™˜๋˜๋Š” CO2์˜ NAF๋Š” Henry์˜ ๋ฒ• ์น™๊ณผ Fick์˜ 1์ฐจ ํ™•์‚ฐ๋ฒ•์น™์„ ์ด์šฉํ•œ ์‹ (4)๋กœ ๊ณ„์‚ฐํ•˜์˜€๋‹ค.

(1)
k 600 = 2.07 + 0.215 + U 10 1.7
(2)
k 600 = 5937 ยฑ 606 ร— 1 - 2.54 ยฑ 0.223 ร— Fr 2 ร— VS 0.89 ยฑ 0.017 ร— D 0.58 ยฑ 0.027
(3)
k 600 = 4725 ยฑ 445 ร— VS 0.86 ยฑ 0.016 ร— Q - 0.14 ยฑ 0.012 ร— D 0.66 ยฑ 0.029
(4)
NAF = k g ร— K H pCO 2 water - pCO 2 atm = k g CO 2 water - CO 2 atm

์—ฌ๊ธฐ์„œ k600์€ Schmidt number 600์œผ๋กœ ํ‘œ์ค€ํ™”๋œ ๊ธฐ์ฒด๊ตํ™˜ ์†๋„ ์ƒ์ˆ˜(m/d), U10์€ ์ˆ˜๋ฉด ์œ„ 10 m ์œ„์น˜์—์„œ์˜ ํ’์†(m/s), Fr์€ Froude number, V๋Š” ์œ ์†(m/s), S๋Š” ํ•˜์ฒœ ๊ฒฝ์‚ฌ, D๋Š” ์ˆ˜ ์‹ฌ(m), Q๋Š” ์œ ๋Ÿ‰(m3/s)์ด๋ฉฐ, KH๋Š” ์˜จ๋„์— ๋”ฐ๋ฅธ Henry ์ƒ์ˆ˜์ด ๋‹ค. ์ˆ˜์ค‘์˜ CO2 ๋ถ„์••(pCO2water)์ด ๋Œ€๊ธฐ ์ค‘ CO2 ๋ถ„์••(pCO2atm) ๋ณด๋‹ค ํฐ ๊ฒฝ์šฐ CO2๋Š” ์ˆ˜์ฒด์—์„œ ๋Œ€๊ธฐ ์ค‘์œผ๋กœ ๋ฐฐ์ถœ์ด ์ผ์–ด๋‚˜๊ณ , ๋ฐ˜๋Œ€์ธ ๊ฒฝ์šฐ์— ํก์ˆ˜๊ฐ€ ์ผ์–ด๋‚œ๋‹ค.

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‹ด์ˆ˜์™€ ํ•ด์ˆ˜์˜ ํƒ„์‚ฐ์—ผ ์‹œ์Šคํ…œ์—์„œ ์—ด์—ญํ•™์  ํ™”ํ•™ํ‰ํ˜•์„ ๋ชจ๋‘ ๊ณ ๋ คํ•œ CO2SYS ํ”„๋กœ๊ทธ๋žจ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ˆ˜์ค‘์˜ pCO2๋ฅผ ์‚ฐ์ •ํ•˜์˜€์œผ๋ฉฐ(Lewis and Wallace, 1998), ๋Œ€๊ธฐ ์ค‘ CO2 ๋ถ„์••์€ 360 ฮผatm์œผ๋กœ ์ž…๋ ฅํ•˜์˜€๋‹ค. CO2SYS๋Š” ์ž…๋ ฅ๋ณ€์ˆ˜๋กœ pH, Alk, DIC ์ค‘ 2๊ฐœ ํ•ญ๋ชฉ๊ณผ ์ˆ˜์˜จ, ์—ผ๋ถ„๋„ ์ž๋ฃŒ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ Alk ๋˜๋Š” DIC์™€ pCO2๋ฅผ ๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ˜„์žฅ์—์„œ ์ธก์ •ํ•œ ์ˆ˜์˜จ๊ณผ ์‹คํ—˜์‹ค์—์„œ ์ธก์ •ํ•œ pH, Alk ๊ฐ’์„ ์‚ฌ์šฉํ•˜์—ฌ pCO2๋ฅผ ์‚ฐ์ •ํ•˜์˜€๋‹ค(Butman and Raymond, 2011; Cole and Prairie, 2009; Li et al., 2013). ํƒ„์‚ฐ์—ผ ๋ถ„์„์€ ์—ผ๋ถ„=0(๋‹ด์ˆ˜)์ธ ์‹œ๋ฃŒ๋กœ ์ˆ˜ํ–‰๋˜์—ˆ์œผ๋ฉฐ, ํ•˜์ฒœ์˜ ๋‹ด์ˆ˜ ํŠน์„ฑ์„ ๋ฐ˜์˜ํ•˜์˜€๋‹ค.

2.4. ์˜ํ–ฅ์ธ์ž ๋ถ„์„

ํ•˜์ฒœ์—์„œ CO2 NAF์˜ ์‹œ๊ฐ„์  ๋ณ€๋™์„ฑ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ํ™˜ ๊ฒฝ์š”์ธ์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด PCA(Principal component analysis), ๋‹จ๊ณ„์ ๋‹ค์ค‘ํšŒ๊ท€๋ชจ๋ธ(Step-wise Multiple Linear Regression; SMLR), ๋žœ๋คํฌ๋ ˆ์ŠคํŠธ(Random Forest; RF)๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค.

PCA ๋ถ„์„์€ ์‹คํ—˜ ๋ณ€์ˆ˜๋“ค์˜ ๊ตฐ์ง‘ํ™”๋ฅผ ํ†ตํ•ด NAF์™€ ์ƒ๊ด€์„ฑ์ด ๋†’์€ ํ™˜๊ฒฝ๋ณ€์ˆ˜๋“ค์„ ์ถ”์ถœํ•˜๊ธฐ ์œ„ํ•ด ์ ์šฉ๋˜์—ˆ์œผ๋ฉฐ, ๋น„์ง€๋„ํ•™์Šต ์œผ๋กœ ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. PCA ๋ถ„์„์—์„œ ์ฃผ์„ฑ๋ถ„ ์ˆ˜์˜ ๊ฒฐ์ •์€ ์ฃผ์„ฑ๋ถ„ ์ถ•์— ์ •์‚ฌ๋œ ์ž๋ฃŒ์˜ ๋ถ„์‚ฐ ํฌ๊ธฐ๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ๊ณ ์œ ์น˜(Eigen value)๊ฐ€ 1.0 ์ด์ƒ์ธ ๊ฐ’์„ ๊ฐ–๋Š” ์ฃผ์„ฑ๋ถ„ ์ถ•๋งŒ์„ ๊ณ ๋ คํ•˜์˜€๋‹ค(Box and Cox, 1964; Jung et al., 2012; Soltani et al., 2012). PCA๋ถ„ ์„์— ์•ž์„œ ์›์ž๋ฃŒ๊ฐ€ ์ฃผ์„ฑ๋ถ„๋ถ„์„์— ์ ํ•ฉํ•œ์ง€ ํŒ๋‹จํ•˜๊ธฐ ์œ„ํ•ด KMO(Kaiser-Meyer-Olkin) test(KMO ๊ฐ’ > 0.5) ๋ฐ Bartlett ๊ตฌ ํ˜•๋„ ๊ฒ€์ •(p < 0.05)์„ ์‹ค์‹œํ•˜์˜€๋‹ค. KMO test ๊ฒฐ๊ณผ๋Š” ๋ถ„์„์— ์‚ฌ์šฉ๋œ ๋ณ€์ˆ˜์™€ ์ž๋ฃŒ์— ๋‚ด์žฌ๋œ ์š”์ธ๋“ค ๊ฐ„์˜ ๊ณต๋ถ„์‚ฐ ์ •๋„๋ฅผ ๋‚˜ ํƒ€๋‚ธ ์ฒ™๋„๋กœ์จ 1์— ๊ฐ€๊นŒ์šธ์ˆ˜๋ก ๋ถ„์„์˜ ํƒ€๋‹น์„ฑ์ด ๋†’๊ณ  ์ตœ์†Œ 0.5 ์ด์ƒ ๋˜์–ด์•ผ ๋ถ„์„์ด ๊ฐ€๋Šฅํ•˜๋‹ค(Rajarentnam, 2016). ๊ฒ€์ • ์ˆ˜ํ–‰ ์‹œ ๊ฐ ๋ณด๋ณ„ KMO๊ฐ’์ด 0.5์ดํ•˜์ธ ๋ณ€์ˆ˜๋Š” ์ œ๊ฑฐํ•˜๊ณ  ๋ถ„์„์„ ์‹œํ–‰ ํ•˜์˜€๋‹ค. KMO๊ฐ’์„ ๋งŒ์กฑํ•˜์ง€ ์•Š๋Š” ๋ณ€์ˆ˜๋Š” ๊ฐ•์ •๊ณ ๋ น๋ณด ํ’์† (Uw), ์šฉ์กด์‚ฐ์†Œ(DO), kg, ๋‹ฌ์„ฑ๋ณด Alk, TP, TOC, ํ•ฉ์ฒœ๋ณด Alk, Uw, DO, ์ „๊ธฐ์ „๋„๋„(EC), TN, kg, ํ•จ์•ˆ๋ณด Alk, Uw, ์ˆ˜์˜จ (Wtr), EC, TN, TP๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. Bartlett ๊ตฌํ˜•๋„ ๊ฒ€์ •์€ ๋ถ„์„์— ์‚ฌ์šฉํ•œ ์ž๋ฃŒ์˜ ์ƒ๊ด€ ํ–‰๋ ฌ(correlation matrix)์ด ๋‹จ์œ„ํ–‰๋ ฌ (identity matrix)์ด๋ผ๋Š” ๊ฐ€์„ค๋กœ ์ˆ˜ํ–‰๋˜๋ฉฐ, ๊ฐ€์„ค์ด ์ฑ„ํƒ๋˜๋ฉด (p > 0.05), PCA ๋ถ„์„์ด ์ ํ•ฉํ•˜์ง€ ์•Š์Œ์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๊ฐ ๋ณด์˜ p๊ฐ’ ์€ ๋ชจ๋“  ๋ณด์—์„œ 0.05๋ณด๋‹ค ์ž‘์•„ ๊ท€๋ฌด๊ฐ€์„ค์ด ๊ธฐ๊ฐ๋˜์–ด PCA ๋ถ„ ์„์ด ์ ํ•ฉํ•œ ๊ฒƒ์œผ๋กœ ํ‰๊ฐ€๋˜์—ˆ๋‹ค.

SMLR๊ณผ RF ๋ชจ๋ธ์€ ์ •๊ธฐ ์ˆ˜์งˆ์ธก์ •๋ง ํ•ญ๋ชฉ์œผ๋กœ ํ•˜์ฒœ์˜ CO2 NAF๋ฅผ ์‚ฐ์ •ํ•  ์ˆ˜ ์žˆ๋Š” ํ†ต๊ณ„๋ชจ๋ธ์˜ ๊ฐœ๋ฐœ๊ณผ ๊ฐ ํ™˜๊ฒฝ ๋ณ€ ์ˆ˜๋“ค์˜ ์ค‘์š”๋„๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ์ ์šฉ๋˜์—ˆ๋‹ค. SMLR๊ณผ RF ๋ชจ ๋ธ์€ ์‚ฐ์ •๋œ NAF๋ฅผ ์ข…์†๋ณ€์ˆ˜๋กœ ์ง€๋„ํ•™์Šต์„ ํ•˜์˜€์œผ๋ฉฐ, ๊ฐœ๋ฐœ ๋œ ๋ชจ๋ธ์„ ํ†ตํ•ด ํ™˜๊ฒฝ๋ณ€์ˆ˜์˜ ์ค‘์š”๋„๋ฅผ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ๋…๋ฆฝ๋ณ€์ˆ˜ ๋Š” ํ˜„์žฅ์ธก์ •๊ณผ ์‹คํ—˜์œผ๋กœ ์ˆ˜์ง‘ํ•œ pH, Alk, Turb, Wtr, Uw, Chl-a, DO, EC, SS, TN, TP, TOC๋ฅผ ํฌํ•จํ•˜์˜€๋‹ค. SMLR ๋ชจ ๋ธ์€ ํ•˜๋‚˜์˜ ์ข…์†๋ณ€์ˆ˜์™€ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ๋…๋ฆฝ๋ณ€์ˆ˜๋“ค ๊ฐ„์— ์„ ํ˜•๊ด€ ๊ณ„(Linear Relationship)๊ฐ€ ์žˆ์Œ์„ ๊ฐ€์ •ํ•˜์—ฌ ์ฃผ์–ด์ง„ ํ•™์Šต๋ฐ์ด ํ„ฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๊ฐ ๋…๋ฆฝ๋ณ€์ˆ˜์˜ ํšŒ๊ท€๊ณ„์ˆ˜๋ฅผ ์ถ”์ •ํ•˜๋Š” ๋ชจํ˜•์ด ๋‹ค(Bae and Kim, 2016). ๋ณธ ์—ฐ๊ตฌ์—์„œ SMLR ๋ชจ๋ธ์€ R package์ธ olsrr(Hebbali, 2018)์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. SMLR์˜ ํ‰๊ฐ€ ๋Š” ์„ค๋ช…๋ณ€์ˆ˜์˜ ์ถ”๊ฐ€์— ๋”ฐ๋ฅธ ํŽ˜๋„ํ‹ฐ๊ฐ€ ๊ณ ๋ ค๋˜๋Š” ์กฐ์ • ๊ฒฐ์ •๊ณ„ ์ˆ˜(Adj. R2)์™€ ๋…๋ฆฝ๋ณ€์ˆ˜์˜ ๊ฐœ์ˆ˜์— ๋”ฐ๋ฅธ ์ •๋ณด ์†์‹ค๋ถ„์„ ๋ฐ˜์˜ ํ•˜๋Š” AIC(Akaike Information Criterion)๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. R package์ธ car(Fox et al., 2019)๋กœ VIF ์ง€์ˆ˜๋ฅผ ์‚ฐ์ •ํ•˜์—ฌ 10 ์ด์ƒ์ธ ๊ฐ’์„ ๊ธฐ์ค€์œผ๋กœ ๋‹ค์ค‘๊ณต์„ ์„ฑ์„ ํŒ๋‹จํ•˜์˜€๋‹ค.

RF ๋ชจ๋ธ์€ ์˜์‚ฌ๊ฒฐ์ •๋‚˜๋ฌด์˜ ์•™์ƒ๋ธ”(Ensemble) ํ•™์Šต๊ธฐ๋ฒ•์— ํ•ด๋‹นํ•˜๋ฉฐ, ์ฃผ์–ด์ง„ ์ž๋ฃŒ๋กœ๋ถ€ํ„ฐ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ๋ชจ๋ธ์„ ํ•™์Šตํ•œ ๋‹ค์Œ ์ž๋ฃŒ์— ๋Œ€ํ•œ ์˜ˆ์ธก ์‹œ ์—ฌ๋Ÿฌ ๋ชจ๋ธ์˜ ์˜ˆ์ธก ๊ฒฐ๊ณผ๋“ค์„ ์ข…ํ•ฉํ•˜์—ฌ ์ •ํ™•๋„๋ฅผ ๋†’์ด๋Š” ๊ธฐ๋ฒ•์ด๋‹ค. RF ๋ชจ๋ธ์˜ ๊ฐœ๋ฐœ์€ ์˜ˆ์ธก ๋ชจ๋ธ์˜ ๊ณผ์ ํ•ฉ์„ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•ด 10-fold ๊ต์ฐจ๊ฒ€์ •(cross validation) ๋ฐฉ๋ฒ•์„ ์ ์šฉํ•˜์˜€์œผ๋ฉฐ, R package์ธ caret(Kuhn, 2011)๊ณผ randomForest(Liaw and Wiener, 2002)๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. RF ๋ชจ ๋ธ์˜ ๋ณ€์ˆ˜ ์ค‘์š”๋„ ํ‰๊ฐ€ ๋ฐฉ๋ฒ•์€ ๋ชจ๋ธ์— ํ•ด๋‹น ๋ณ€์ˆ˜๋ฅผ ํฌํ•จํ•˜์ง€ ์•Š์•˜์„ ๋•Œ ์˜ค์ฐจ์˜ ์ฆ๊ฐ€(๋˜๋Š” Gini ๋ถˆ์ˆœ๋„ ๊ฐ์†Œ ์ •๋„)์— ๋ฏธ์น˜ ๋Š” ์˜ํ–ฅ์„ ๋น„๊ตํ•˜์—ฌ ์ˆœ์œ„๋ฅผ ์ •ํ•˜๋ฉฐ, ๋…๋ฆฝ๋ณ€์ˆ˜๊ฐ€ ์ข…์†๋ณ€์ˆ˜์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ํŒŒ์•…ํ•˜๋Š” ๋ฐฉ๋ฒ•์ค‘ ํ•˜๋‚˜๋กœ, ๊ฐœ๋ณ„ ๋…๋ฆฝ๋ณ€์ˆ˜๊ฐ€ ์ข… ์†๋ณ€์ˆ˜์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์‹œ๊ฐํ™”ํ•˜๋Š” partial dependence plot ์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค(Breiman and Cutler, 2015).

3. Results and Discussion

3.1. ์‹คํ—˜์ž๋ฃŒ์˜ ๊ธฐ์ˆ ํ†ต๊ณ„ ๋ฐ ๋ณ€์ˆ˜๊ฐ„ ์ƒ๊ด€๋ถ„์„

๊ฐ ๋ณด๋ณ„ CO2 NAF๋ฅผ ์‚ฐ์ •ํ•˜๊ธฐ์— ์•ž์„œ ์‹คํ—˜์—์„œ ์ˆ˜์ง‘ํ•œ ์ž ๋ฃŒ์™€ CO2SYS๋กœ ์‚ฐ์ •ํ•œ ๋ณ€์ˆ˜๋“ค์˜ ๊ธฐ์ดˆ ํ†ต๊ณ„๋Ÿ‰์„ ๋ถ„์„ํ•˜์˜€ ๋‹ค. ์กฐ์‚ฌ๊ธฐ๊ฐ„ ๋™์•ˆ ์ˆ˜์ง‘ํ•œ ์ฃผ์š” ํ™˜๊ฒฝ๋ณ€์ˆ˜์˜ ๊ธฐ์ดˆ ํ†ต๊ณ„๊ฐ’(์ตœ ์†Œ, ์ตœ๋Œ€, ํ‰๊ท , ์ค‘์œ„๊ฐ’, ํ‘œ์ค€ํŽธ์ฐจ)์„ Table 4์— ์ œ์‹œํ•˜์˜€๋‹ค. ํ™˜๊ฒฝ๋ณ€์ˆ˜์˜ ํ•ญ๋ชฉ์€ pH, ์•Œ์นผ๋ฆฌ๋„(Alk), ํƒ๋„(Turb), ์ˆ˜์˜จ (Wtr), ํ’์†(Uw), Chlorophyll-a(Chl-a) ๋“ฑ์ด๋‹ค. ํ˜„์žฅ ์กฐ์‚ฌ์™€ ์‹ค๋‚ด ๋ถ„์„์„ ํ†ตํ•ด ์ƒ˜ํ”Œ์„ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ pH๋Š” ๋ณด๋ณ„๋กœ ํฐ ์ฐจ์ด ๋ฅผ ๋‚˜ํƒ€๋‚ด์ง€ ์•Š์•˜๊ณ , Alk ๋˜ํ•œ ๋šœ๋ ทํ•œ ์ฐจ์ด๋ฅผ ๋ณด์ด์ง€ ์•Š์•˜๋‹ค. Chl-a์˜ ๊ฒฝ์šฐ ์ƒ๋ฅ˜์— ์œ„์น˜ํ•œ ๊ฐ•์ •๊ณ ๋ น๋ณด(17.1ยฑ10.8 ฮผg/L)์™€ ๋‹ฌ์„ฑ๋ณด(22.4ยฑ13.4 ฮผg/L)์— ๋น„ํ•ด ํ•˜๋ฅ˜์— ์œ„์น˜ํ•œ ํ•ฉ์ฒœ์ฐฝ๋…•๋ณด (31.2ยฑ26.4 ฮผg/L)์™€ ์ฐฝ๋…•ํ•จ์•ˆ๋ณด(34.9ยฑ22.1 ฮผg/L)์—์„œ ๋†’์€ ๊ฐ’ ์„ ๋ณด์˜€๋‹ค.

Table 4. The description statistics of the observed weirs variables
Variable Unit GGW DSW HCW CHW
nods - 18 18 16 14
in situ pH - 7.1-9.7
(8.3ยฑ0.7)
7.5-12.3
(8.6ยฑ1.2)
7.5-10.0
(8.5ยฑ0.7)
7.6-9.9
(8.7ยฑ0.7)
pH - 7.0-9.8
(8.0ยฑ0.8)
7.2-9.5
(8.0ยฑ0.7)
7.2-10.1
(8.2ยฑ0.9)
7.3-10.0
(8.2ยฑ0.9)
Alkalinity mg/L as CaCO3 36.0-112.0
(67.8ยฑ23.2)
44.0-124.0
(74.2ยฑ25.4)
41.0-121.0
(65.5ยฑ17.3)
41.0-109.0
(63.1ยฑ21.7)
Turbidity NTU 0.9-25.6
(6.6ยฑ6.3)
1.3-21.6
(6.4ยฑ5.4)
2.3-44.1
(8.7ยฑ10.1)
2.7-20.3
(6.8ยฑ4.4)
Water temperature ยฐC 12.5-4.6
(23.8ยฑ6.6)
12.9-33.6
(23.4ยฑ6.0)
12.9-35.3
(24.0ยฑ6.8)
17.7-36.5
(25.8ยฑ5.6)
Wind speed m/s 0.9-3.1
(1.9ยฑ0.6)
0.9-3.1
(1.9ยฑ0.6)
0.4-1.8
(1.0ยฑ0.4)
0.8-2.9
(1.5ยฑ0.7)
Chl-a ฮผg/L 6.1-45.1
(17.1ยฑ10.8)
4.8-55.3
(22.4ยฑ13.4)
5.1-104.3
(31.2ยฑ26.4)
15.4-99.1
(34.9ยฑ22.1)
DO mg/L 7.9-12.1
(9.9ยฑ1.3)
7.1-12.6
(10.5ยฑ1.5)
7.6-14.2
(10.7ยฑ2.1)
7.9-14.5
(9.9ยฑ1.8)
EC ฮผmhos/cm 121.7-281.9
(215.7ยฑ41.1)
184.2-436.9
(291.2ยฑ63.1)
168.0-382.8
(282.4ยฑ66.6)
154.6-296.5
(22201ยฑ46.6)
SS mg/L 2.2-18.3
(7.7ยฑ4.8)
1.8-16.0
(7.9ยฑ3.4)
4.2-33.5
(8.9ยฑ7.1)
5.7-13.7
(8.3ยฑ2.4)
TN mg/L 1.7-3.6
(2.5ยฑ0.6)
2.2-3.9
(2.9ยฑ0.5)
2.0-3.9
(2.9ยฑ0.6)
1.4-3.0
(2.3ยฑ0.5)
TP mg/L 0.020-0.148
(0.148ยฑ0.030)
0.035-0.138
(0.072ยฑ0.026)
0.036-0.135
(0.073ยฑ0.030)
0.027-0.110
(0.071ยฑ0.027)
TOC mg/L 2.6-6.7
(4.6ยฑ1.0)
2.9-6.1
(4.6ยฑ1.0)
2.8-8.7
(5.0ยฑ1.3)
2.9-6.1
(4.4ยฑ0.9)
pCO2* ฮผatm 2.8-2,340.8
(761.3ยฑ636.0)
10.8-1,883.5
(820.6ยฑ557.9)
0.9-2,216.9
(664.6ยฑ642.5)
1.4-2,148.4
(757.9ยฑ743.6)

* pCO2 : Calculated by CO2SYS program.

์กฐ์‚ฌ๊ธฐ๊ฐ„ ๋™์•ˆ ๋‚™๋™๊ฐ• 4๊ฐœ ๋ณด ์ƒ๋ฅ˜์˜ ์ˆ˜์ค‘ ํ‰๊ท  pCO2๋Š” ํ•ฉ ์ฒœ์ฐฝ๋…•๋ณด์—์„œ ์ตœ์†Œ 664.6 ฮผatm, ๋‹ฌ์„ฑ๋ณด์—์„œ ์ตœ๋Œ€ 820.6 ฮผatm ์˜€๋‹ค. ์กฐ์‚ฌ์ž๋ฃŒ ์ค‘ ์ตœ๋Œ“๊ฐ’์€ ๊ฐ•์ •๊ณ ๋ น๋ณด์—์„œ 2,340.8 ฮผatm๋กœ ์‚ฐ์ •๋˜์—ˆ๋‹ค. ์กฐ์‚ฌ ๋‚ ์งœ๋Š” 2018๋…„ 10์›” 29์ผ์ด์—ˆ์œผ๋ฉฐ, pH 7.05, Alk 45 mg/L as CaCO3, ์ˆ˜์˜จ 15.8ยฐC, Chl-a๋Š” 6.54 ฮผg/L ์˜ ๊ฐ’์„ ๋ณด์˜€๋‹ค. ๋ชจ๋“  ๋ณด์˜ pCO2 ํ‰๊ท ๊ฐ’์€ ๋Œ€๊ธฐ์™€์˜ ํ‰ํ˜•์ƒ ํƒœ(360 ฮผatm) ๋ณด๋‹ค ๊ณผํฌํ™”๋œ ์ƒํƒœ์— ํ•ด๋‹นํ•œ๋‹ค. ๋‚™๋™๊ฐ•์—์„œ ์‚ฐ ์ •๋œ pCO2๋Š” ์ค‘๊ตญ์˜ ํ™ฉํ•˜๊ฐ•(560-1,771 ฮผatm)๊ณผ ๋น„์Šทํ•œ ์ˆ˜์ค€ ์— ํ•ด๋‹นํ•˜๋ฉฐ, ํ‹ฐ๋ฒณ ๊ณ ์› ํ•˜์ฒœ(864 ฮผatm), ์ค‘๊ตญ์˜ Longchuan ๊ฐ•(1,230 ฮผatm), ๋ถ๋ฏธ ์ง€์—ญ(570-3,100 ฮผatm), ๋™๋‚จ์•„ Mekong ๊ฐ• ํ•˜๋ฅ˜(1,090 ฮผatm)์— ๋น„ํ•ด ๋‹ค์†Œ ๋‚ฎ์€ ์ˆ˜์ค€์— ํ•ด๋‹นํ•œ๋‹ค.

ํ™˜๊ฒฝ ๋ณ€์ˆ˜๋“ค์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด ์Šคํ”ผ์–ด๋งŒ ์ƒ๊ด€๋ถ„ ์„์„ ์‹ค์‹œํ•˜์—ฌ Fig. 2์— ์ œ์‹œํ•˜์˜€๋‹ค. pCO2๋Š” Alk, Uw, Turb ์™€ ๋šœ๋ ทํ•œ ์ƒ๊ด€์„ฑ์ด ๋‚˜ํƒ€๋‚˜์ง€ ์•Š์•˜๊ณ , pH์™€๋Š” ๋ชจ๋“  ๋ณด์—์„œ ๊ฐ•ํ•œ ์Œ์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์˜€๋‹ค. Wtr์˜ ๊ฒฝ์šฐ ๊ฐ•์ •๊ณ ๋ น๋ณด (-0.77), ๋‹ฌ์„ฑ๋ณด(-0.70), ํ•ฉ์ฒœ์ฐฝ๋…•๋ณด(-0.78)๋Š” ๊ฐ•ํ•œ ์Œ์˜ ์ƒ๊ด€๊ด€ ๊ณ„๋ฅผ ๋ณด์˜€์œผ๋‚˜, ์ฐฝ๋…•ํ•จ์•ˆ๋ณด(-0.44)์˜ ๊ฒฝ์šฐ ๋‹ค๋ฅธ ๋ณด๋“ค์— ๋น„ํ•ด ์•ฝํ•œ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋‚˜ํƒ€๋ƒˆ๋‹ค. ์ด๋Š” ์ˆ˜์˜จ์ด ๋‚ฎ์€ ๊ฒฝ์šฐ ๊ธฐ์ฒด์˜ ์šฉํ•ด์œจ์ด ๋†’์•„์ง€๋Š” ๊ฒƒ๊ณผ ๊ด€๊ณ„๊ฐ€ ์žˆ๋‹ค. ์กฐ์‚ฌ์ง€์ ๋ณ„๋กœ ํ•ญ๋ชฉ๊ฐ„ ์˜ ์ƒ๊ด€์„ฑ์ด ์กฐ๊ธˆ์”ฉ ๋‹ค๋ฅด๊ฒŒ ๋‚˜ํƒ€๋‚˜๋Š” ์›์ธ์€ ํ•˜์ฒœ์—์„œ ๋ฌผ๋ฆฌ, ํ™”ํ•™, ์ƒ๋ฌผํ•™์  ์ง€ํ‘œ ํ•ญ๋ชฉ์˜ ๋ณ€๋™์„ฑ์ด ์œ ์—ญ์˜ ์˜ค์—ผ๋ถ€ํ•˜ ํŠน์„ฑ (๋ฌผ์งˆ์˜ ์ข…๋ฅ˜, ๋ถ€ํ•˜์‹œ๊ธฐ, ๋ฐ˜์‘ํŠน์„ฑ ๋“ฑ), ๊ธฐ์ƒ ๋ฐ ์ˆ˜๋ฌธ, ์ˆ˜๋ฆฌํ•™ ์  ํŠน์„ฑ ๋“ฑ ๋งค์šฐ ๋‹ค์–‘ํ•œ ์š”์ธ๋“ค์˜ ๋น„์„ ํ˜•์  ๊ด€๊ณ„์— ์˜ํ•ด ๊ฒฐ ์ •๋˜๊ธฐ ๋•Œ๋ฌธ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.

Fig. 2. The correlation matrices of observed variables.
../../Resources/kswe/KSWE.2019.35.4.316/JKSWE-35-316_F2.jpg

pCO2์™€ Chl-a๋Š” ๋ชจ๋“  ๋ณด์—์„œ ์Œ์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์˜€์œผ๋ฉฐ, ๋‹ฌ์„ฑ๋ณด(-0.67)์™€ ํ•ฉ์ฒœ์ฐฝ๋…•๋ณด(-0.49), ์ฐฝ๋…•ํ•จ์•ˆ๋ณด(-0.47)์—๋Š” ํ†ต ๊ณ„์  ์œ ์˜์„ฑ์ด ์žˆ์—ˆ์ง€๋งŒ ๊ฐ•์ •๊ณ ๋ น๋ณด(-0.27)์—์„œ๋Š” ํ†ต๊ณ„์  ์œ  ์˜์„ฑ์ด ์—†๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ์‹๋ฌผํ”Œ๋ž‘ํฌํ†ค ์˜ ๊ด‘ํ•ฉ์„ฑ์ด ํ™œ๋ฐœํ•œ ๊ฒฝ์šฐ ์ˆ˜์ค‘์— ์žˆ๋Š” CO2 ๋†๋„๊ฐ€ ๊ฐ์†Œํ•˜๊ณ  pH๊ฐ€ ๋†’์•„์ง€๊ธฐ ๋•Œ๋ฌธ์œผ๋กœ ๋ณด์ธ๋‹ค. ๋˜ํ•œ ์ฐฝ๋…•ํ•จ์•ˆ๋ณด๋ฅผ ์ œ์™ธํ•œ 3๊ฐœ ๋ณด ๋ชจ๋‘์—์„œ pCO2๋Š” EC์™€ ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•  ๋งŒํ•œ ์Œ ์˜ ์ƒ๊ด€๊ด€๊ณ„(p < 0.01)๋ฅผ ๋ณด์˜€๋‹ค. ๋‚™๋™๊ฐ•์—์„œ EC์˜ ๊ฒฝ์šฐ ๊ฐ• ์šฐ-์œ ์ถœ๋Ÿ‰์ด ์ ์€ ๊ธฐ๊ฐ„์— ๋†’์•„์ง€๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์œผ๋ฉฐ, ์ด๋Š” ํ•˜ ์ฒœ์˜ ์ฒด๋ฅ˜์‹œ๊ฐ„ ์ฆ๊ฐ€์™€ ํ•จ๊ป˜ ์กฐ๋ฅ˜๊ฐ€ ๊ณผ์ž‰์„ฑ์žฅํ•˜๋Š” ํ™˜๊ฒฝ์— ํ•ด ๋‹นํ•œ๋‹ค. ๋”ฐ๋ผ์„œ EC๊ฐ€ ๋†’์€ ๊ฒฝ์šฐ Chl-a ๋†๋„์™€ pH๊ฐ€ ์ฆ๊ฐ€ํ•˜ ๋ฉฐ, ์ด๋Š” ์ˆ˜์ค‘์˜ CO2 ๋ถ„์••์„ ๊ฐ์†Œ์‹œํ‚ค๋Š” ๊ฒฐ๊ณผ๋กœ ๋‚˜ํƒ€๋‚  ์ˆ˜ ์žˆ๋‹ค. ํ•œํŽธ TOC๋Š” pCO2์™€ ํ†ต๊ณ„์ ์ธ ์œ ์˜์„ฑ์€ ์—†์ง€๋งŒ ๋ชจ๋‘ ์Œ์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์ด๊ณ  ์žˆ๋‹ค. ์„ ํ–‰ ์—ฐ๊ตฌ(Dos Santos et al., 2006; Hanson et al., 2015; Pacheco et al., 2013; Tadonlรฉkรฉ et al., 2012)์—์„œ๋Š” ์™ธ๋ถ€์—์„œ ๊ธฐ์›ํ•˜๋Š” ์œ ๊ธฐ๋ฌผ์ด ๋‹ด์ˆ˜์˜ CO2 ๊ณผํฌํ™”์— ์ค‘์š”ํ•œ ์š”์ธ์œผ๋กœ ๋ณด๊ณ ํ•˜๊ณ  ์žˆ๋Š” ๊ฒƒ๊ณผ๋Š” ๋Œ€์กฐ์ ์ด ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ๊ตญ๋‚ด์˜ ๊ธˆ๊ฐ• ํ•˜๋ฅ˜์™€ ํ•˜๊ตฌ์—์„œ ์‹คํ—˜ํ•œ ๊ฒฐ๊ณผ (Chung et al., 2018)์—์„œ๋„ DOC์™€ TOC๋Š” pCO2์™€ ์Œ์˜ ์ƒ ๊ด€๊ด€๊ณ„(p < 0.1)๋ฅผ ๋ณด์ธ ๋ฐ” ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ์‹œ๋ฃŒ์ฑ„์ทจ ์ง€ ์ ์ด ๊ฐ•์˜ ์ค‘ํ•˜๋ฅ˜์— ์œ„์น˜ํ•˜๊ณ  ์žˆ์–ด ์šฉ์กด ์œ ๊ธฐ๋ฌผ๋“ค์ด ๋Œ€๋ถ€๋ถ„ ๋‚œ๋ถ„ํ•ด์„ฑ์œผ๋กœ ์กด์žฌํ•˜๋ฉฐ, ์™ธ๊ตญ์˜ ์—ฐ๊ตฌ ๋Œ€์ƒ๋ณด๋‹ค DOC ๋†๋„๊ฐ€ ํ˜„์ €ํžˆ ๋‚ฎ๊ธฐ ๋•Œ๋ฌธ์œผ๋กœ ์œ ์ถ”๋œ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ DOC๋Š” ํ•œ๋Œ€์ง€ ์—ญ ํ˜ธ์ˆ˜(boreal lakes)์˜ pCO2์— ๊ฐ•ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒƒ์œผ๋กœ ๋ณด๊ณ ๋˜๊ณ  ์žˆ๋‹ค(Hope et al., 1996; Sobek et al., 2003).

3.2. CO2 NAF ์‚ฐ์ • ๊ฒฐ๊ณผ

2017๋…„๊ณผ 2018๋…„์˜ ๊ฐ•์ •๊ณ ๋ น๋ณด, ๋‹ฌ์„ฑ๋ณด, ํ•ฉ์ฒœ์ฐฝ๋…•๋ณด, ์ฐฝ๋…• ํ•จ์•ˆ๋ณด์˜ CO2 NAF ์‚ฐ์ •๊ฒฐ๊ณผ๋ฅผ Fig. 3์— ์ œ์‹œํ•˜์˜€๊ณ , ๊ฐ ๋ณด์˜ ๊ธฐ์ดˆํ†ต๊ณ„๋ฅผ Table 5์— ์ œ์‹œํ•˜์˜€๋‹ค. CO2 NAF๊ฐ€ ์–‘์˜ ๊ฐ’์„ ๋ณด ์ด๋ฉด ์ˆ˜์ƒํƒœ๊ณ„๋Š” ๋Œ€๊ธฐ ์ค‘์œผ๋กœ CO2๊ฐ€ ๋ฐฐ์ถœ๋˜๋Š” ์ข…์†์˜์–‘์‹œ์Šค ํ…œ(Heterotrophic system), ์Œ์˜ ๊ฐ’์„ ๋ณด์ด๋ฉด ํก์ˆ˜ํ•˜๋Š” ๋…๋ฆฝ์˜ ์–‘์‹œ์Šคํ…œ(Autotrophic system)์œผ๋กœ ํ•ด์„๋  ์ˆ˜ ์žˆ๋‹ค. ๋‚™๋™๊ฐ• ์ค‘ ํ•˜๋ฅ˜์˜ 4๊ฐœ ๋ณด ์ƒ๋ฅ˜ ์ˆ˜์ฒด๋Š” ๋ชจ๋‘ ๋Œ€๊ธฐ์ค‘์œผ๋กœ CO2๋ฅผ ๋ฐฐ์ถœํ•˜๋Š” ์ข…์†์˜์–‘์‹œ์Šคํ…œ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์กฐ์‚ฌ๊ธฐ๊ฐ„ ๋™์•ˆ ๋‚™๋™๊ฐ• 4๊ฐœ ๋ณด ์ƒ๋ฅ˜์˜ ํ‰๊ท  CO2 NAF๋Š” ํ•ฉ์ฒœ์ฐฝ๋…•๋ณด์—์„œ ์ตœ์†Œ 416.5 mg-CO2/m2 day, ๋‹ฌ์„ฑ๋ณด์—์„œ ์ตœ๋Œ€ 1,916.1 mg-CO2/m2 day์˜€๋‹ค. ์กฐ ์‚ฌ์ž๋ฃŒ ์ค‘ ์ตœ๋Œ€๊ฐ’์€ ๋‹ฌ์„ฑ๋ณด์—์„œ 11,220.3 mg-CO2/m2 day๋กœ ์‚ฐ์ •๋˜์—ˆ๋‹ค. ๋‚™๋™๊ฐ•์—์„œ ์‚ฐ์ •๋œ CO2 NAF๋Š” ํ‹ฐ๋ฒณ ๊ณ ์›์— ์œ„ ์น˜ํ•œ ํ•˜์ฒœ์—์„œ ์‚ฐ์ •๋œ 3,452 mg-CO2/m2 day ๋ณด๋‹ค๋Š” ๋‚ฎ์€ ์ˆ˜ ์ค€์ด์—ˆ์œผ๋‚˜, St. Louis et al. (2000)์ด ์ค‘์œ„๋„ ์ง€๋ฐฉ์— ์œ„์น˜ํ•œ ์˜จ๋Œ€ ์ €์ˆ˜์ง€๋“ค์—์„œ ์ธก์ •ํ•œ ํ‰๊ท  CO2 NAF ๊ฐ’์ธ 1,400 mg-CO2/m2 day์™€ ์œ ์‚ฌํ•œ ์ˆ˜์ค€์— ํ•ด๋‹นํ•œ๋‹ค. ๊ตญ๋‚ด ๋Œ€์ฒญํ˜ธ์—์„œ ๋Š” 2012๋…„ 2,590 mg-CO2/m2 day(Chung et al., 2016), 2017๋…„ ํ‰๊ท  CO2 1,400 mg-CO2/m2 day(Park and Chung, 2018)๋กœ ๋ณธ ์—ฐ๊ตฌ๊ฒฐ๊ณผ์™€ ์œ ์‚ฌํ•œ ์ˆ˜์ค€์„ ๋ณด์˜€๋‹ค(Table 6).

Fig. 3. The variations of CO2net atmospheric flux (NAF) during the monitoring period.
../../Resources/kswe/KSWE.2019.35.4.316/JKSWE-35-316_F3.jpg
Table 5. The summary statistics of estimated CO2NAF for each weir
Weir nods Min Max Mean Median Stdev
mg-CO2/m2 day
GGW 18 -1,695.8 6,443.7 1,277.9 934.7 2,099.6
DSW 18 -1,615.5 11,220.3 1,916.1 1,472.7 3,125.4
HCW 16 -1,299.6 3,504.0 416.5 391.5 1,256.3
CHW 14 -1,381.1 9,566.3 1,533.4 1,130.5 2,932.7
Table 6. The comparison of the CO2NAF estimated in this study with previous studies (unit: mg-CO2/m2day)
Water Type (Location) Estimated flux Water Type (Location) Estimated flux
Stream (Yellow River, Tibetan Plateau, China) 6,333 Stream (Yangtze River, Tibetan Plateau, China) 3,276
Stream (Yarlung Tsangpo, Tibetan Plateau, China) 2,442 Stream (Indus, Tibetan Plateau, China) 2,085
Stream (interior Alaska) 5,400 Stream (Northern, Sweden) 7,679
Stream (Finland) 975 Small stream (Ontario, Canada) 1,079
Small stream (Quebec, Canada) 3,121 Small stream (Sweden) 8,279
Headwater Stream (conterminous U.S.) 2,844 Stream (Amazon basin) 2,268
Stream (Mississippi) 3,241 Stream (Mid-downstream of Yangtze River, China) 3,551
Stream (Xinjiang river, China) 3,277 Stream (Temperate zone) 6,493
Large river* (Nakdong river, Korea) 417-1,916

* Upstream of weir

CO2 NAF๊ฐ€ ์Œ์˜ ๊ฐ’์„ ๋ณด์ด๋Š” ํก์ˆ˜ ์‹œ์Šคํ…œ์€ 2017๋…„ 9์›”, 10์›”์˜ ์ผ๋ถ€ ์ธก์ •์ผ๊ณผ 2018๋…„์˜ ์—ฌ๋ฆ„์ฒ ์— ์ฃผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋Š”๋ฐ, ์ด ๋•Œ pH์˜ ํ‰๊ท ๊ฐ’์€ 9.1(ยฑ0.5)๋กœ์จ CO2 NAF๊ฐ€ ์–‘์˜ ๊ฐ’์„ ๋ณด์ด๋Š” ๊ธฐ๊ฐ„์˜ ํ‰๊ท  pH 7.6(ยฑ0.3)๋ณด๋‹ค ํ˜„์ €ํžˆ ๋†’์€ ๊ฒฝํ–ฅ์„ ๋ณด์˜€ ๋‹ค. ์ด๋Š” ์•ž์—์„œ ์–ธ๊ธ‰ํ•œ ๋ฐ”์™€ ๊ฐ™์ด ์กฐ๋ฅ˜์˜ ๊ด‘ํ•ฉ์„ฑ ๊ณผ์ •์— CO2๋ฅผ ๋‹ค๋Ÿ‰ ์†Œ๋ชจํ•˜์—ฌ ์ˆ˜์ค‘์˜ CO2 ๋ถ€๋ถ„์••์ด ๋Œ€๊ธฐ์ค‘ ๋ถ€๋ถ„์••๋ณด๋‹ค ๋‚ฎ์•„์ง„ ๊ฒฐ๊ณผ์ด๋‹ค. 2017๋…„๊ณผ 2018๋…„์˜ NAF์˜ ํฌ๊ธฐ์™€ ๋ณ€๋™ ํŠน์„ฑ์ด ๋‹ค๋ฅธ ์ด์œ ๋Š” ๋‘ ํ•ด์˜ ๊ฐ•์šฐํŒจํ„ด์ด ๋‹ฌ๋ผ ์‹œ๊ธฐ์— ๋”ฐ๋ผ ์ถœํ˜„ํ•˜๋Š” ์กฐ๋ฅ˜ ์ข…๊ณผ ์ƒ์ฒด๋Ÿ‰์ด ๋‹ค๋ฅด๊ธฐ ๋•Œ๋ฌธ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. 2017๋…„์—๋Š” 7์›”๊ณผ 8์›”์— ๊ฐ•์šฐ๊ฐ€ ์žฆ์•„ ์กฐ๋ฅ˜ ์„ฑ์žฅ์ด ์ œํ•œ์ ์ด์—ˆ์œผ๋‚˜, 9์›”โ€“10์›”์— ๋Š” ๋ฌด๊ฐ•์šฐ ์ผ์ˆ˜๊ฐ€ ์ง€์†๋˜์–ด ๋‚จ์กฐ๋ฅ˜๊ฐ€ ์šฐ์ ํ•˜์˜€๋‹ค. ๋ฐ˜๋ฉด, 2018๋…„ ์€ 6์›” ๋ง-7์›” ์ดˆ ์งง์€ ์žฅ๋งˆ ์ดํ›„ 7์›” ์ค‘์ˆœ-8์›” ๋ง๊นŒ์ง€ ๋น„๊ฐ€ ๊ฑฐ์˜ ์˜ค์ง€ ์•Š์•˜๊ณ  ํญ์—ผ์ด ์ง€์†๋˜์–ด ๋‚จ์กฐ๋ฅ˜๊ฐ€ ๊ณผ์ž‰์„ฑ์žฅํ•˜๋Š” ๋…น ์กฐํ˜„์ƒ์ด ๋ฐœ์ƒํ•˜์˜€์œผ๋ฉฐ, 8์›” ๋ง์— ๋Œ€๊ทœ๋ชจ ๊ฐ•์šฐ๊ฐ€ ๋ฐœ์ƒํ•˜๋ฉด์„œ ๋…น์กฐํ˜„์ƒ์ด ํ•ด์†Œ๋˜์—ˆ๋‹ค(K-Water, 2018a). ๊ทธ ๊ฒฐ๊ณผ๋กœ 2018๋…„ 7 ์›”๊ณผ 8์›”์˜ CO2 NAF๋Š” ๋Œ€๋ถ€๋ถ„ ํก์ˆ˜์‹œ์Šคํ…œ์„ ๋ณด์ธ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ NAF ์‚ฐ์ •๊ฒฐ๊ณผ๋Š” ๋‚ฎ ๋™์•ˆ์˜ ์‹คํ—˜๊ฒฐ๊ณผ์— ๊ธฐ์ดˆํ•œ ๊ฐ’์ด๋ฏ€๋กœ, ๋ฐค ์‹œ๊ฐ„ ๋™์•ˆ์— ์กฐ๋ฅ˜๊ฐ€ ํ˜ธํก์„ ํ•˜๋Š” ๊ฒฝ์šฐ์—๋Š” ์ˆ˜์ค‘์˜ pCO2 ๋ถ„์••๊ณผ NAF์— ๋ณ€ํ™”๊ฐ€ ์žˆ์„ ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ ํ•ด์„์— ์ฃผ์˜๊ฐ€ ํ•„์š”ํ•˜๋‹ค.

3.3. kg ๋ฐ CO2 NAF ๋ฏผ๊ฐ๋„ ๋ถ„์„

Cole and Caraco (1998)๊ฐ€ ์ œ์‹œํ•œ ์‹ (1)๊ณผ Raymond et al. (2012)์ด ์ œ์‹œํ•œ ์‹ (2), (3)์˜ ๋ฐฉ๋ฒ•์œผ๋กœ kg์™€ NAF๋ฅผ ์‚ฐ์ •ํ•œ ํ›„, ๊ธฐ์ดˆํ†ต๊ณ„๋ฅผ Table 7์— ์ œ์‹œํ•˜๊ณ , ๊ฐ’์˜ ๋ถ„ํฌ๋ฅผ Box plot๋กœ ๋น„๊ตํ•˜์—ฌ Fig. 4์— ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ํ‰๊ท  kg๋Š” Cole and Caraco 5.12 m/d, Raymond 1 ๋ฐฉ๋ฒ• 2.38 m/d, Raymond 2 ๋ฐฉ๋ฒ•์ด 1.08 m/d์˜ ์ˆœ์„œ๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, CO2 NAF๋„ ํ‰๊ท  1,297.3, 1,017.4, 446.9 mg-CO2/m2day๋กœ Cole and Caraco, Raymond 1, 2์˜ ์ˆœ์„œ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ตœ๋Œ€๊ฐ’์€ Raymond 1์˜ ๋ฐฉ๋ฒ•์—์„œ kg 16.3 m/d, NAF 15,461.8 mg-CO2/m2day๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, ์ตœ์†Œ ๊ฐ’์€ kg๋Š” Raymond 2์˜ ๋ฐฉ๋ฒ•์—์„œ 0.11 m/d, NAF๋Š” Cole and Caraco์˜ ๋ฐฉ๋ฒ•์—์„œ โ€“1,695.8 mg-CO2/m2day๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

Table 7. The description statistics of summary statistics of kgand CO2NAF for different gas transfer velocityEquations
kg (m/d) CO2 NAF (mg-CO2/m2day)
Cole and Caraco Raymond 1 Raymond 2 Cole and Caraco Raymond 1 Raymond 2
nods 66 66 66 66 66 66
Min 2.33 0.26 0.11 -1,695.8 -1,585.2 -868.4
Max 10.67 16.30 7.38 11,220.3 15,461.8 6,592.5
Mean 5.12 2.38 1.08 1,297.3 1,017.4 446.9
Median 4.51 1.67 0.73 977.1 517.6 218.4
Stdev 1.99 2.54 1.17 2,470.0 2,339.9 1,028.9
Fig. 4. The boxplots of comparison for (a) kgand (b) CO2NAF for each equations
../../Resources/kswe/KSWE.2019.35.4.316/JKSWE-35-316_F4.jpg

Fig. 4์—์„œ ๋ณด๋Š” ๋ฐ”์™€ ๊ฐ™์ด, kg ๊ฐ’์€ ์‚ฐ์ •๋ฐฉ๋ฒ•์— ๋”ฐ๋ผ ์ค‘์œ„ ๊ฐ’์˜ ํŽธ์ฐจ๊ฐ€ ๋งค์šฐ ํฌ๊ณ  ๋ฏผ๊ฐํ•˜๊ฒŒ ๋ฐ˜์‘ํ•˜์˜€์œผ๋‚˜, NAF ์‚ฐ์ •๊ฐ’ ์€ ์ƒ๋Œ€์ ์œผ๋กœ ํŽธ์ฐจ๊ฐ€ ์ž‘์•˜๋‹ค. NAF์˜ ๋ถ„์‚ฐ์€ ์œ ์†, ํ•˜์ฒœ ๊ฒฝ ์‚ฌ, ์œ ๋Ÿ‰ ๋˜๋Š” Fr์„ ์ž…๋ ฅ๋ณ€์ˆ˜๋กœ ์‚ฌ์šฉํ•˜๋Š” Raymond et al. (2012) ์‹๋ณด๋‹ค ํ’์†์˜ ํ•จ์ˆ˜๋กœ ์‚ฐ์ •ํ•˜๋Š” Cole and Caraco (1998) ๋ฐฉ๋ฒ•์ด ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋Š”๋ฐ, ์ด๋Š” ๊ฐ•์šฐ-์œ ์ถœ์ด ์žˆ๋Š” ํŠน์ • ๊ธฐ๊ฐ„์„ ์ œ์™ธํ•œ ๋Œ€๋ถ€๋ถ„์˜ ๊ธฐ๊ฐ„์— ๋ณด ๊ตฌ๊ฐ„์˜ ์œ ์†์ด ๋งค์šฐ ๋А๋ฆฌ ๊ธฐ ๋•Œ๋ฌธ์œผ๋กœ ํ•ด์„๋œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” Raymond et al. (2012) ์˜ ์—ฐ๊ตฌ ๋Œ€์ƒ ํ•˜์ฒœ์˜ ํ‰๊ท  ์œ ์†(์•ฝ 0.14 m/s)์— ๋น„ํ•ด ๋ณธ ์—ฐ๊ตฌ ์ง€์—ญ์˜ ํ‰๊ท  ์œ ์†(์•ฝ 0.05 m/s)์ด ๋งค์šฐ ๋А๋ฆฌ๊ณ , ์ •์ฒด์ˆ˜์—ญ์„ ํ˜•์„ฑํ•˜์—ฌ Cole and Caraco (1998)์˜ ๋ฐฉ๋ฒ•์œผ๋กœ ์‚ฐ์ •ํ•œ NAF ๋กœ ์ฃผ์„ฑ๋ถ„๋ถ„์„ ๋ฐ ๋ณ€์ˆ˜์ค‘์š”๋„ ํ‰๊ฐ€๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค. CO2 NAF ์— ๋ฏธ์น˜๋Š” ์œ ์†์˜ ์˜ํ–ฅ์„ ํŒ๋‹จํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ƒ๊ด€๋ถ„์„์„ ์‹ค์‹œ ํ•˜์˜€์œผ๋ฉฐ, NAF์™€ ์œ ์†์€ ๋‚ฎ์€ ์ƒ๊ด€๊ด€๊ณ„(0.33, 0.32, 0.32)๋ฅผ ๋ณด์˜€๋‹ค(Fig. 5).

Fig. 5. Correlation matrices of water velocity and CO2NAF.
../../Resources/kswe/KSWE.2019.35.4.316/JKSWE-35-316_F5.jpg

3.4. NAF ์˜ํ–ฅ์ธ์ž ์ฃผ์„ฑ๋ถ„ ๋ถ„์„ ๋ฐ ๋ณ€์ˆ˜ ์ค‘์š”๋„ ํ‰๊ฐ€

3.4.1. ์ฃผ์„ฑ๋ถ„ ๋ถ„์„

PCA ๊ฒฐ๊ณผ๋Š” ๊ณ ์œ ์น˜(Eigen value)๊ฐ€ 1.0 ์ด์ƒ์ธ ๊ฐ’์„ ๊ธฐ์ค€ ์œผ๋กœ ์ฃผ์„ฑ๋ถ„ ์ถ•์„ ์ถ”์ถœํ•˜์˜€๋‹ค. ๊ฐ ๋ณด์˜ ๊ณ ์œ ์น˜๊ฐ€ 1.0 ์ด์ƒ์ธ ์ฃผ์„ฑ๋ถ„์€ ๊ฐ•์ •๊ณ ๋ น๋ณด 3๊ฐœ, ๋‹ฌ์„ฑ๋ณด 3๊ฐœ, ํ•ฉ์ฒœ์ฐฝ๋…•๋ณด 2๊ฐœ, ์ฐฝ๋…• ํ•จ์•ˆ๋ณด 2๊ฐœ์˜€๋‹ค. ๋ถ„์„๊ฒฐ๊ณผ ๊ฐ•์ •๊ณ ๋ น๋ณด๋Š” ์ „์ฒด ์ˆ˜์งˆ ๋ณ€๋™์— ๋Œ€ํ•˜์—ฌ ์ œ1์ฃผ์„ฑ๋ถ„์ด 49.0 %, ์ œ2์ฃผ์„ฑ๋ถ„์ด 18.6 %, ์ œ3์ฃผ์„ฑ๋ถ„ ์ด 13.7 % ๊ธฐ์—ฌํ•˜์˜€๋‹ค. ๋‹ฌ์„ฑ๋ณด๋Š” ์ „์ฒด ์ˆ˜์งˆ ๋ณ€๋™์— ๋Œ€ํ•˜์—ฌ ์ œ1์ฃผ์„ฑ๋ถ„์ด 41.2 %, ์ œ2์ฃผ์„ฑ๋ถ„์ด 26.6 %, ์ œ3์ฃผ์„ฑ๋ถ„์ด 11.1 % ๊ธฐ์—ฌํ•˜์˜€๋‹ค. ํ•ฉ์ฒœ์ฐฝ๋…•๋ณด๋Š” ์ „์ฒด ์ˆ˜์งˆ ๋ณ€๋™์— ๋Œ€ํ•˜์—ฌ ์ œ1 ์ฃผ์„ฑ๋ถ„์ด 59.8 %, ์ œ2์ฃผ์„ฑ๋ถ„์ด 22.8 % ๊ธฐ์—ฌํ•˜์˜€๋‹ค. ์ฐฝ๋…•ํ•จ์•ˆ ๋ณด๋Š” ์ „์ฒด ์ˆ˜์งˆ ๋ณ€๋™์— ๋Œ€ํ•˜์—ฌ ์ œ1์ฃผ์„ฑ๋ถ„์ด 48.5 %, ์ œ2์ฃผ์„ฑ ๋ถ„์ด 31.7 % ๊ธฐ์—ฌํ•˜์˜€๋‹ค. ๋ชจ๋“  ๋ณด์—์„œ NAF๋Š” pCO2์™€ ๋†’์€ ๊ณต๋ถ„์‚ฐ์„ ๋ณด์ด๋ฉฐ ๊ตฐ์ง‘ํ•˜๋Š” ํŠน์„ฑ์„ ๋ณด์˜€๋‹ค. NAF๋Š” ๋Œ€๋ถ€๋ถ„ pH์™€๋Š” ๋ฐ˜๋Œ€ ๋ฐฉํ–ฅ์˜ ๊ตฐ์ง‘ํŠน์„ฑ์„ ๋ณด์—ฌ pH๊ฐ€ ๋‚ฎ์€ ํ™˜๊ฒฝ์—์„œ NAF๊ฐ€ ๋†’์€ ๊ฒƒ์„ ๋ณด์—ฌ์ค€๋‹ค. ๋ชจ๋“  ๋ณด์—์„œ Chl-a๋Š” NAF์™€ ๋ฐ˜ ๋Œ€ํŽธ์œผ๋กœ ๊ตฐ์ง‘๋˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์ด๊ณ  ์žˆ์–ด ์กฐ๋ฅ˜๊ฐ€ ๊ณผ์ž‰ ์„ฑ์žฅํ•˜ ๋Š” ๊ธฐ๊ฐ„์— NAF๊ฐ€ ๊ฐ์†Œํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์—ฌ์ค€๋‹ค. ํƒ๋„์™€ SS, TP ๊ฐ€ ๊ฐ•ํ•œ ๊ตฐ์ง‘ ํŠน์„ฑ์„ ๋ณด์ด๋Š” ๊ฒƒ์€ ๊ฐ•์šฐ-์œ ์ถœ์˜ ์˜ํ–ฅ์œผ๋กœ ํ•ด ์„๋œ๋‹ค. ๊ฐ•์ •๊ณ ๋ น๋ณด์™€ ๋‹ฌ์„ฑ๋ณด์—์„œ๋Š” EC๊ฐ€ ์ œ1์ฃผ์„ฑ๋ถ„์—์„œ ํƒ ๋„์™€ SS์™€ ๋ฐ˜๋Œ€ ๋ฐฉํ–ฅ์œผ๋กœ ๊ตฐ์ง‘ํ•˜์˜€๊ณ  pH์™€ Chl-a์™€๋Š” ๋™์ผ ํ•œ ๋ฐฉํ–ฅ์œผ๋กœ ๊ตฐ์ง‘ํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ์ƒ๊ด€๋ถ„ ์„ ๊ฒฐ๊ณผ์™€ ์œ ์‚ฌํ•˜๋ฉฐ, ๊ฐ•์šฐ-์œ ์ถœ๋Ÿ‰์ด ์ ์€ ํ™˜๊ฒฝ์—์„œ EC๊ฐ€ ์ƒ ์Šนํ•˜๊ณ  ์ฒด๋ฅ˜์‹œ๊ฐ„ ์ฆ๊ฐ€์— ๋”ฐ๋ฅธ ์กฐ๋ฅ˜ ์„ฑ์žฅ๊ณผ pH ์ฆ๊ฐ€์™€ ๊ด€๋ จ ์ด ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ํ•ฉ์ฒœ์ฐฝ๋…•๋ณด์™€ ์ฐฝ๋…•ํ•จ์•ˆ๋ณด์—์„œ๋Š” EC๊ฐ€ KMO ๊ฒ€์ • ๊ธฐ์ค€์„ ๋งŒ์กฑํ•˜์ง€ ์•Š์•„ ๋ถ„์„ ๋ณ€์ˆ˜์—์„œ ์ œ์™ธ๋˜์–ด ์ด๋Ÿฌํ•œ ๊ฒฝํ–ฅ์€ ๋‚˜ํƒ€๋‚˜์ง€ ์•Š์•˜๋‹ค.(Fig. 6).

Fig. 6. Bi-plots of PCA results
../../Resources/kswe/KSWE.2019.35.4.316/JKSWE-35-316_F6.jpg

3.4.2. ๋‹จ๊ณ„๋ณ„๋‹ค์ค‘ํšŒ๊ท€๋ถ„์„

SMLR ๊ธฐ๋ฒ•์œผ๋กœ CO2 NAF ์˜ˆ์ธก ๋‹ค์ค‘ํšŒ๊ท€๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜๊ณ  NAF ์‚ฐ์ •๊ณผ ๊ด€๊ณ„๋œ ์ค‘์š” ๋ณ€์ˆ˜๋ฅผ ์ถ”์ถœํ•˜๊ธฐ ์œ„ํ•ด ์ข…์†๋ณ€์ˆ˜๋กœ NAF๋ฅผ ์‚ฌ์šฉํ•˜๊ณ , ๋…๋ฆฝ๋ณ€์ˆ˜๋Š” pH, Alk, Turb, Wtr, Uw, Chl-a, DO, EC, SS, TN, TP, TOC๋ฅผ ์ž…๋ ฅํ•˜์˜€๋‹ค. ๋‹จ๊ณ„์  ์ „์ง„ ๋ฐฉ๋ฒ•์„ ์ ์šฉํ•˜์˜€์œผ๋ฉฐ, ๋ชจ๋ธ์— ์‚ฌ์šฉํ•˜๋Š” ์ฒซ ๋ฒˆ์งธ ๋ณ€์ˆ˜๋Š” ์ข…์†๋ณ€์ˆ˜์™€ ์ƒ ๊ด€์„ฑ์ด ๊ฐ€์žฅ ํฐ ๋…๋ฆฝ๋ณ€์ˆ˜๋ฅผ ์„ ํƒํ•œ๋‹ค. ์ˆœ์ฐจ์ ์œผ๋กœ ํŽธ์ƒ๊ด€์„ฑ์ด ํฐ ๋…๋ฆฝ๋ณ€์ˆ˜๊ฐ€ ์ ์šฉ๋˜๋ฉฐ, ์ง„์ž… ๊ธฐ์ค€์— ๋งŒ์กฑํ•˜๋Š” ๋ณ€์ˆ˜๊ฐ€ ์—†์œผ๋ฉด ํ”„๋กœ์‹œ์ €๋Š” ์ค‘๋‹จ๋œ๋‹ค(Chung et al., 2016). SMLR ๋ชจ๋ธ์€ Adj.R2์™€ AIC๋กœ ํ‰๊ฐ€ํ•˜์˜€์œผ๋ฉฐ, Table 8์— ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค.

Table 8. Subset regression variables that best matched the performance criterion of weirs
GGW
Variables Adj.R2 AIC
pH 0.5958 314.04
pH, EC 0.6711 311.17
pH, EC, TN 0.7270 308.57
pH, Uw, EC, TN 0.7650 306.54
pH, Uw, DO, EC, TP 0.7735 306.43
PH, Uw, DO, EC, SS, TP 0.7725 306.94
PH, Turb, Uw, DO, EC, SS, TP 0.7734 307.16
pH, Turb, Uw, EC, SS, TN, TP, TOC 0.7599 308.31
pH, Turb, Uw, DO, EC, SS, TN, TP, TOC 0.7360 309.89
pH, Alk, Turb, Wtr, Uw, EC, SS, TN, TP, TOC 0.7012 311.72
pH, Alk, Turb, Wtr, Uw, DO, EC, SS, TN, TP, TOC 0.6545 313.56
pH, Alk, Turb, Wtr, Uw, Chl-a, DO, EC, SS, TN, TP, TOC 0.5872 315.48
DSW
Variables Adj.R2 AIC
pH 0.4636 333.45
pH, Uw 0.6900 324.42
pH, Uw, DO 0.7956 317.68
pH, Wtr, Uw, DO 0.8745 309.57
pH, Turb, Wtr, Uw, DO 0.8922 307.40
pH, Turb, Wtr, Uw, DO, SS 0.8987 306.71
pH, Turb, Wtr, Uw, DO, EC, SS 0.9040 306.03
pH, Turb, Wtr, Uw, DO, EC, SS, TN 0.9002 306.82
pH, Alk, Turb, Wtr, Uw, DO, EC, SS, TN 0.8942 307.76
pH, Alk, Turb, Wtr, Uw, Chl-a, DO, EC, SS, TN 0.8853 308.80
pH, Alk, Turb, Wtr, Uw, Chl-a, DO, EC, SS, TN, TOC 0.8705 310.21
pH, Alk, Turb, Wtr, Uw, Chl-a, DO, EC, SS, TN, TP, TOC 0.8447 312.21
HCW
Variables Adj.R2 AIC
pH 0.7350 256.37
pH, Turb 0.7717 254.80
pH, Turb, Uw 0.8005 253.36
pH, Alk, Turb, Uw 0.8605 248.25
pH, Alk, Uw, EC, TN 0.8803 246.28
pH, Alk, Turb, Uw, EC, TN 0.8825 246.29
pH, Alk, Turb, Uw, EC, TN, TP 0.8795 246.81
pH, Alk, Uw, DO, EC, SS, TN, TP 0.8690 248.00
pH, Alk, Uw, Chl-a, DO, EC, SS, TN, TP 0.8511 249.59
pH, Alk, Wtr, Uw, Chl-a, DO, EC, SS, TN, TP 0.8258 251.19
pH, Alk, Turb, Wtr, Uw, Chl-a, DO, EC, SS, TN, TP 0.7835 253.09
pH, Alk, Turb, Wtr, Uw, Chl-a, DO, EC, SS, TN, TP, TOC 0.7116 255.08
CHW
Variables Adj.R2 AIC
Alk 0.5954 211.63
Alk, DO 0.8168 204.27
Alk, DO, TOC 0.8831 203.32
Alk, DO, TN, TOC 0.8808 206.54
Alk, Turb, DO, TN, TOC 0.8809 210.44
Alk, Turb, Uw, DO, TN, TOC 0.8789 215.30
Alk, Turb, Wtr, Uw, DO, TN, TOC 0.8594 220.00

[i] Adj.R2 : Adjusted coefficient of determination.

AIC : Akaike information Criteria, smaller value means the model is relatively more precise.

The bold mark indicates the subset regression model that shows best performance.

๊ฐ•์ •๊ณ ๋ น๋ณด๋Š” 12๊ฐœ์˜ ๋ชจ๋ธ ์ค‘ pH, Uw, DO, EC, TP๋ฅผ ๋… ๋ฆฝ๋ณ€์ˆ˜๋กœ ์‚ฌ์šฉํ•œ ๋ชจ๋ธ์—์„œ ๊ฐ€์žฅ ์ข‹์€ ์˜ˆ์ธก ์„ฑ๋Šฅ์„ ๋ณด์˜€์œผ๋ฉฐ, ์ข…์†๋ณ€์ˆ˜์ธ NAF์˜ ๋ณ€๋™์„ฑ์„ ์•ฝ 77.4 % ์žฌํ˜„ํ•˜์˜€๋‹ค. ๋‹ฌ์„ฑ๋ณด ๋Š” 12๊ฐœ์˜ ๋ชจ๋ธ ์ค‘ pH, Turb, Wtr, Uw, DO, EC, SS๋ฅผ ๋…๋ฆฝ ๋ณ€์ˆ˜๋กœ ์‚ฌ์šฉํ•œ ๋ชจ๋ธ์—์„œ ๊ฐ€์žฅ ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์˜€์œผ๋ฉฐ, NAF์˜ ๋ณ€๋™์„ฑ์„ 90.4 %๊นŒ์ง€ ์žฌํ˜„ํ•˜์˜€๋‹ค. ํ•ฉ์ฒœ์ฐฝ๋…•๋ณด๋Š” 12๊ฐœ์˜ ๋ชจ ๋ธ ์ค‘ pH, Alk, Uw, EC, TN๋ฅผ ๋…๋ฆฝ๋ณ€์ˆ˜๋กœ ์‚ฌ์šฉํ•œ ๋ชจ๋ธ์—์„œ ๊ฐ€์žฅ ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์˜€๊ณ , 88.0 %์˜ ๋ณ€๋™์„ฑ์„ ์žฌํ˜„ํ•˜์˜€๋‹ค.

๋…๋ฆฝ๋ณ€์ˆ˜๋“ค์˜ ๋‹ค์ค‘๊ณต์„ ์„ฑ ํ‰๊ฐ€๊ฒฐ๊ณผ, VIF ๊ธฐ์ค€ 10์„ ์ดˆ๊ณผํ•œ ๋ณ€์ˆ˜๋Š” ์ฐฝ๋…•ํ•จ์•ˆ๋ณด๋ฅผ ์ œ์™ธํ•œ ๋ชจ๋“  ๋ณด์—์„œ๋Š” ๋‚˜ํƒ€๋‚˜์ง€ ์•Š์•˜๋‹ค. ์ฐฝ๋…•ํ•จ์•ˆ๋ณด์˜ ๊ฒฝ์šฐ ๋‹ค์ค‘๊ณต์„ ์„ฑ์„ ๋‚˜ํƒ€๋‚ธ ๋ณ€์ˆ˜๋Š” pH, Chl-a, EC, TP์ด์—ˆ์œผ๋ฉฐ, ์ด๋“ค ๋ณ€์ˆ˜๋ฅผ ์ œ์™ธํ•œ ํ›„ ๋‹ค์ค‘ํšŒ๊ท€๋ชจ๋ธ์„ ๊ฐœ๋ฐœ ํ•˜์˜€๋‹ค. ์„ ์ •๋œ ์ตœ์  SMLR ๋ชจ๋ธ์˜ ๋…๋ฆฝ๋ณ€์ˆ˜๋Š” Alk, DO, TOC ๋ฅผ ํฌํ•จํ•˜์˜€์œผ๋ฉฐ, NAF์˜ ๋ณ€๋™์„ฑ์„ 88.3 % ์žฌํ˜„ํ•˜์˜€๋‹ค.

3.4.3. RF ๋ชจ๋ธ์„ ์ด์šฉํ•œ ๋ณ€์ˆ˜ ์ค‘์š”๋„ ํ‰๊ฐ€

RF ๋ชจ๋ธ์˜ ๋ณ€์ˆ˜ ์ค‘์š”๋„ ํ‰๊ฐ€ ๊ธฐ๋Šฅ์„ ์ด์šฉํ•˜์—ฌ NAF ์˜ˆ์ธก ์— ์ค‘์š”ํ•œ ๋ณ€์ˆ˜์˜ ์ˆœ์œ„๋ฅผ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. NAF ์˜ˆ์ธก์— ์‚ฌ์šฉํ•œ ๋…๋ฆฝ๋ณ€์ˆ˜๋Š” pH, Alk, Turb, Wtr, Uw, Chl-a, DO, EC, SS, TN, TP, TOC์ด๋‹ค. ๋ถ„์„๊ฒฐ๊ณผ, ์ค‘์š” ๋ณ€์ˆ˜๋Š” ๊ฐ•์ •๊ณ ๋ น๋ณด pH, SS, Wtr, DO, Turb, Uw, EC, Alk, ๋‹ฌ์„ฑ๋ณด pH, Uw, EC, TN, Turb, TP, ํ•ฉ์ฒœ์ฐฝ๋…•๋ณด pH, ์ฐฝ๋…•ํ•จ์•ˆ๋ณด pH, Alk, Uw, Wtr, DO, Turb, TN์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋ณด ๋ณ„๋กœ pH๋Š” CO2 NAF์— ๊ฐ€ ์žฅ ์ค‘์š”ํ•œ ์˜ํ–ฅ์ธ์ž๋กœ ํ™•์ธ๋œ ๋ฐ˜๋ฉด, ๋‚˜๋จธ์ง€ ์ธ์ž๋“ค์˜ ์ค‘์š”๋„ ๋Š” ์ƒ์ดํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Š” ๊ฐ ์ง€์ ์˜ ์ˆ˜์ค‘ CO2 ๋ถ€๋ถ„์••์ด ์œ ์—ญ์œผ๋กœ๋ถ€ํ„ฐ์˜ ํƒ„์†Œ ๋ถ€ํ•˜ ํŠน์„ฑ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ˆ˜์ฒด ๋‚ด์—์„œ์˜ ๋ฌผ๋ฆฌ์ (์ˆ˜์˜จ ๋“ฑ), ํ™”ํ•™์ (pH, ์œ ๊ธฐ๋ฌผ ๋ถ„ํ•ด ๋“ฑ), ์ƒ๋ฌผํ•™์  (Chl-a ๋†๋„ ๋“ฑ)์ธ ๋ณต์žกํ•œ ๊ด€๊ณ„์— ์˜ํ•ด ๊ฒฐ์ •๋˜๋ฉฐ, ์ง€์ ๋ณ„๋กœ ์ด๋Ÿฌํ•œ ๊ด€๊ณ„๊ฐ€ ์ƒ์ดํ•˜๊ธฐ ๋•Œ๋ฌธ์œผ๋กœ ํ•ด์„๋œ๋‹ค.

RF ๋ชจ๋ธ์„ ํ†ตํ•ด ๊ฐ ๋ณด๋ณ„๋กœ ์„ ์ •๋œ ์ค‘์š” ๋ณ€์ˆ˜์— ๋Œ€ํ•˜์—ฌ ์–ด ๋–ค ์กฐ๊ฑด์—์„œ NAF๊ฐ’์ด ๋ณ€ํ•˜๋Š”์ง€ partial dependence plot์„ ์ด์šฉํ•˜์—ฌ ํ•ด์„ํ•˜์˜€๋‹ค(Fig. 7). ๋ชจ๋“  ๋ณด์—์„œ pH๋Š” ์ค‘์š”๋ณ€์ˆ˜๋กœ ์„ ์ •๋˜์—ˆ์œผ๋ฉฐ, ๋‚ฎ์„์ˆ˜๋ก NAF๊ฐ€ ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. ๊ฐ•์ •๊ณ ๋ น๋ณด์˜ NAF๋Š” pH, Wtr, DO, EC๊ฐ€ ๋‚ฎ์„์ˆ˜๋ก, SS์™€ Uw๊ฐ€ ๋†’์„์ˆ˜๋ก ์ฆ๊ฐ€ํ•˜์˜€๊ณ , ๋‹ฌ์„ฑ๋ณด์˜ NAF๋Š” pH, EC๊ฐ€ ๋‚ฎ์„์ˆ˜๋ก, Uw, TN, Turb, TP๊ฐ€ ๋†’์„์ˆ˜๋ก ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. ํ•ฉ์ฒœ์ฐฝ๋…•๋ณด๋Š” pH, Wtr, EC๊ฐ€ ๋‚ฎ์„์ˆ˜๋ก NAF๊ฐ€ ์ฆ๊ฐ€ํ–ˆ๊ณ , ์ฐฝ๋…•ํ•จ์•ˆ๋ณด๋Š” pH, DO, Turb๊ฐ€ ๋‚ฎ์„์ˆ˜๋ก, Alk, Uw๊ฐ€ ๋†’์„์ˆ˜๋ก NAF๊ฐ€ ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒฝ ํ–ฅ์„ ๋ณด์˜€๋‹ค.

Fig. 7. The partial dependence plots showing the marginal effects of a single variable on NAF
../../Resources/kswe/KSWE.2019.35.4.316/JKSWE-35-316_F7.jpg

๊ฐœ๋ฐœ๋œ SMLR ๋ชจ๋ธ๊ณผ RF ๋ชจ๋ธ์˜ ์˜ˆ์ธก ์„ฑ๋Šฅ์„ ๋น„๊ตํ•˜์—ฌ Fig. 8๊ณผ Table 9์— ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ๊ฐ•์ •๊ณ ๋ น๋ณด์™€ ํ•ฉ์ฒœ์ฐฝ๋…•๋ณด์˜ ๊ฒฝ์šฐ RF ๋ชจ๋ธ์ด, ๋‹ฌ์„ฑ๋ณด์™€ ์ฐฝ๋…•ํ•จ์•ˆ๋ณด์˜ ๊ฒฝ์šฐ SMLR ๋ชจ๋ธ์ด ๋” ์ข‹์€ ์˜ˆ์ธก์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. SMLR ๋ชจ๋ธ๊ณผ RF ๋ชจ๋ธ์€ ๋ชจ๋‘ Adj.R2 0.77(p < 0.05) ์ด์ƒ์˜ ๋†’์€ CO2 NAF ์˜ˆ์ธก ์„ฑ๋Šฅ์„ ๋ณด์ด๊ณ  ์žˆ์–ด, pCO2 ์ธก์ •์ž๋ฃŒ๊ฐ€ ์—†๋Š” ์ง€์ ์—์„œ ๋ฌผ๋ฆฌ์ ์ธ ๋ณ€ ์ˆ˜์™€ ์ˆ˜์งˆ์ธก์ •๋ง ์ž๋ฃŒ๋งŒ์„ ์‚ฌ์šฉํ•˜์—ฌ CO2 ๋ฐฐ์ถœ๋Ÿ‰์„ ์‚ฐ์ •ํ•˜๋Š” ๋ชจ๋ธ๋กœ ์ ์šฉ ๊ฐ€๋Šฅํ•  ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ํŠนํžˆ, ๋‹ฌ์„ฑ๋ณด์™€ ์ฐฝ๋…• ํ•จ์•ˆ๋ณด์—์„œ๋Š” ์ข…์†๋ณ€์ˆ˜์™€ ๋…๋ฆฝ๋ณ€์ˆ˜์˜ ์„ ํ˜•์„ฑ์„ ๊ฐ€์ •ํ•˜๋Š” SMLR ๋ชจ๋ธ์ด RF ๋ชจ๋ธ๋ณด๋‹ค ๋” ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์ด๊ณ  ์žˆ์–ด ํ•ด ๋‹น ๋ณด ๊ตฌ๊ฐ„์—์„œ๋Š” CO2 NAF์™€ ์„ ์ •๋œ ์ตœ์  ๋…๋ฆฝ๋ณ€์ˆ˜๋“ค๊ณผ์˜ ์„ ํ˜•๊ด€๊ณ„ ๋ชจ๋ธ์ด ์œ ํšจํ•œ ๊ฒƒ์œผ๋กœ ํ•ด์„๋œ๋‹ค.

Fig. 8. The comparison of performances of the best SMLR and RF models
../../Resources/kswe/KSWE.2019.35.4.316/JKSWE-35-316_F8.jpg
Table 9. The best SMLR models and parsimonious RF models for estimating CO2NAF for each weir
Weir The best SMLR RF
Model Equation RMSE Adj.R2 Parsimonious Variables RMSE Adj.R2
GGW NAF=18280.3-1474.8pH - 18.3EC - 258.7DO + 665.8Uw + 1557.2TP 822.76 0.77 pH, SS, Wtr, DO, EC, Uw 654.44 0.87
DSW NAF=12114.264 - 3732.501pH + 233.322Turb + 166.164Wtr + 3053.489Uw + 1178.410DO - 5.042EC - 271.783SS 729.52 0.90 pH, Uw, EC, TN, Turb, TP 848.62 0.90
HCW NAF=6022.128 - 1271.722pH + 27.970Alk + 1971.706Uw - 5.708EC + 878.043TN 346.80 0.88 pH, Wtr, EC 319.44 0.91
CHW NAF=274.1 + 99.82Alk - 896.74DO + 868.55TOC 847.39 0.88 pH, Wtr, Uw, Wtr, DO, Turb, TN 864.07 0.87

4. Conclusions

๋ณธ ์—ฐ๊ตฌ๋Š” ๋‚™๋™๊ฐ• ์ค‘ํ•˜๋ฅ˜์— ์œ„์น˜ํ•œ ๊ฐ•์ •๊ณ ๋ น๋ณด, ๋‹ฌ์„ฑ๋ณด, ํ•ฉ ์ฒœ์ฐฝ๋…•๋ณด, ์ฐฝ๋…•ํ•จ์•ˆ๋ณด์˜ ์ƒ๋ฅ˜ ๊ตฌ๊ฐ„์„ ๋Œ€์ƒ์œผ๋กœ CO2 NAF๋ฅผ ์‚ฐ์ •ํ•˜๊ณ , ์ˆ˜์งˆ์ž๋ฃŒ ๋ฐ ๊ธฐ์ƒ์ž๋ฃŒ๋“ค์„ ์ด์šฉํ•˜์—ฌ ๋‹ค์–‘ํ•œ ๋ฐ์ด ํ„ฐ๋งˆ์ด๋‹ ๊ธฐ๋ฒ•์œผ๋กœ ํ•˜์ฒœ์—์„œ CO2 NAF ์˜ˆ์ธก์— ์ค‘์š”ํ•œ ๋ณ€์ˆ˜ ๋ฅผ ํ‰๊ฐ€ํ•˜๊ณ  ๊ฐ ๋ณด๋ณ„ NAF ์˜ˆ์ธก ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ๊ฒฐ ๊ณผ๋ฅผ ํ†ตํ•ด ๋„์ถœ๋œ ์ฃผ์š” ๊ฒฐ๋ก ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

  1. ๋‚™๋™๊ฐ• 4๊ฐœ ๋ณด์—์„œ CO2 NAF๋ฅผ ์‚ฐ์ •ํ•œ ๊ฒฐ๊ณผ, ๋ชจ๋“  ๋ณด์˜ ์ƒ๋ฅ˜ ํ•˜์ฒœ์€ ๋Œ€๋ถ€๋ถ„์˜ ๊ธฐ๊ฐ„์— CO2๋ฅผ ๋Œ€๊ธฐ ์ค‘์œผ๋กœ ๋ฐฐ์ถœ ํ•˜๋Š” ์ข…์†์˜์–‘์‹œ์Šคํ…œ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๊ณ , ์กฐ๋ฅ˜์˜ ๊ด‘ํ•ฉ์„ฑ์ด ํ™œ๋ฐœํ•œ ์ผ๋ถ€ ์‹œ๊ธฐ์—๋Š” CO2๋ฅผ ํก์ˆ˜ํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์˜€๋‹ค. CO2 NAF ์ค‘์œ„๊ฐ’์€ ํ•ฉ์ฒœ์ฐฝ๋…•๋ณด์—์„œ ์ตœ์†Œ 391.5, ๋‹ฌ์„ฑ๋ณด ์—์„œ ์ตœ๋Œ€ 1,472.7 mg-CO2/m2 day์˜€๋‹ค. ์ด๋Š” Louis et al. (2000)์ด ์ค‘์œ„๋„ ์ง€๋ฐฉ์— ์œ„์น˜ํ•œ ์˜จ๋Œ€ ์ €์ˆ˜์ง€๋“ค์—์„œ ์ธก์ •ํ•œ ํ‰๊ท  CO2 NAF ๊ฐ’์ธ 1,400 mg-CO2/m2 day์™€ ์œ  ์‚ฌํ•œ ์ˆ˜์ค€์— ํ•ด๋‹นํ•œ๋‹ค.

  2. ๋ชจ๋“  ๋ณด์—์„œ NAF๋Š” pH์™€ ๊ฐ•ํ•œ ์Œ์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์˜€ ์œผ๋ฉฐ, pCO2์™€ Chl-a๋„ ์Œ์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์˜€๋‹ค. ์ด๋Š” ์กฐ๋ฅ˜์˜ ๊ณผ์ž‰์„ฑ์žฅ์ด ์ˆ˜์ค‘์˜ CO2๋ฅผ ์†Œ๋ชจํ•˜์—ฌ pH๊ฐ€ ์ฆ๊ฐ€ ํ•œ ๊ฒƒ์ด ์›์ธ์ด๋‹ค. ํ•˜์ฒœ์— ๋ณด์™€ ๋Œ์„ ์„ค์น˜ํ•  ๊ฒฝ์šฐ, ํ๋ฆ„ ์ด ์ •์ฒด๋˜๊ณ  ์ฒด๋ฅ˜์‹œ๊ฐ„์ด ์ฆ๊ฐ€ํ•˜์—ฌ ์กฐ๋ฅ˜์˜ 1์ฐจ์ƒ์‚ฐ๋Ÿ‰์ด ์ฆ๊ฐ€ํ•˜๋Š” ํ˜„์ƒ์€ ๋Œ€๊ธฐ ์ค‘์œผ๋กœ CO2 ๋ฐฐ์ถœ๋Ÿ‰์„ ์–ต์ œํ•˜๋Š” ํšจ๊ณผ๊ฐ€ ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ํ•ด์„๋  ์ˆ˜ ์žˆ์–ด ๋งค์šฐ ํฅ๋ฏธ๋กœ์šด ๊ฒฐ ๊ณผ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ๋ฐค ์‹œ๊ฐ„ ๋™์•ˆ์—๋Š” ์กฐ๋ฅ˜๊ฐ€ ํ˜ธํก์„ ํ•˜๋ฏ€ ๋กœ ์ˆ˜์ค‘์˜ pCO2 ๋ถ„์••๊ณผ NAF์— ๋ณ€ํ™”๊ฐ€ ์žˆ์„ ์ˆ˜ ์žˆ์œผ๋ฏ€ ๋กœ ๋…„ ๋‹จ์œ„์˜ CO2 NAF๋ฅผ ํŒ๋‹จํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ถ”๊ฐ€์ ์ธ ์‹คํ—˜์ด ํ•„์š”ํ•˜๋‹ค.

  3. PCA ๋ถ„์„ ๊ฒฐ๊ณผ, ๋ชจ๋“  ๋ณด์—์„œ NAF๋Š” pCO2์™€ ๋†’์€ ๊ณต๋ถ„ ์‚ฐ์„ ๋ณด์˜€๊ณ , pH์™€๋Š” ๋ฐ˜๋Œ€ ๋ฐฉํ–ฅ์œผ๋กœ ๊ตฐ์ง‘ํ•˜๋Š” ํŠน์„ฑ์„ ๋ณด์—ฌ pH๊ฐ€ ๋‚ฎ์€ ํ™˜๊ฒฝ์—์„œ NAF๊ฐ€ ๋†’์€ ๊ฒƒ์„ ์„ค๋ช…ํ•˜์˜€ ๋‹ค. ๋˜ํ•œ ๋ชจ๋“  ๋ณด์—์„œ Chl-a๋Š” NAF์™€ ๋ฐ˜๋Œ€ ๋ฐฉํ–ฅ์œผ๋กœ ๊ตฐ ์ง‘๋˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์—ฌ ์กฐ๋ฅ˜๊ฐ€ ๊ณผ์ž‰์„ฑ์žฅํ•  ๋•Œ NAF๊ฐ€ ๊ฐ์†Œ ํ•˜๋Š” ๋™์ผํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์˜€๋‹ค.

  4. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ๊ฐœ๋ฐœ๋œ Parsimonious SMLR๊ณผ RF ๋ชจ๋ธ ์˜ ์˜ˆ์ธก ์„ฑ๋Šฅ์€ ๋ชจ๋“  ๋ณด์—์„œ Adj.R2 ๊ฐ’์ด 0.77 ์ด์ƒ์˜ ๋†’์€ ๊ฐ’์„ ๋ณด์—ฌ, pCO2 ์ธก์ •์ž๋ฃŒ๊ฐ€ ์—†๋Š” ๊ฒฝ์šฐ์—๋„ ์†์‰ฝ ๊ฒŒ ์ˆ˜์ง‘ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฌผ๋ฆฌ์  ๋ณ€์ˆ˜์™€ ์ˆ˜์งˆ์ธก์ •๋ง ์ž๋ฃŒ๋ฅผ ์ด์šฉํ•˜์—ฌ CO2 NAF๋ฅผ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ ํ™œ์šฉ๊ฐ€ ๋Šฅํ•˜๋‹ค.

  5. Parsimonious RF ๋ชจ๋ธ์„ ๊ธฐ์ค€์œผ๋กœ CO2 NAF ์˜ˆ์ธก์— ๊ฐ€ ์žฅ ์ค‘์š”ํ•œ ๋ณ€์ˆ˜๋Š” ๊ฐ•์ •๊ณ ๋ น๋ณด๋Š” pH, SS, Wtr, DO, EC, Uw, ๋‹ฌ์„ฑ๋ณด๋Š” pH, Uw, EC, TN, Turb, TP, ํ•ฉ์ฒœ์ฐฝ๋…•๋ณด ๋Š” pH, Wtr, EC, ์ฐฝ๋…•ํ•จ์•ˆ๋ณด๋Š” pH, Wtr, Uw, Wtr, DO, Turb, TN์ด ํฌํ•จ๋˜์—ˆ๋‹ค. ๋ชจ๋“  ๋ณด์—์„œ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๋ณ€์ˆ˜ ๋Š” pH๋กœ ์„ ์ •๋˜์—ˆ๋‹ค.

Acknowledgement

๋ณธ ์—ฐ๊ตฌ๋Š” ๋Œ€ํ•œ๋ฏผ๊ตญ ๊ต์œก๋ถ€์™€ ํ•œ๊ตญ์—ฐ๊ตฌ์žฌ๋‹จ์˜ ๊ฐœ์ธ๊ธฐ์ดˆ์—ฐ๊ตฌ์ง€ ์›์‚ฌ์—…์˜ ์ง€์›(ํ•œ๊ตญ์—ฐ๊ตฌ์žฌ๋‹จ-2016-R1D1A3B03-2016131042) ๊ณผ ํ™˜๊ฒฝ๋ถ€/ํ•œ๊ตญํ™˜๊ฒฝ์‚ฐ์—…๊ธฐ์ˆ ์›์˜ ์ง€์›(๊ณผ์ œ๋ฒˆํ˜ธ 83085)์œผ๋กœ ์ˆ˜ ํ–‰๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

References

1 
Abril G., Bouillon S., Darchambeau F., Teodoru C. R., Marwick T. R., Tamooh F., Ochieng O. F., Geeraert N., Deirmendjian L., Polsenaere P., Borges A. V., 2015, Technical Note : Large overstimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters, Biogeosciences, Vol. 12, pp. 67-78Google Search
2 
American Public Health Association, American Water Works Association and Water Environment Federation (APHA, AWWA, WEF), 2005, Standard methods for the examination of water and wastewater, American Public Health Association, American Water Works Association and Water Environment Federation
3 
Bae K. T, Kim C. J, 2016, An agricultural estimat price model of artificial neural network by optimizing hidden layer, Journal of Korea Institute of Information Tecjnology, Vol. 14, No. 12, pp. 161-169Google Search
4 
Battin T. J, Luyssaert S, Kaplan L. A, Aufdenkampe A. K, Richter A, Tranvik L. J, 2009, The boundless carbon cycle, Nature geoscience, Vol. 2, pp. 598-600Google Search
5 
Box G. E. P, Cox D. R, 1964, An analysis of transformaions, Journal of the Oyal statistical Society, Series B (Methodological), Vol. 26, No. 2, pp. 211-252Google Search
6 
Breiman L, Cutler A, 2015, http://www.stat.berkeley.edu/~breiman/RandomForests (accessed Dec. 2018), Breiman and Cutler's random forests for classification and regression
7 
Butman D, Raymond P. A, 2011, Supplementary information for : Significant efflux of carbon dioxide from streams and rivers in the United States, Nature Geoscience, Vol. 4, No. 12, pp. 839-842Google Search
8 
Choi K. S, Kim B. C, Kim H. B, Sa S. H, 2000, Realationships between organic carbon and CODMn in a deep reservoir, lake Soyang, Korea, Korean Journal of Limnology, Vol. 33, No. 4, pp. 328-335Google Search
9 
Chung S. W, Lee H. S, Jung Y. R, 2008, The effect of hydrodynamic flow regimes on the algal bloomin a monomictic reservoir, Water Science & Technology, Vol. 58, No. 6, pp. 1291-1298Google Search
10 
Chung S. W, Park H. S, Yoo J. S, 2018, Variability of pCO2 in surface waters and development of predition model, Science of The Total Environment, pp. 622-623Google Search
11 
Chung S. W, Park H. S, Yoo J. S, Schladow S. G, 2016, Estimation of CO2 emission from a eutrophic reservoir in temperate region, [Korean Literature], Journal of Korean Society on Water Environment, Vol. 32, No. 5, pp. 433-441Google Search
12 
Cole J. J, Caraco N. F, 1998, Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6, Limnology and Oceanography, pp. 647-656Google Search
13 
Cole J. J, Caraco N. F, Kling G. W, Kratz T. K, 1994, Carbon dioxide supersaturation in the surface waters of lakes, Science, Vol. 265, No. 5178, pp. 1568-1570Google Search
14 
Cole J. J, Prairie Y. T, 2009, Dissolved CO2, Encyclopedia of Inland Water, Vol. 2, pp. 30-34Google Search
15 
Cole J. J, Prairie Y. T, Caraco N. F, McDowell W. H, Tranvik L. J, Striegl R. G, Duarte C. M, Kortelainen P, Downing J. A, Middelburg J. J, Melack J, 2007, Plumbing the global carbon cycle: Intergrating inland waters into the terrestrial carbon budget, Ecosystem, Vol. 10, pp. 171-184Google Search
16 
Dos Santos M. A, Rosa L. P, Sikar B, Sikar E, dos Santos E. O, 2006, Gross greenhouse gas fluxes from hydro-power reservoir compared to thermos-power plants, Energy Policy, Vol. 34, pp. 481-488Google Search
17 
Einsele G, Yan J, Hinderer M, 2001, Atmospheric carbon burial in modern lake basins and its significance for the global carbon budget, Global and Planetary Change, Vol. 30, pp. 167-195Google Search
18 
Fox J, Weisberg S, Price B, Adler D, Bates D, Baud-Bovy G, Bolker B, Ellison S, Firth D, Friendly M, Gorjanc G, Graves S, Heiberger R, Laboissiere R, Maechler M, Monette G, Murdoch D, Nilson H, Ogle D, Ripley B, Venables W, Walker S, Winsemius D. and R-Core, 2019, https://socialsciences.mcmaster.ca/jfox/Books/Companion/index.html (accessed May. 2019), Companion to Applied Regression
19 
Guerin F, Abril G, Richard S, Burban B, Reynouard C, Seyler P, Delmas R, 2006, Methane and carbon dioxide emissions from tropical reservoir: significance of downstream rivers, Geophysical Research Letters, Vol. 33, pp. L21407Google Search
20 
Hanson P. C, Pace M. L, Carpenter S. R, Cole J. J, Stanley E. H, 2015, Integrating landscape carbon cycling: research needs for resolving organic carbon budgets of lakes, Ecosystems, Vol. 18, pp. 363-375Google Search
21 
Hebbali A, 2018, https://olsrr.rsquaredacademy.com (accessed Nov. 2018), Tools for building OLS regression models
22 
Hope D, Kratz T. K, Riera J. L, 1996, Relationship between P-CO2 and dissolved organic carbon in northern Wisconsin lakes, Journal of Environmental Quality, Vol. 25, pp. 1442-1445Google Search
23 
Intergovernmental Panel on Climate Change (IPCC), 2013, Climate change 2013: The physical science basis, Working group 1 contribution to the fifth assessment report of the intergovernmental panel on climate changeGoogle Search
24 
Jin H. J, Yoon T. K, Begum M. S, Lee E. J, Oh N. H, Kang N. G, Park J. H, 2018, Longitudinal discontinuities in riverine greenhouse gas dynamics generated by dams and urban wastewater, Biogeoscience, Vol. 15, pp. 6349-6369Google Search
25 
Jung S. J, Lee D. J, Hwang K. S, Lee K. H, Choi K. C, Im S. S, Lee Y. H, Lee J. Y, Lim B. J, 2012, Evaluation of pollutant characteristics in yeongsan river using multivariate analysis, [Korean Literature], The Korean Society of Limnology, Vol. 45, No. 4, pp. 368-377Google Search
26 
Korea Meteorological Administration (KMA), 2017-2018, https://data.kma.go.kr/ (accessed Dec. 2018), Korea Meteorological Administration (KMA)
27 
Kortelainen P, Rantakari M, Huttunen J, Mattson T, ALM J, Juutinen S, Larmola T, Silvola J, Martikainene P, 2006, Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes, Global Change Biology, Vol. 12, pp. 1554-1567Google Search
28 
Kuhn M, 2011, https://cran.r-project.org/package=caret (accessed Apr. 2019), The caret package
29 
K-water, 2018a, [Korean Literature], Analysis on the mechanism of algal bloom and seasonal succession, K-water
30 
K-water, 2018b, http://water.or.kr/index.do/ (accessed Dec. 2018), Water information portal (My water)
31 
Lewis E, Wallace D, 1998, Program developed for CO2 system calculations, Department of applied science brookhaven national laboratory upton
32 
Li S, Lu X. X, Bush R. T, 2013, CO2 partial pressure and CO2 emission in the Lower Mekong River, Journal of Hydrology, Vol. 504, No. 11, pp. 40-56Google Search
33 
Li S, Lu X. X, He M, Zhou Y, Li L, Ziegler A. D, 2012, Daily CO2 partial pressure and CO2 outgassing in the upper Yangtze River basin: A case study of the Longchuan River, China, Journal of Hydrology, pp. 466-467Google Search
34 
Liaw A, Wiener M, 2002, Classification and regression by random Forest, R News, Vol. 2, pp. 18-22Google Search
35 
Ministry of Environment (ME), 2017-2018, http://water.nier.go.kr/ (accessed Dec. 2018), Water Environment Information System (WEIS)
36 
Pacheco F. S, Roland F, Downing J. A, 2013, Eutrophication reverses whole-lake carbon budgets, Inland Waters, Vol. 4, pp. 41-48Google Search
37 
Park H. S, Chung S. W, 2018, pCO2 dynamics of stratified reservoir in temperate zone and CO2 pluse emissions during turnover events, Water, Vol. 10, pp. 1347Google Search
38 
Qu B, Aho K. S, Li C, Kang S, Sillanpaa M, Yan F, Raymond P. A, 2017, Greenhouse gases emissions in rivers of the Tibetan plateau, Scientific Reports, Vol. 7, No. 1, pp. 16573Google Search
39 
Rajaretnam T, 2016, Statistics for social sciences, Sage publications
40 
Raymond P. A, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humborg C, Kortelainen P, Durr H, Meybeck M, Ciais P, Guth P, 2013, Global carbon dioxide emissions from inland waters, Nature, Vol. 503, pp. 355-359Google Search
41 
Raymond P. A, Zappa C. J, Butman D, Bott T. L, Potter J, Mlholland P, Laursen A. E, McDowell W. H, Newbold D, 2012, Scaling the gas transfer velocity and hydraulic geometry in streams and samll rivers, Limnology and Oceanography, Vol. 2, pp. 41-53Google Search
42 
Richey J. E, Melack J. M, Aufdenkampe A. K, Ballester V. M, Hess L. L, 2002, Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2, Nature, Vol. 416, pp. 617-620Google Search
43 
Seo D. I, 1998, Stratification Characteristics and Water Quality Management Strategies of Daechung Lake, [Korean Literature], Journal of Korean Society of Environmental Engineers, Vol. 20, No. 9, pp. 1219-1234Google Search
44 
Stallard R. F, 1998, Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial, Global biogeochemical cycle, Vol. 12, No. 2, pp. 231-257Google Search
45 
Sobek S, Algesten G, Bergstrom A, Jansson M, 2003, The catchment and climate regulation of pCO2 in boreal lakes, Global Change Biology, Vol. 9, pp. 630-641Google Search
46 
Soltani N, Khodaei K, Alnajar N, Shahsavari A, Ashja A. A, 2012, Cyanobacterial community patterns as water quality bioindicators, Iranian Journal of Fisheries Science, Vol. 11, No. 4, pp. 876-891Google Search
47 
St Louis V. L, Kelly C. A, Duchemin E, Rudd J. W. M, Rosenberg D. M, 2000, Reservoir surfaces as sources of greenhouse gases to the atmosphere: A global estimate, Bioscience, Vol. 50, No. 9, pp. 766-775Google Search
48 
Tadonlรฉkรฉ R. D, Marty J, Planas D, 2012, Assessing factors underlying variation of CO2 emissions in boreal lakes vs. reservoirs, FEMS Microbiology Ecology, Vol. 79, pp. 282-297Google Search
49 
Teodoru C. R, Del Giorgio P. A, Prairie Y. T, Camire M, 2009, Patterns in pCO2 in boreal streams and rivers of northern Quebec, Canada, Global Biogeochem Cycles, Vol. 23Google Search
50 
Tranvik L. J, Downing J. A, Cotner J. B, Loiselle S. A, Striegl R. G, Ballatore T. J, Dillon P, Finlay K, Fortino K, Knoll L. B, Kortelainene P. L, Kustser T, Larsen S, Laurion I, Leech D. M, McCallister S. L, McKnight D. M, Melack J. M, Overholt E, Porter J. A, Prairie Y, Renwick W. H, Roland F, Sherman B. S, Schindler D. W, Sobek S, Tremblay A, Vanni M. J, Verschoor A. M, Wachenfeldt E, Weyhenmeyer G. A, 2009, Lakes and reservoirs as regulators of carbon cycling and climate, Limnology and Oceanography, Vol. 54, No. 6, pp. 2298-2314Google Search
51 
UN Educational, Scientific and Cultural Organization /International Hydropower Association (UNESCO/IHA), 2010, GHG measurement guidelines for freshwater reservoirs, The nternational hydropower association
52 
Wanninkhof R, 1992, Relationship between wind speed and gas exchange over the ocean revisited, Limnology and Oceanography: Methods, Vol. 12, pp. 351-362Google Search
53 
Wetzel R. G, 2001, Lake and River Ecosystems, Limnology, Academic PressGoogle Search
54 
Weyhenmeyer G. A, Kosten S, Wallin M. B, Tranvik L. J, Jeppesen E, Roland F, 2015, Significant fraction of CO2 emissions from boreal lakes derived from hydrologic inorganic carbon inputs, Nature Geoscience, Vol. 8, pp. 933-936Google Search
55 
Winslow L, Read J, Woolway R, Brentrup J, Leach T, Zwart J, Albers S, Collinge D, 2018, https://github.com/GLEON/rLakeAnalyzer/issues (accessed Mar. 2018), Lake Physics Tools
56 
Yu S. J, Hwang J. Y, Yoon Y. S, Han E. J, 1999, Index of Organic Matter in Stream and Lake, [Korean Literature], Journal of Enviornmental Impact Assessment, Vol. 8, No. 1, pp. 81-92Google Search
57 
Yoon T. K, Jin H. J, Begum M. S, Kang N. G, Park J. H, 2017, CO2 Outgassing from an Urbanized River System Fueled by Wastewater Treatment Plant Effluents, Environmental Science & Technology, Vol. 51, pp. 10459-10467Google Search