The Journal of
the Korean Society on Water Environment

The Journal of
the Korean Society on Water Environment

Bimonthly
  • ISSN : 2289-0971 (Print)
  • ISSN : 2289-098X (Online)
  • KCI Accredited Journal

Editorial Office


  1. ์ดํ™”์—ฌ์ž๋Œ€ํ•™๊ต ํ™˜๊ฒฝ๊ณตํ•™๊ณผ (Department of Environmental Science and Engineering, Ewha Womas University)



Environmental Fluid Dynamics Code (EFDC), Genetic Algorithm (GA), Harmful Algal Blooms (HABs), Nakdong River, Parameter optimization

1. Introduction

์œ ํ•ด ์กฐ๋ฅ˜ ๋ฒˆ์„ฑ(Harmful Algal Blooms, HABs)์€ ํ•œ๊ตญ์˜ 4๋Œ€๊ฐ• ์ˆ˜๊ณ„๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ์—ฌ๋ฆ„์ฒ ์— ์ง€์†์ ์œผ๋กœ ๋ฐœ์ƒํ•˜๊ณ  ์žˆ์œผ๋ฉฐ(NIER, 2022), ๊ธฐํ›„ ๋ณ€ํ™”๋กœ ์ธํ•œ ์ˆ˜์˜จ ์ƒ์Šน๊ณผ ๊ฐ•์ˆ˜ ํŒจํ„ด ๋ณ€ํ™”๊ฐ€ ์กฐ๋ฅ˜ ๋ฐœ์ƒ์„ ๋”์šฑ ์ด‰์ง„ํ•˜๋ฉด์„œ ๋ฌธ์ œ๊ฐ€ ์‹ฌํ™”๋˜๊ณ  ์žˆ๋‹ค(Noh et al., 2014; Ranjbar et al., 2021). ์ด๋กœ ์ธํ•ด ํƒ๋„ ์ฆ๊ฐ€, ์‹ฌ๋ฏธ์  ๊ฐ€์น˜ ํ›ผ์†, ์šฉ์กด์‚ฐ์†Œ ๊ฐ์†Œ๋กœ ์ธํ•œ ์–ด๋ฅ˜ ํ์‚ฌ, ์ƒ๋ฌผ๋‹ค์–‘์„ฑ ๋ณ€ํ™” ๋“ฑ์„ ์ดˆ๋ž˜ํ•˜๋ฉฐ, ์ˆ˜์งˆ ์•…ํ™”์˜ ์ฃผ์š” ์›์ธ์ด ๋˜๊ณ  ์žˆ๋‹ค(Fadel et al., 2019). ํŠนํžˆ, ์œ ํ•ด๋‚จ์กฐ๋ฅ˜๋Š” Geosmin๊ณผ 2-MIB ๋“ฑ์˜ ๋ƒ„์ƒˆ๋ฌผ์งˆ์„ ์ƒ์„ฑํ•˜์—ฌ ์ด์ทจ๋ฏธ๋ฅผ ์œ ๋ฐœํ•˜๊ณ , Microcystin๊ณผ ๊ฐ™์€ ๋…์„ฑ ๋ฌผ์งˆ์„ ๋ฐฐ์ถœํ•˜์—ฌ ์ •์ˆ˜ ๊ณต๊ธ‰ ์ฒด๊ณ„ ๋ฐ ๊ณต์ค‘๋ณด๊ฑด์— ์‹ฌ๊ฐํ•œ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค(Jung et al., 2021). ์ด์— ๋”ฐ๋ผ ํ™˜๊ฒฝ๋ถ€๋Š” ์œ ํ•ด๋‚จ์กฐ๋ฅ˜ ์„ธํฌ์ˆ˜๋ฅผ ๊ธฐ์ค€์œผ๋กœ ์กฐ๋ฅ˜๊ฒฝ๋ณด์ œ๋ฅผ ์šด์˜ํ•˜๋ฉฐ ์กฐ๋ฅ˜ ๋ฐœ์ƒ ์ƒํ™ฉ์„ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๊ณ  ์žˆ๋‹ค(ME, 2023a).

์กฐ๋ฅ˜๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์˜ˆ์ธกํ•˜๋Š” ๊ฒƒ์€ ์ˆ˜์งˆ ๊ด€๋ฆฌ ๋ฐ ์กฐ๋ฅ˜ ๋ฐœ์ƒ ๋Œ€์‘ ์ฒด๊ณ„ ์ˆ˜๋ฆฝ์— ํ•„์ˆ˜์ ์ด๋ฉฐ, ๋ณด๋‹ค ์ •๋ฐ€ํ•œ ์˜ˆ์ธก ๋ชจ๋ธ์„ ํ†ตํ•ด ํšจ๊ณผ์ ์ธ ์ˆ˜์งˆ ๊ด€๋ฆฌ ์ „๋žต์ด ์š”๊ตฌ๋œ๋‹ค(Bae and Seo, 2018; Kim et al., 2024). ์กฐ๋ฅ˜์˜ ๋ฐœ์ƒ ๋ฐ ๊ฑฐ๋™์„ ์ •ํ™•ํžˆ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ธฐ์˜จ, ์ˆ˜์˜จ, ์ฒด๋ฅ˜ ์‹œ๊ฐ„, ์ผ์‚ฌ๋Ÿ‰, ์˜์–‘์—ผ๋ฅ˜ ๋“ฑ ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ ์š”์ธ์„ ์ข…ํ•ฉ์ ์œผ๋กœ ๊ณ ๋ คํ•ด์•ผ ํ•˜๋ฉฐ(ME, 2023a), ๊ฐœ๋ณ„ ์กฐ๋ฅ˜ ๊ตฐ์ง‘์˜ ์ฒœ์ด ํ˜„์ƒ์„ ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ๋Š” ๋ชจ๋ธ์ด ํ•„์š”ํ•˜๋‹ค(Choi et al., 2015). 3์ฐจ์› ์ˆ˜๋ฆฌโ‹…์ˆ˜์งˆ ๋ชจ๋ธ์ธ Environmental Fluid Dynamics Code (EFDC)๋Š” ๋‚จ์กฐ๋ฅ˜, ๊ทœ์กฐ๋ฅ˜ ๋ฐ ๋…น์กฐ๋ฅ˜๋ฅผ ๊ตฌ๋ถ„ํ•˜์—ฌ ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋‹ค์–‘ํ•œ ์ˆ˜์งˆ ๋ณ€์ˆ˜ ๊ฐ„์˜ ์ƒํ˜ธ์ž‘์šฉ์„ ๋ถ„์„ํ•  ์ˆ˜ ์žˆ์–ด ์—ฌ๋Ÿฌ ์ˆ˜๊ณ„๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์กฐ๋ฅ˜ ์˜ˆ์ธก ๋ชจ๋ธ๋ง์ด ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค(Bae and Seo, 2018; Kim et al., 2017; Seo et al., 2020; Wu and Xu, 2011; Yu et al., 2024). ๊ตญ๋ฆฝํ™˜๊ฒฝ๊ณผํ•™์›์—์„œ๋Š” EFDC๋ฅผ ๋ณ€ํ˜•ํ•œ EFDC-NIER ๋ชจ๋ธ์„ ๊ตญ๋‚ด ์กฐ๋ฅ˜ ์˜ˆ๋ณด ๋ฐ ๊ฒฝ๋ณด์— ์‚ฌ์šฉํ•˜๊ณ  ์žˆ๋‹ค(Ahn et al., 2023; Shin et al., 2019).

์กฐ๋ฅ˜ ์˜ˆ์ธก์˜ ์ •ํ™•์„ฑ์€ ์ž…๋ ฅ ์ž๋ฃŒ, ๋ชจ๋ธ ๊ตฌ์กฐ ๋ฐ ๋งค๊ฐœ๋ณ€์ˆ˜ ์„ค์ •์— ํฌ๊ฒŒ ์˜ํ–ฅ์„ ๋ฐ›๋Š”๋‹ค(Kim et al., 2024). ํŠนํžˆ, ๋ฌผ๋ฆฌโ‹…ํ™”ํ•™์ โ‹…์ƒ๋ฌผํ•™์  ์ˆ˜์งˆ ์ƒํ˜ธ์ž‘์šฉ์„ ๋ฐ˜์˜ํ•˜๋Š” ์ˆ˜ํ•™์  ๋ชจ๋ธ์—์„œ๋Š” ๋งค๊ฐœ๋ณ€์ˆ˜ ์„ค์ •์ด ๋ชจ๋ธ์˜ ์‹ ๋ขฐ๋„์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋ฏ€๋กœ, ์ ์šฉ ๋Œ€์ƒ์— ์ ํ•ฉํ•œ ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ์ถ”์ •ํ•˜๋Š” ๊ฒƒ์ด ํ•„์ˆ˜์ ์ด๋‹ค(Kim and Han, 2003). ๊ธฐ์กด์˜ ๋งค๊ฐœ๋ณ€์ˆ˜ ์ถ”์ • ๋ฐฉ์‹์ธ ์‹œํ–‰์ฐฉ์˜ค๋ฒ•(trial and error method)์„ ํ†ตํ•œ ์ˆ˜๋™ ๋ณด์ •์€ ๊ณ„์‚ฐ ์‹œ๊ฐ„์ด ๋งŽ์ด ์†Œ์š”๋˜๋ฉฐ, ์ฃผ๊ด€์ ์ธ ์š”์†Œ๊ฐ€ ๊ฐœ์ž…๋˜๋ฏ€๋กœ ๋ชจ๋ธ์˜ ๊ฐ๊ด€์„ฑ์— ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๋‹ค(Cho, 2011; Pelletier et al., 2006). ๋”ฐ๋ผ์„œ ์‹ค์ธก๊ฐ’๊ณผ ๊ณ„์‚ฐ๊ฐ’์˜ ์˜ค์ฐจ๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ์ตœ์ ํ™” ๊ธฐ๋ฒ•์„ ์ ์šฉํ•œ ์ž๋™ ๋ณด์ •์ด ํ•„์š”ํ•˜๋‹ค(Cho and Lee, 2006).

๋งค๊ฐœ๋ณ€์ˆ˜ ์ตœ์ ํ™”์—๋Š” ์œ ์ „์ž ์•Œ๊ณ ๋ฆฌ์ฆ˜(Genetic Algorithm, GA), ์ž…์ž ๊ตฐ์ง‘ ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜(Particle Swarm Optimization algorithm), ๊ฒฝ์‚ฌ ํ•˜๊ฐ• ์•Œ๊ณ ๋ฆฌ์ฆ˜(gradient descent algorithm) ๋“ฑ ๋‹ค์–‘ํ•œ ๊ธฐ๋ฒ•์ด ํ™œ์šฉ๋œ๋‹ค(Ch and Mathur, 2012; Cho et al., 2004; Liang et al., 2015). ์ด ์ค‘ GA๋Š” ์ƒ๋ฌผํ•™์  ์ง„ํ™” ๊ณผ์ •์—์„œ ์ž์—ฐ ์„ ํƒ๊ณผ ๋Œ์—ฐ๋ณ€์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ตœ์ ํ•ด๋ฅผ ํƒ์ƒ‰ํ•˜๋Š” ์ „์—ญ ์ตœ์ ํ™” ๊ธฐ๋ฒ•์œผ๋กœ(Holland, 1973), ๋‹ค์ค‘ ๋งค๊ฐœ๋ณ€์ˆ˜ ๋ฌธ์ œ์—์„œ ํšจ๊ณผ์ ์ธ ํƒ์ƒ‰ ๋Šฅ๋ ฅ์„ ๋ณด์ธ๋‹ค(Katoch et al., 2021). ์ด์— ๋”ฐ๋ผ GA๋ฅผ ํ™œ์šฉํ•œ ๋งค๊ฐœ๋ณ€์ˆ˜ ์ตœ์ ํ™” ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ˆ˜ํ–‰๋˜๊ณ  ์žˆ๋‹ค. Kim and Han (2003)์€ ๋Œ€์ฒญํ˜ธ๋ฅผ ๋Œ€์ƒ์œผ๋กœ Water Quality Analysis Simulation Program Version 5 (WASP5) ๋ชจ๋ธ์˜ ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ GA๋ฅผ ํ†ตํ•ด ์ตœ์ ํ™”ํ•˜์—ฌ ์ €์ˆ˜์ง€ ์ˆ˜์งˆ ์˜ˆ์ธก ๋ชจ๋ธ์˜ ์‹ ๋ขฐ๋„๋ฅผ ํ–ฅ์ƒ์‹œ์ผฐ์œผ๋ฉฐ, Cho (2011)๋Š” ๊ฐ•๋ฆ‰ ๋‚จ๋Œ€์ฒœ์„ ๋Œ€์ƒ์œผ๋กœ QUAL2Kw ๋ชจ๋ธ์—์„œ GA๋ฅผ ์ ์šฉํ•˜์—ฌ ์ตœ์  ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ์ž๋™๋ณด์ •ํ•˜๊ณ , ์—ฐ๊ตฌ ๋Œ€์ƒ ๊ตฌ๊ฐ„์˜ ์ˆ˜์งˆ ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ์„ ์ •ํ•˜์˜€๋‹ค. Bozorg-Haddad et al. (2017)์€ ์ด๋ž€ Sefidrood ๊ฐ•์„ ๋Œ€์ƒ์œผ๋กœ GA๋ฅผ ๊ฒฐํ•ฉํ•œ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์„ ํ†ตํ•ด ์ˆ˜์งˆ ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ์ตœ์ ํ™”ํ•จ์œผ๋กœ์จ ๋ชจ๋ธ์˜ ์ •ํ™•๋„๋ฅผ ๊ฐœ์„ ํ•˜์˜€๋‹ค.

๋ณธ ์—ฐ๊ตฌ๋Š” ๋‚™๋™๊ฐ• ์ค‘๋ฅ˜ ๊ตฌ๊ฐ„์„ ๋Œ€์ƒ์œผ๋กœ EFDC ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•˜๊ณ , GA ๊ธฐ๋ฐ˜ ๋งค๊ฐœ๋ณ€์ˆ˜ ์ตœ์ ํ™”๋ฅผ ์ ์šฉํ•˜์—ฌ ์œ ํ•ด๋‚จ์กฐ๋ฅ˜ ๋ฐœ์ƒ์„ ๋ชจ์˜ํ•˜์˜€๋‹ค. ํŠนํžˆ, ๊ธฐ์กด ์กฐ๋ฅ˜ ๋ชจ๋ธ์˜ ํ•œ๊ณ„๋ฅผ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•ด ๋Œ€์ƒ ์ง€์—ญ๋“ค์˜ ํ™˜๊ฒฝ์— ๋”ฐ๋ฅธ ์กฐ๋ฅ˜ ๊ตฐ์ง‘๋ณ„ ํŠน์„ฑ์„ ๋ฐ˜์˜ํ•˜๋Š” ์ตœ์ ํ™” ๊ธฐ๋ฒ•์„ ์ ์šฉํ•˜์—ฌ ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ ์š”์ธ์˜ ๋ณ€ํ™”๋ฅผ ๋ณด๋‹ค ์ •๋ฐ€ํ•˜๊ฒŒ ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ๋Š” ์œ ํ•ด๋‚จ์กฐ๋ฅ˜ ์˜ˆ์ธก ๋ชจ๋ธ์˜ ์‹ ๋ขฐ๋„๋ฅผ ์ œ๊ณ ํ•˜๊ณ , ์„ ์ œ์  ์กฐ๋ฅ˜ ๊ด€๋ฆฌ ๋ฐ ๋Œ€์‘ ์ „๋žต ์ˆ˜๋ฆฝ์„ ์œ„ํ•œ ๊ณผํ•™์  ๊ทผ๊ฑฐ๋ฅผ ์ œ๊ณตํ•  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.

2. Materials and Methods

2.1 ์—ฐ๊ตฌ๋Œ€์ƒ์ง€์—ญ

๋‚™๋™๊ฐ•์€ ๊ธธ์ด 525 km, ์œ ์—ญ๋ฉด์  23,384 kmยฒ์ธ ํ•˜์ฒœ์ด๋ฉฐ, ๋Œ€๊ตฌ๊ด‘์—ญ์‹œ, ์šธ์‚ฐ๊ด‘์—ญ์‹œ, ๋ถ€์‚ฐ๊ด‘์—ญ์‹œ, ๊ฒฝ์ƒ๋‚จ๋„, ๊ฒฝ์ƒ๋ถ๋„๋ฅผ ํฌํ•จํ•œ ์ฃผ๋ณ€ ์ง€์—ญ์˜ ์ƒ์ˆ˜์›, ๋†์—…์šฉ์ˆ˜ ๋ฐ ๊ณต์—…์šฉ์ˆ˜๋กœ ์ด์šฉ๋˜๊ณ  ์žˆ๋‹ค. 2008๋…„ 4๋Œ€๊ฐ• ์‚ฌ์—…์„ ์‹œ์ž‘์œผ๋กœ ๋‚™๋™๊ฐ•์—๋Š” ์ด 8๊ฐœ์˜ ๋‹ค๊ธฐ๋Šฅ๋ณด๊ฐ€ ๊ฑด์„ค๋˜์—ˆ์œผ๋ฉฐ, ์ด๋กœ ์ธํ•ด ํ•˜์ฒœ ์ƒํƒœ๊ณ„์— ์ธ์œ„์ ์ธ ํ™˜๊ฒฝ ๋ณ€ํ™”๊ฐ€ ๋ฐœ์ƒํ•˜์˜€๊ณ , ํ•˜์ฒœ ํ๋ฆ„์˜ ์ •์ฒด ๋ฐ ์ฒด๋ฅ˜์‹œ๊ฐ„ ์ฆ๊ฐ€๋กœ ์ƒ๋ฅ˜์—์„œ ์œ ์ž…๋œ ์˜ค์—ผ๋ฌผ์งˆ์ด ์ถ•์ ๋˜์–ด ํ์‡„์„ฑ ์ˆ˜์—ญ์˜ ํŠน์ง•์ด ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Ÿฌํ•œ ํ™˜๊ฒฝ ๋ณ€ํ™”๋Š” ํ•˜์ฒœ์˜ ์ž์ • ๋Šฅ๋ ฅ์„ ์žƒ๊ฒŒ ํ•˜์—ฌ ์ƒํƒœ๊ณ„์—๋„ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค(Seo et al., 2013; Shin and Lee, 2014; Woo et al., 2020).

๋‚™๋™๊ฐ• ์ˆ˜๊ณ„๋Š” ๋†’์€ ์ˆ˜์˜จ ๋ฐ ์˜์–‘์—ผ๋ฅ˜ ๋†๋„๋กœ ์ธํ•ด ์กฐ๋ฅ˜ ๋ฐœ์ƒ ์šฐ์‹ฌ ์ง€์—ญ์ด ํƒ€ ์ˆ˜๊ณ„์— ๋น„ํ•ด ๋งŽ์ด ์กด์žฌํ•˜์—ฌ, ๋ณธ๋ฅ˜ ๋‚ด ์กฐ๋ฅ˜๊ฒฝ๋ณด์ œ ์ง€์  4๊ฐœ์†Œ(ํ•ดํ‰, ๊ฐ•์ •๊ณ ๋ น, ์น ์„œ, ๋ฌผ๊ธˆโ‹…๋งค๋ฆฌ)์—์„œ๋Š” ๋งค๋…„ ์กฐ๋ฅ˜๊ฒฝ๋ณด๊ฐ€ ๋ฐœ๋ น๋˜๊ณ  ์žˆ๋‹ค(Ahn et al., 2023; Lee et al., 2024; ME, 2024a). 2022๋…„ ๊ธฐ์ค€ ๋‚™๋™๊ฐ• ๋ณธ๋ฅ˜ ๊ตฌ๊ฐ„์˜ ์กฐ๋ฅ˜๊ฒฝ๋ณด ๋ฐœ๋ น์ผ์ˆ˜๋Š” ํ•ดํ‰ 105์ผ, ๊ฐ•์ •๊ณ ๋ น 126์ผ, ์น ์„œ 189์ผ, ๋ฌผ๊ธˆ๋งค๋ฆฌ 189์ผ๋กœ, ๋งˆ๋ฅธ์žฅ๋งˆ์™€ ๊ฐ€๋ญ„์œผ๋กœ ์ธํ•œ ๊ฐ•์šฐ๋Ÿ‰ ๊ฐ์†Œ ๋ฐ ์ฒด๋ฅ˜์‹œ๊ฐ„ ์ฆ๊ฐ€๋กœ ์ธํ•ด ์ „๋…„ ๋Œ€๋น„ ๊ฐ๊ฐ 84์ผ, 42์ผ, 89์ผ, 59์ผ ์ฆ๊ฐ€ํ•˜์˜€๋‹ค(ME, 2023a).

๋ณธ ์—ฐ๊ตฌ๋Š” ์กฐ๋ฅ˜๊ฒฝ๋ณด์ œ๊ฐ€ ์šด์˜๋˜๋Š” ๊ฐ•์ •๊ณ ๋ น ์ง€์ ์˜ ์œ ํ•ด๋‚จ์กฐ๋ฅ˜๋ฅผ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด ์™œ๊ด€๊ต๋ถ€ํ„ฐ ๊ณ ๋ น๊ต๊นŒ์ง€ ์•ฝ 42 km ๊ตฌ๊ฐ„์„ ๋Œ€์ƒ์œผ๋กœ ํ•˜์˜€๋‹ค(Fig. 1). ์—ฐ๊ตฌ ๋Œ€์ƒ ์ง€์—ญ ๋‚ด์—๋Š” ๋ฌธ์‚ฐ์ทจ์ˆ˜์žฅ๊ณผ ๋งค๊ณก์ทจ์ˆ˜์žฅ์ด ์œ„์น˜ํ•˜๋ฉฐ, ๋Œ€๊ตฌ์˜ ์ฃผ์š” ์ƒ์ˆ˜์›์œผ๋กœ์„œ ํ•ด๋‹น ์ง€์—ญ์˜ 3.54 kmยฒ๊ฐ€ ์ƒ์ˆ˜์›๋ณดํ˜ธ๊ตฌ์—ญ์œผ๋กœ ์ง€์ •๋˜์–ด ์žˆ๋‹ค(ME, 2024b). 2022๋…„ ๊ธฐ์ค€ ๋ฌธ์‚ฐโ‹…๋งค๊ณก์ทจ์ˆ˜์žฅ์˜ ์ผํ‰๊ท  ์ทจ์ˆ˜๋Ÿ‰์€ ๊ฐ๊ฐ 1.69 ร— 10โต mยณ/day, 3.89 ร— 10โต m3/day์ด๋‹ค(ME, 2023b). ์ฃผ์š” ์ง€์ฒœ์œผ๋กœ๋Š” ๋ฐฑ์ฒœ, ํ•˜๋นˆ์ฒœ, ๊ธˆํ˜ธ๊ฐ•, ์ง„์ฒœ์ฒœ์ด ์žˆ์œผ๋ฉฐ, ์ด ์ค‘ ๊ธˆํ˜ธ๊ฐ•์€ ๋Œ€๊ตฌ๊ด‘์—ญ์‹œ๋ฅผ ๊ด€๋ฅ˜ํ•˜๋Š” ๊ฐ€์žฅ ํฐ ์ง€๋ฅ˜๋กœ, ๋„์‹ฌ ๋ฐ ์‚ฐ์—…๋‹จ์ง€์—์„œ ๋ฐฐ์ถœ๋œ ํ•˜โ‹…ํ์ˆ˜ ์ฒ˜๋ฆฌ์‹œ์„ค ๋ฐฉ๋ฅ˜์ˆ˜๊ฐ€ ๋‚™๋™๊ฐ•์œผ๋กœ ์œ ์ž…๋˜์–ด ์ค‘โ‹…ํ•˜๋ฅ˜ ๊ตฌ๊ฐ„์˜ ์ˆ˜์งˆ์— ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค(Kwak et al., 2020).

Fig. 1. Study area.

../../Resources/kswe/KSWE.2025.41.3.163/fig1.png

2.2 ๋ชจ๋ธ ๊ตฌ์ถ•

2.2.1 ๋ชจ๋ธ ๊ฐœ์š”

๋ณธ ์—ฐ๊ตฌ์—์„œ ์‚ฌ์šฉํ•˜๋Š” EFDC๋Š” Virginia Institute of Marine Science (VIMS)์™€ School of Marine Science of The College of William and Mary์˜ John M. Hamrick ๋ฐ•์‚ฌ์— ์˜ํ•ด ๊ฐœ๋ฐœ๋˜์—ˆ๋‹ค. ์ดํ›„ DSI LLC (DSI)์—์„œ ๊ฐœ์„  ๋ฐ ๊ฐœ๋ฐœํ•˜์˜€์œผ๋ฉฐ, ์ด๋ฅผ Environmental Fluid Dynamics Code Plus (EFDC+)๋กœ ๋ช…๋ช…ํ•˜์˜€๋‹ค(Oh et al., 2023).

EFDC+๋Š” ์ˆ˜์ฒด ๋‚ด ์˜ค์—ผ๋ฌผ์งˆ ๋ฐ ์˜์–‘๋ฌผ์งˆ ๋“ฑ์˜ ์ด๋™์„ 3์ฐจ์›์œผ๋กœ ๋ชจ์˜ํ•  ์ˆ˜ ์žˆ๋Š” ๋ชจ๋ธ๋ง ์‹œ์Šคํ…œ์ด๋‹ค. ๋˜ํ•œ, ์œ ์ฒด์—ญํ•™, ์ˆ˜์งˆ, ๋ถ€์˜์˜ํ™”, ํ‡ด์ ๋ฌผ ์ด๋™์„ ํฌํ•จํ•œ ๋‹ค์–‘ํ•œ ๋ชจ๋“ˆ์ด ์žˆ์–ด ํ•˜์ฒœ, ํ˜ธ์†Œ, ์ €์ˆ˜์ง€, ์Šต์ง€ ๋ฐ ์—ฐ์•ˆ๊ณผ ๊ฐ™์€ ์ˆ˜์ฒด์˜ ํ™˜๊ฒฝ ํ‰๊ฐ€, ๊ด€๋ฆฌ ๋ฐ ๊ทœ์ œ๋ฅผ ๋ชฉ์ ์œผ๋กœ ํ™œ์šฉ๋œ๋‹ค(Xu et al., 2022). ๊ตญ๋‚ด์—์„œ๋Š” ์˜์‚ฐ๊ฐ•(Oh et al., 2023), ํ•œ๊ฐ• ๋ณธ๋ฅ˜(Kim et al., 2018), ๊ธˆ๊ฐ•(Yun et al., 2018), ๋‚™๋™๊ฐ• ์ค‘โ‹…ํ•˜๋ฅ˜(Choi et al., 2012) ๋“ฑ์—์„œ EFDC ๋ชจ๋ธ์„ ํ™œ์šฉํ•˜์—ฌ ์ˆ˜์ฒด์˜ ์œ ์ฒด์—ญํ•™ ๋ฐ ์ˆ˜์งˆ ํŠน์„ฑ์„ ๋ชจ์˜ํ•œ ์„ ํ–‰ ์—ฐ๊ตฌ๊ฐ€ ์ˆ˜ํ–‰๋œ ๋ฐ” ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” EFDC+ Explorer version 12.2๋ฅผ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ, EFDC+์˜ ์œ ์ฒด์—ญํ•™ ๋ฐ ์ˆ˜์งˆ ๋ชจ๋“ˆ์„ ์ ์šฉํ•˜์˜€๋‹ค(DSI LLC, 2024).

EFDC+์˜ ์ˆ˜์งˆ ๋ชจ๋“ˆ์€ ํƒ„์†Œ, ์ธ, ์งˆ์†Œ, ๊ทœ์†Œ, ํ™œ์„ฑ ๊ธˆ์†, ์šฉ์กด ์‚ฐ์†Œ, ํ™”ํ•™์  ์‚ฐ์†Œ ์š”๊ตฌ๋Ÿ‰, ์กฐ๋ฅ˜ ๋“ฑ ์ด 22๊ฐœ์˜ ์ˆ˜์งˆ ์ƒํƒœ ๋ณ€์ˆ˜๋กœ ๊ตฌ์„ฑ๋œ๋‹ค(Yu et al., 2024). ์กฐ๋ฅ˜์˜ ๊ฒฝ์šฐ cyanobacteria, diatom algae, green algae, macroalgae ๋“ฑ 4๊ฐœ์˜ ์กฐ๋ฅ˜ ๊ตฐ์ง‘์„ ํƒ„์†Œ ๋‹จ์œ„๋กœ ๋ชจ์˜ํ•  ์ˆ˜ ์žˆ๋‹ค(Jeon et al., 2011). ๊ฐ ์กฐ๋ฅ˜ ๊ตฐ์ง‘์˜ ๋™์—ญํ•™์€ ์กฐ๋ฅ˜์˜ ์„ฑ์žฅ, ๊ธฐ์ดˆ๋Œ€์‚ฌ, ํ์‚ฌ, ๋™๋ฌผํ”Œ๋ž‘ํฌํ†ค์— ์˜ํ•œ ์„ญ์‹, ์นจ๊ฐ•, ์™ธ๋ถ€ ์œ ์ž…์— ์˜ํ•ด ๊ฒฐ์ •๋˜๋ฉฐ, ์ผ๋ฐ˜์ ์ธ ์กฐ๋ฅ˜ ๊ทธ๋ฃน $x$์— ๋Œ€ํ•œ ๋™์—ญํ•™ ๋ฐฉ์ •์‹์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค(Eq. 1).

Eq. (1)
$\dfrac{\partial B_{x}}{\partial t}=(P_{x}-BM_{x}-D_{x})B_{x}-PR_{x}+\dfrac{\partial}{\partial Z}(WS_{x}B_{x})+\dfrac{WB_{x}}{V}$

์—ฌ๊ธฐ์„œ, $B_{x}$๋Š” ์กฐ๋ฅ˜ ๊ตฐ์ง‘ $x$์˜ ๋ฐ”์ด์˜ค๋งค์Šค(g C/m3), $t$๋Š” ์‹œ๊ฐ„(days), $P_{x}$๋Š” ์กฐ๋ฅ˜ ๊ตฐ์ง‘ $x$์˜ ์„ฑ์žฅ๋ฅ (1/day), $BM_{x}$๋Š” ์กฐ๋ฅ˜ ๊ตฐ์ง‘ $x$์˜ ๊ธฐ์ดˆ๋Œ€์‚ฌ์œจ(1/day), $D_{x}$๋Š” ์กฐ๋ฅ˜ ๊ตฐ์ง‘ $x$์˜ ์‚ฌ๋ง๋ฅ (1/day), $PR_{x}$๋Š” ๋™๋ฌผํ”Œ๋ž‘ํฌํ†ค์— ์˜ํ•œ ์กฐ๋ฅ˜ ๊ตฐ์ง‘ $x$์˜ ์„ญ์‹๋ฅ , $WS_{x}$๋Š” ์กฐ๋ฅ˜ ๊ตฐ์ง‘ $x$์˜ ์นจ๊ฐ•์†๋„(1/day), $WB_{x}$๋Š” ์กฐ๋ฅ˜ ๊ตฐ์ง‘ $x$์˜ ์™ธ๋ถ€ ์œ ์ž…๋Ÿ‰(g C/day), $V$๋Š” ๋ชจ๋ธ ์…€ ๋ถ€ํ”ผ(mยณ)์ด๋‹ค(DSI LLC, 2024).

2.2.2 ๋ชจ๋ธ ๊ตฌ์„ฑ

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” DSI์—์„œ ๊ฐœ๋ฐœํ•œ ๊ฒฉ์ž๋ง ๊ตฌ์ถ• ๋„๊ตฌ์ธ Grid+๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์—ฐ๊ตฌ ๋Œ€์ƒ ์ง€์—ญ์˜ 3์ฐจ์› ๊ฒฉ์ž๋ฅผ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค. ํ•˜์ƒ ์ž๋ฃŒ๋Š” ๊ตญํ† ํ•ด์–‘๋ถ€์—์„œ ๋ฐœ๊ฐ„ํ•œ ๋‚™๋™๊ฐ•์ˆ˜๊ณ„ ํ•˜์ฒœ๊ธฐ๋ณธ๊ณ„ํš ๋ณด๊ณ ์„œ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํ•˜์ƒ๊ณ (bottom elevation)๋ฅผ ์ž…๋ ฅํ•˜์—ฌ 3์ฐจ์› ๊ฒฉ์ž๋ฅผ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค(MLTMA, 2009a; 2009b). ๋ณธ ์—ฐ๊ตฌ์˜ ๊ฒฉ์ž๋ง ๊ตฌ์ถ• ๊ฒฐ๊ณผ๋ฅผ Fig. 2์— ์ œ์‹œํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ ๋Œ€์ƒ ์ง€์—ญ์˜ ํ•˜์ƒ๊ณ  ๋ฒ”์œ„๋Š” 4.00โˆผ18.81 m(ํ‰๊ท  10.92 m)์ด๋ฉฐ, ์ด 750๊ฐœ์˜ ์ˆ˜ํ‰ ๊ฒฉ์ž์™€ 6๊ฐœ์˜ ์ˆ˜์ธต์œผ๋กœ ๊ตฌ์„ฑํ•˜์˜€๋‹ค.

Fig. 2. Grid development for the study area: (a) horizontal grid and bottom elevation, and (b) 3-D model grid.

../../Resources/kswe/KSWE.2025.41.3.163/fig2.png

2022๋…„์„ ๋Œ€์ƒ์œผ๋กœ ๋ชจ๋ธ์„ ๋ณด์ •ํ•˜๊ธฐ ์œ„ํ•ด ๋ชจ์˜ ๊ธฐ๊ฐ„์€ ๊ฐ™์€ ํ•ด 1์›” 1์ผ๋ถ€ํ„ฐ 12์›” 31์ผ๋กœ ์„ค์ •ํ•˜๊ณ , ์ด์— ๋งž์ถฐ ์‹œ๊ณ„์—ด ์ž…๋ ฅ ์ž๋ฃŒ๋ฅผ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค. ๊ธฐ์ƒ ์ž๋ฃŒ๋Š” ๊ธฐ์ƒ์ฒญ ๊ธฐ์ƒ์ž๋ฃŒ๊ฐœ๋ฐฉํฌํ„ธ์—์„œ ์ œ๊ณตํ•˜๋Š” ์ž๋ฃŒ๋ฅผ ํ™œ์šฉํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ ๋Œ€์ƒ ์ง€์—ญ ์ธ๊ทผ์— ์žˆ๋Š” ๋Œ€๊ตฌ ์ง€์ƒ๊ธฐ์ƒ๊ด€์ธก์†Œ ์ž๋ฃŒ์—์„œ ์‹œ๊ฐ„๋ณ„ ํ‰๊ท ๊ธฐ์˜จ(ยฐC), ๊ฐ•์ˆ˜๋Ÿ‰(mm), ํ‰๊ท ํ’์†(m/s), ์ตœ๋‹คํ’ํ–ฅ(16๋ฐฉ์œ„), ํ‰๊ท  ์ƒ๋Œ€์Šต๋„(%), ํ‰๊ท  ํ˜„์ง€๊ธฐ์••(Mbar), ํ•ฉ๊ณ„ ์ผ์‚ฌ๋Ÿ‰(MJ/m2), ํ‰๊ท  ์ „์šด๋Ÿ‰(10๋ถ„์œ„), ์ฆ๋ฐœ๋Ÿ‰(mm) ๋“ฑ์˜ ์ž๋ฃŒ๋ฅผ ๋ชจ๋ธ์˜ ์ž…๋ ฅ ์กฐ๊ฑด์— ๋งž๊ฒŒ ํ™˜์‚ฐํ•˜์—ฌ ์ ์šฉํ•˜์˜€๋‹ค.

์—ฐ๊ตฌ ๋Œ€์ƒ ์ง€์—ญ์˜ ์ตœ์ƒ๋ฅ˜ ์œ ์ž…๊ฒฝ๊ณ„์กฐ๊ฑด์€ ํ™˜๊ฒฝ๋ถ€ ๋ฌผํ™˜๊ฒฝ์ •๋ณด์‹œ์Šคํ…œ์—์„œ ์ œ๊ณตํ•˜๋Š” ์น ๊ณก๊ตฐ(ํ˜ธ๊ตญ์˜๋‹ค๋ฆฌ) ์ผ๋ณ„ ์œ ๋Ÿ‰ ์ž๋ฃŒ๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๋ฐฑ์ฒœ, ํ•˜๋นˆ์ฒœ, ๊ธˆํ˜ธ๊ฐ•์˜ ์œ ์ž…๊ฒฝ๊ณ„์กฐ๊ฑด์€ ๋ฐฑ์ฒœ2, ๋‚™๋ณธG1, ๊ธˆํ˜ธC์˜ ์ผ๋ณ„ ์œ ๋Ÿ‰์„ ์ž…๋ ฅํ•˜์˜€์œผ๋ฉฐ, ์ง„์ฒœ์ฒœ์€ ์œ ์—ญ๋ฉด์ ๋น„๋ฅผ ๊ณ ๋ คํ•˜์—ฌ ์œ ๋Ÿ‰์„ ์‚ฐ์ •ํ•˜์˜€๋‹ค. ํ•˜๋ฅ˜ ๊ฐœ๋ฐฉ๊ฒฝ๊ณ„์กฐ๊ฑด์€ ๊ณ ๋ น๊ตฐ(๊ณ ๋ น๊ต) ์ผ๋ณ„ ์ˆ˜์œ„ ์ž๋ฃŒ๋ฅผ ์‚ฌ์šฉํ•˜์˜€๊ณ , ์—ฐ๊ตฌ ๋Œ€์ƒ ์ง€์—ญ ๋‚ด์— ์œ„์น˜ํ•œ ์ทจ์ˆ˜์žฅ(๋ฌธ์‚ฐ, ๋งค๊ณก)์˜ ์ทจ์ˆ˜๋Ÿ‰์€ ํ™˜๊ฒฝ๋ถ€์˜ 2022๋…„ ์ƒ์ˆ˜๋„ ํ†ต๊ณ„๋ฅผ ์ฐธ๊ณ ํ•˜์˜€๋‹ค(ME, 2023b).

์—ฐ๊ตฌ ๋Œ€์ƒ ๊ตฌ๊ฐ„์˜ ์ค‘์‹ฌ์— ์œ„์น˜ํ•œ ๊ฐ•์ •๊ณ ๋ น๋ณด๋Š” EFDC+์˜ hydraulic structure boundary condition ๋ชจ๋“ˆ๊ณผ withdrawal/return boundary condition ๋ชจ๋“ˆ์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ณด ์„ค์ •์„ ์ ์šฉํ•˜์˜€๋‹ค. ๊ฐ€๋™๋ณด๋Š” withdrawal/return boundary condition ๋ชจ๋“ˆ์„ ์‚ฌ์šฉํ•˜์—ฌ ์„ค์ •ํ•˜์˜€๊ณ , K-water์™€ ํ™˜๊ฒฝ๋ถ€ ๋‚™๋™๊ฐ• ํ™์ˆ˜ํ†ต์ œ์†Œ์—์„œ ์ œ๊ณตํ•˜๋Š” ์—ฐ๋„๋ณ„ ๋ณด ์šด์˜ ์ƒํ™ฉ๊ณผ ๊ฐ•์ •๊ณ ๋ น๋ณด ์ผํ‰๊ท  ๋ฐฉ๋ฅ˜๋Ÿ‰ ๋ฐ์ดํ„ฐ๋ฅผ ์ฐธ๊ณ ํ•˜์—ฌ ์œ ๋Ÿ‰์ด ๊ฐ€๋™๋ณด๋ฅผ ํ†ต๊ณผํ•˜๋„๋ก ์‹œ๊ณ„์—ด ์ž๋ฃŒ๋ฅผ ์ž…๋ ฅํ•˜์˜€๋‹ค. ๊ณ ์ •๋ณด๋Š” hydraulic structure boundary condition ๋ชจ๋“ˆ์˜ sharp crested weir๋กœ ์„ค์ •ํ•˜์—ฌ ์ผ์ • ์ˆ˜์œ„๋ฅผ ๋„˜์ง€ ์•Š๋„๋ก ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์„ค์ •ํ•œ ๊ฐ•์ •๊ณ ๋ น๋ณด์˜ ์ˆ˜๋ ฅ ๊ตฌ์กฐ๋ฌผ ์„ค์ •์€ Table 1์— ์ •๋ฆฌํ•˜์˜€๋‹ค.

Table 1 Hydraulic structure settings at Gangjeong-Goryeong weir

Classification

Specification

Fixed Weir

Boundary Type

Sharp Crested Weir

(Cross Section: Rectangle)

Width

310.09 m

Crest Elev.

18.25 m

Movable Weir

Boundary Type

Withdrawal/Return Structure

Width

61.52 m

Time Control

Controlled using Time-Series

์ˆ˜์˜จ ๋ฐ ์ˆ˜์งˆ ์ž๋ฃŒ๋Š” ํ™˜๊ฒฝ๋ถ€ ๋ฌผํ™˜๊ฒฝ์ •๋ณด์‹œ์Šคํ…œ์—์„œ ์ œ๊ณตํ•˜๋Š” ์ž๋ฃŒ๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๊ฐ ๊ฒฝ๊ณ„์กฐ๊ฑด์— ์ธ์ ‘ํ•œ ์ธก์ •๋ง ์ง€์ ์—์„œ ์ˆ˜์˜จ(Water Temperature)(ยฐC), ์šฉ์กด์‚ฐ์†Œ(Dissolved Oxygen, DO)(mg/L), ํด๋กœ๋กœํ•„ a(Chlorophyll-a, Chl-a)(mg/m3), ์ด์งˆ์†Œ(Total Nitrogen, TN)(mg/L), ์ด์ธ(Total Phosphorus, TP)(mg/L), ์ด์œ ๊ธฐํƒ„์†Œ(Total Organic Oxygen, TOC)(mg/L), ์šฉ์กด์ด์งˆ์†Œ(Dissolved Total Nitrogen, DTN)(mg/L), ์•”๋ชจ๋‹ˆ์•„์„ฑ ์งˆ์†Œ(Ammonia Nitrogen, NH4-N)(mg/L), ์งˆ์‚ฐ์„ฑ ์งˆ์†Œ(Nitrate Nitrogen, NO3-N)(mg/L), ์šฉ์กด์ด์ธ(Dissolved Total Phosphorus, DTP)(mg/L), ์ธ์‚ฐ์—ผ์ธ(Phosphate, PO4-P)(mg/L) ๋“ฑ์˜ ์ž๋ฃŒ๋ฅผ ์ˆ˜์ง‘ํ•˜์˜€๊ณ , ์ด๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ž…์ž์„ฑ ์œ ๊ธฐํƒ„์†Œ(Refractory Particulate Organic Carbon, RPOC)(mg/L), ํœ˜๋ฐœ์„ฑ ์ž…์ž์„ฑ ์œ ๊ธฐํƒ„์†Œ(Labile Particulate Organic Carbon, LPOC)(mg/L), ์šฉ์กด ์œ ๊ธฐํƒ„์†Œ(Dissolved Organic Carbon, DOC)(mg/L), ์ž…์ž์„ฑ ์œ ๊ธฐ์ธ(Refractory Particulate Organic Phosphorus, RPOP)(mg/L), ํœ˜๋ฐœ์„ฑ ์ž…์ž์„ฑ ์œ ๊ธฐ์ธ(Labile Particulate Organic Phosphorus, LPOP)(mg/L), ์šฉ์กด ์œ ๊ธฐ์ธ(Dissolved Organic Phosphorus, DOP)(mg/L), ์ž…์ž์„ฑ ์œ ๊ธฐ์งˆ์†Œ(Refractory Particulate Organic Nitrogen, RPON)(mg/L), ํœ˜๋ฐœ์„ฑ ์ž…์ž์„ฑ ์œ ๊ธฐ์งˆ์†Œ(Labile Particulate Organic Nitrogen, LPON)(mg/L), ์šฉ์กด ์œ ๊ธฐ์งˆ์†Œ(Dissolved Organic Nitrogen, DON)(mg/L)๋กœ ํ™˜์‚ฐํ•˜์—ฌ ๋ชจ๋ธ ์ž…๋ ฅ์ž๋ฃŒ๋กœ ํ™œ์šฉํ•˜์˜€๋‹ค.

2.3 ์กฐ๋ฅ˜ ๋งค๊ฐœ๋ณ€์ˆ˜ ์„ค์ •

2.3.1 ์œ ์ „์ž ์•Œ๊ณ ๋ฆฌ์ฆ˜(Genetic Algorithm)์„ ํ™œ์šฉํ•œ ์กฐ๋ฅ˜ ๊ตฐ์ง‘๋ณ„ ์„ธํฌ๋‹น Chl-a ํ•จ๋Ÿ‰ ์‚ฐ์ •

์œ ์ „์ž ์•Œ๊ณ ๋ฆฌ์ฆ˜(Genetic Algorithm, GA)์€ John Holland๊ฐ€ 1970๋…„๋Œ€์— ๊ฐœ๋ฐœํ•œ ์ง„ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ, ์ž์—ฐ์˜ ์ง„ํ™” ๊ณผ์ •์„ ๋ชจ๋ฐฉํ•˜์—ฌ ์ตœ์ ํ•ด๋ฅผ ํƒ์ƒ‰ํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค(Holland, 1973). GA์—์„œ๋Š” ๋ฌธ์ž์—ด๋กœ ํ‘œํ˜„๋˜๋Š” ์—ผ์ƒ‰์ฒด(chromosome)์— ๋Œ€ํ•ด ์„ ํƒ(selection), ๊ต์ฐจ(crossover), ๋Œ์—ฐ๋ณ€์ด(mutation) ๋“ฑ์˜ ์œ ์ „ ์—ฐ์‚ฐ์„ ์ˆ˜ํ–‰ํ•˜๋ฉฐ, ์—ฌ๋Ÿฌ ์„ธ๋Œ€(generation)๋ฅผ ๊ฑฐ์น˜๋ฉด์„œ ์ ์ง„์ ์œผ๋กœ ์„ฑ๋Šฅ์ด ํ–ฅ์ƒ๋œ ํ•ด๋ฅผ ๋„์ถœํ•œ๋‹ค. ํ›„๋ณด ํ•ด์˜ ์„ฑ๋Šฅ์€ ์ ํ•ฉ๋„ ํ•จ์ˆ˜(fitness function)๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํ‰๊ฐ€ํ•˜๋ฉฐ, ํ‰๊ท  ์ œ๊ณฑ๊ทผ ์˜ค์ฐจ(Root Mean Squared Error, RMSE)๋Š” ์„ฑ๋Šฅ ํ‰๊ฐ€์— ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ์ง€ํ‘œ์ด๋‹ค(Lim et al., 2021).

์„ ํƒ ์—ฐ์‚ฐ์—์„œ๋Š” ์ ํ•ฉ๋„ ํ•จ์ˆ˜์˜ ๊ฐ’์„ ๊ธฐ์ค€์œผ๋กœ ์—ผ์ƒ‰์ฒด๊ฐ€ ์„ ํƒ๋˜๋ฉฐ, ๊ต์ฐจ ์—ฐ์‚ฐ์—์„œ๋Š” ์ž„์˜์˜ ์œ„์น˜์—์„œ ์—ผ์ƒ‰์ฒด ๊ฐ„ ์ผ๋ถ€ ์„œ์—ด์ด ๊ตํ™˜๋˜์–ด ์ƒˆ๋กœ์šด ์ž์†์ด ์ƒ์„ฑ๋œ๋‹ค. ๋Œ์—ฐ๋ณ€์ด ์—ฐ์‚ฐ์„ ํ†ตํ•ด ์—ผ์ƒ‰์ฒด ์ผ๋ถ€๊ฐ€ ํ™•๋ฅ ์ ์œผ๋กœ ๋ฌด์ž‘์œ„ ๋ณ€๊ฒฝ๋˜์–ด ์ตœ์ ํ•ด ํƒ์ƒ‰ ๊ณต๊ฐ„์„ ํ™•์žฅํ•˜๊ณ  ์ง€์—ญ ์ตœ์ ํ•ด์— ์ˆ˜๋ ดํ•˜๋Š” ๊ฒƒ์„ ๋ฐฉ์ง€ํ•œ๋‹ค(Katoch et al., 2021). ๋˜ํ•œ, ์—˜๋ฆฌํ‹ฐ์ฆ˜(elitism)์€ ๋ถ€๋ชจ ์„ธ๋Œ€์—์„œ ์ ํ•ฉ๋„๊ฐ€ ๊ฐ€์žฅ ๋†’์€ ์ผ๋ถ€๋กœ ์ž์†์˜ ์ผ๋ถ€๋ฅผ ๋Œ€์ฒดํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ, ์ ํ•ฉ๋„๊ฐ€ ๋†’์€ ๊ฐœ์ฒด๊ฐ€ ๊ต์ฐจ๋‚˜ ๋Œ์—ฐ๋ณ€์ด ์—†์ด ๋‹ค์Œ ์„ธ๋Œ€๋กœ ์ „๋‹ฌ๋  ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์šฐ์ˆ˜ํ•œ ๊ฐœ์ฒด์˜ ์†์‹ค์„ ๋ฐฉ์ง€ํ•˜๊ณ , ์„ธ๋Œ€๊ฐ€ ๋ฐ˜๋ณต๋จ์— ๋”ฐ๋ผ ํ‰๊ท  ์ ํ•ฉ๋„๋ฅผ ์ง€์†์ ์œผ๋กœ ๋†’์ผ ์ˆ˜ ์žˆ๋‹ค(Lee, 2008).

์กฐ๋ฅ˜ ๋ชจ๋ธ๋ง์˜ ์ •ํ™•๋„๋Š” ๋งค๊ฐœ๋ณ€์ˆ˜ ์„ค์ •์ด ํฐ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค. EFDC ๋ชจ๋ธ์—์„œ๋Š” ์กฐ๋ฅ˜ ๊ตฐ์ง‘๋ณ„ Chl-a ๋†๋„๋ฅผ ํƒ„์†Œ ๋‹จ์œ„ ๋†๋„๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ์ž…๋ ฅ์ž๋ฃŒ๋ฅผ ๊ตฌ์„ฑํ•ด์•ผ ํ•˜๋ฉฐ(Park et al., 2019b), ์—ฐ๊ตฌ ๋Œ€์ƒ ์ง€์—ญ์— ๋”ฐ๋ผ ํ•ด๋งˆ๋‹ค ์กฐ๋ฅ˜ ๋ฐœ์ƒ ํŒจํ„ด๊ณผ ์šฐ์ ํ•˜๋Š” ์กฐ๋ฅ˜ ์ข…์ด ๋‹ฌ๋ผ์ง€๋ฏ€๋กœ, ์ตœ๋Œ€์„ฑ์žฅ๋ฅ  ๋ฐ ์„ธํฌ๋‹น Chl-a ํ•จ๋Ÿ‰ ๋“ฑ์˜ ๋งค๊ฐœ๋ณ€์ˆ˜ ์กฐ์ •์ด ํ•„์ˆ˜์ ์ด๋‹ค(Park et al., 2019a). ํŠนํžˆ, ์‹œ๊ธฐ๋ณ„ ์šฐ์  ์กฐ๋ฅ˜์— ๋”ฐ๋ฅธ ์„ธํฌ๋‹น Chl-a ํ•จ๋Ÿ‰์˜ ๋ณ€๋™์„ ๋ฐ˜์˜ํ•˜์—ฌ ์กฐ๋ฅ˜ ๊ตฐ์ง‘๋ณ„ ๋†๋„๋ฅผ ์‚ฐ์ •ํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. Choi et al. (2015)์€ ์˜์•”ํ˜ธ๋ฅผ ๋Œ€์ƒ์œผ๋กœ ๊ตฐ์ง‘๋ณ„ Chl-a ๋†๋„ ๊ณ„์‚ฐ๊ฐ’๊ณผ ์‹ค์ธก๊ฐ’์˜ ์ฐจ์ด๊ฐ€ ์ตœ์†Œํ™”๋˜๋„๋ก ์„ธํฌ๋‹น Chl-a ํ•จ๋Ÿ‰์„ ์ถ”์ •ํ•˜์˜€์œผ๋ฉฐ, Park et al. (2019a)์€ ๋‚™๋™๊ฐ• ๊ฐ•์ •๊ณ ๋ น๋ณด๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์„ ํ–‰์—ฐ๊ตฌ์—์„œ ๋ณด์ •ํ•œ ์„ธํฌ๋‹น Chl-a ํ•จ๋Ÿ‰์„ ๋ชจ์˜ ๊ธฐ๊ฐ„์— ๋”ฐ๋ผ ์กฐ์ •ํ•˜์—ฌ ์‚ฌ์šฉํ•˜์˜€๋‹ค. Yu et al. (2024)์€ ์ˆ˜์–ด๋Œ์„ ๋Œ€์ƒ์œผ๋กœ ์„ธํฌ๋‹น Chl-a ํ•จ๋Ÿ‰์„ ์กฐ์ •ํ•˜์—ฌ ์กฐ๋ฅ˜ ๊ตฐ์ง‘๋ณ„ Chl-a ๋†๋„๋ฅผ ์‚ฐ์ •ํ•˜์˜€๋‹ค.

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์กฐ๋ฅ˜ ๋ชจ๋ธ๋ง์˜ ์ •ํ™•๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด GA๋ฅผ ์ ์šฉํ•˜์—ฌ ์ง€์ ๋ณ„ ์กฐ๋ฅ˜ ๊ตฐ์ง‘๋ณ„ ์„ธํฌ๋‹น Chl-a ํ•จ๋Ÿ‰์„ ์ตœ์ ํ™”ํ•˜์˜€๋‹ค. ์ด ์ ‘๊ทผ๋ฒ•์€ ์‹ค์ œ ์ž์—ฐ ํ™˜๊ฒฝ์—์„œ ์กฐ๋ฅ˜ ๊ตฐ์ง‘ ๋‚ด ๋‹ค์–‘ํ•œ ์ข…์˜ ๋ณ€ํ™”๋ฅผ ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์—ฐ๊ตฌ ๋Œ€์ƒ ๊ตฌ๊ฐ„ ๋‚ด ๊ฐ ์ง€์ ๋ณ„๋กœ ์ตœ์ ํ™”๋œ ์„ธํฌ๋‹น Chl-a ํ•จ๋Ÿ‰์„ ๋„์ถœํ•˜์—ฌ ๋ณด๋‹ค ์ •ํ™•ํ•œ ์กฐ๋ฅ˜ ๊ตฐ์ง‘๋ณ„ ๋†๋„๋ฅผ ์‚ฐ์ •ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค.

2.3.2 ๊ตฐ์ง‘๋ณ„ ์กฐ๋ฅ˜ ๋†๋„ ์‚ฐ์ •

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์กฐ๋ฅ˜๋ฅผ ์œ ํ•ด๋‚จ์กฐ๋ฅ˜, ์œ ํ•ด๋‚จ์กฐ๋ฅ˜๋ฅผ ์ œ์™ธํ•œ ๋‚จ์กฐ๋ฅ˜, ๊ทœ์กฐ๋ฅ˜, ๋…น์กฐ๋ฅ˜, ๊ธฐํƒ€์กฐ๋ฅ˜์˜ 5๊ฐœ ๊ตฐ์ง‘์œผ๋กœ ๊ตฌ๋ถ„ํ•˜๊ณ , ๊ตฐ์ง‘๋ณ„ ์„ธํฌ์ˆ˜ ๋ฐ€๋„๋ฅผ ํƒ„์†Œ ๋‹จ์œ„ ๋†๋„๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ์ž…๋ ฅ์ž๋ฃŒ๋ฅผ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ธฐ์กด ์—ฐ๊ตฌ๋ณด๋‹ค ๋”์šฑ ์„ธ๋ฐ€ํ•˜๊ฒŒ ์ง€์ ๋ณ„ ์กฐ๋ฅ˜ ๊ตฐ์ง‘๋ณ„ ๋†๋„๋ฅผ ์‚ฐ์ •ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค.

์ง€์ ๋ณ„ ์กฐ๋ฅ˜ ๊ตฐ์ง‘๋ณ„ ๋น„์œจ์„ ์‚ฐ์ •ํ•˜๊ธฐ ์œ„ํ•ด 2022๋…„ ๊ตญ๋ฆฝํ™˜๊ฒฝ๊ณผํ•™์›์˜ โ€˜๋ณด ๊ตฌ๊ฐ„ ๊ด‘์—ญ ์กฐ๋ฅ˜ ์ •๋ฐ€ ๋ชจ๋‹ˆํ„ฐ๋ง(โ…ค)โ€™ ์ธก์ •์ž๋ฃŒ๋ฅผ ํ™œ์šฉํ•˜์˜€์œผ๋ฉฐ, ์—ฐ๊ตฌ ๋Œ€์ƒ ๊ตฌ๊ฐ„ ๋‚ด ์กฐ๋ฅ˜ ๊ด€์ธก ์ง€์ ์€ ์„ฑ์ฃผ(SJ), ๋ฐฑ์ฒœ(B), ๋‹ค์‚ฌ(DS), ๊ธˆํ˜ธ๊ฐ•(GH), ํ™”์›๋‚˜๋ฃจ(SMJ), ๊ณ ๋ น(GR)์ด๋‹ค(Fig. 1). ์กฐ๋ฅ˜ ๊ตฐ์ง‘๋ณ„ ์„ธํฌ๋‹น Chl-a ํ•จ๋Ÿ‰(ฮผg/cell) ์‚ฐ์ •์„ ์œ„ํ•ด ์กฐ๋ฅ˜ ๊ตฐ์ง‘๋ณ„ ์„ธํฌ์ˆ˜(cells/mL)์™€ Chl-a(mg/mยณ) ์‹ค์ธก๊ฐ’์„ GA์˜ ์ž…๋ ฅ ์ž๋ฃŒ๋กœ ์‚ฌ์šฉํ•˜์˜€๋‹ค. GA์˜ ์ ํ•ฉ๋„ ํ•จ์ˆ˜๋Š” RMSE๋กœ ์„ค์ •ํ•˜์˜€์œผ๋ฉฐ, ์ด๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ตœ์ ์˜ ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ๋„์ถœํ•˜์˜€๋‹ค(Manriquez-Padilla et al., 2023)(Fig. 3).

์‚ฐ์ •๋œ ์ง€์ ๋ณ„ ์„ธํฌ๋‹น Chl-a ํ•จ๋Ÿ‰์„ ์ด์šฉํ•ด ์กฐ๋ฅ˜ ๊ตฐ์ง‘๋ณ„ Chl-a๋ฅผ ๊ณ„์‚ฐํ•œ ํ›„, ์ด Chl-a ๋†๋„ ๋Œ€๋น„ ๊ฐ ์กฐ๋ฅ˜ ๊ตฐ์ง‘์ด ์ฐจ์ง€ํ•˜๋Š” ๋น„์œจ์„ ์‚ฐ์ถœํ•˜์˜€๋‹ค. ์ด๋ฅผ Chl-a ์‹ค์ธก๊ฐ’์— ์ ์šฉํ•˜์—ฌ ์œ ํ•ด๋‚จ์กฐ๋ฅ˜, ์œ ํ•ด๋‚จ์กฐ๋ฅ˜๋ฅผ ์ œ์™ธํ•œ ๋‚จ์กฐ๋ฅ˜, ๊ทœ์กฐ๋ฅ˜, ๋…น์กฐ๋ฅ˜, ๊ธฐํƒ€์กฐ๋ฅ˜ 5๊ฐœ ๊ตฐ์ง‘์— ๋Œ€ํ•œ Chl-a ๊ฐ’์„ ๊ณ„์‚ฐํ•˜์˜€๋‹ค. ์ตœ์ข…์ ์œผ๋กœ, ์‚ฐ์ •๋œ Chl-a ๊ฐ’์€ carbon to Chl-a ratio (mg C/ฮผg Chl-a)๋ฅผ ํ†ตํ•ด ํƒ„์†Œ ๋‹จ์œ„ ๋†๋„๋กœ ๋ณ€ํ™˜ํ•˜์˜€๋‹ค(Choi et al., 2015; Park et al., 2019b).

EFDC ๋ชจ๋ธ์˜ ์ฃผ์š” ์กฐ๋ฅ˜ ๋งค๊ฐœ๋ณ€์ˆ˜๋Š” ์„ ํ–‰ ์—ฐ๊ตฌ๋ฅผ ์ฐธ๊ณ ํ•˜์—ฌ ์„ค์ •ํ•˜์˜€์œผ๋ฉฐ(Park et al., 2019a; 2019b; Tetra Tech, 2006), ๋ณธ ์—ฐ๊ตฌ์˜ ๋ชจ๋ธ ํŠน์„ฑ์— ๋งž์ถฐ ์ผ๋ถ€ ์กฐ์ •ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ ์šฉํ•œ ์ฃผ์š” ์กฐ๋ฅ˜ ๋งค๊ฐœ๋ณ€์ˆ˜๋Š” Table 2์— ์ œ์‹œํ•˜์˜€๋‹ค. ์กฐ๋ฅ˜ ๊ทธ๋ฃน($x$)์˜ ๊ฒฝ์šฐ, EFDC ๋ชจ๋ธ์—์„œ ๋‚จ์กฐ๋ฅ˜, ๊ทœ์กฐ๋ฅ˜, ๋…น์กฐ๋ฅ˜ ์ค‘์—์„œ๋งŒ ์„ค์ •ํ•  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ, ๊ธฐํƒ€ ์กฐ๋ฅ˜ ๊ตฐ์ง‘์€ ์ฃผ์š” ๋ฐœ์ƒ ์‹œ๊ธฐ ๋ฐ ๊ฑฐ๋™์„ ๊ณ ๋ คํ•˜์—ฌ ๋…น์กฐ๋ฅ˜์™€ ์œ ์‚ฌํ•œ ํŠน์„ฑ์„ ๊ฐ–๋Š”๋‹ค๊ณ  ๊ฐ€์ •ํ•˜๊ณ  ๋…น์กฐ๋ฅ˜ ๊ทธ๋ฃน์œผ๋กœ ์„ค์ •ํ•˜์˜€๋‹ค(Choi et al., 2015). ์งˆ์†Œ ๋ฐ ์ธ ๋ฐ˜ํฌํ™” ์ƒ์ˆ˜, ํƒ„์†Œ:Chl-a ๋น„ ๋“ฑ์€ ์‹ค์ œ๋กœ ์กฐ๋ฅ˜์˜ ํŠน์„ฑ ๋ฐ ๊ด‘, ์˜จ๋„, ์˜์–‘์—ผ๋ฅ˜ ๋†๋„ ๋“ฑ์˜ ํ™˜๊ฒฝ ์กฐ๊ฑด ๋“ฑ์— ๋”ฐ๋ผ ๋‹ฌ๋ผ์งˆ ์ˆ˜ ์žˆ์œผ๋‚˜, ๊ฐ ์กฐ๋ฅ˜ ๊ตฐ์ง‘๋ณ„ ๋งค๊ฐœ๋ณ€์ˆ˜์— ๋Œ€ํ•œ ์‹คํ—˜ ๋ฐ์ดํ„ฐ๊ฐ€ ์ œํ•œ์ ์ด๋ฉฐ, ๋ณธ ์—ฐ๊ตฌ ๋Œ€์ƒ ์ง€์—ญ์— ์ ์šฉํ•˜๋Š” ๊ฒƒ์— ํ•œ๊ณ„๊ฐ€ ์žˆ์–ด ์œ ์‚ฌํ•˜๊ฒŒ ์ˆ˜ํ–‰๋œ ์„ ํ–‰์—ฐ๊ตฌ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ชจ๋“  ๊ตฐ์ง‘์— ๋Œ€ํ•ด ๋™์ผํ•œ ๊ฐ’์„ ์„ค์ •ํ•˜์—ฌ ๋ชจ๋ธ์˜ ์•ˆ์ •์„ฑ ๋ฐ ํšจ์œจ์„ฑ์„ ๋†’์ด๊ณ ์ž ํ•˜์˜€๋‹ค(Choi et al., 2015; Park et al., 2019a; 2019b). ๋ณธ ์—ฐ๊ตฌ ๋Œ€์ƒ ์ง€์—ญ์— ๋งž์ถฐ ์กฐ์ •์ด ์ด๋ฃจ์–ด์ง„ ์ฃผ์š” ํ•ญ๋ชฉ์€ ์กฐ๋ฅ˜ ์„ฑ์žฅ์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์กฐ๋ฅ˜ ์„ฑ์žฅ๋ฅ  ๋ฐ ์ตœ์  ์„ฑ์žฅ ์˜จ๋„ ๋ฒ”์œ„์— ๋Œ€ํ•œ ๋งค๊ฐœ๋ณ€์ˆ˜๋กœ, Park et al. (2019a)์—์„œ๋„ ๊ฐ™์€ ์—ฐ๊ตฌ๋Œ€์ƒ์ง€์—ญ์— ๋Œ€ํ•ด ๋ชจ์˜ ๊ธฐ๊ฐ„์˜ ํŠน์„ฑ์— ๋”ฐ๋ผ ์˜จ๋„ ๊ด€๋ จ ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ์กฐ์ •ํ•˜์—ฌ ๋ชจ์˜ ์ •ํ™•๋„๋ฅผ ๊ฐœ์„ ํ•œ ๋ฐ” ์žˆ๋‹ค.

Fig. 3. Flowchart of the optimization process of Chl-a content per cell in algal groups using the Genetic Algorithm.

../../Resources/kswe/KSWE.2025.41.3.163/fig3.png

Table 2 Model parameter values used for each algal group simulation in this study

Parameter

Description

Unit

Value

HAB

Cyano

Diatoms

Greens

Others

$x$

Algal Group

-

Cyano-

bacteria

Cyano-

bacteria

Diatoms

Green algae

Green algae

$CChl_{x}$

Carbon to Chlorophyll ratio

mg C per ฮผg Chl-a

0.025

$ANC_{x}$

Nitrogen to Carbon Ratio

g N/g C

0.167

$PM_{x}$

Maximum growth Rate

1/day

3

2

1.05

1.5

1

$D_{opt}$

Optimal Depth for Growth

m

0.1

0.1

1

1

1

$KHP_{x}$

Phosphorus Half-Saturation

mg/L

0.002

$KHN_{x}$

Nitrogen Half-Saturation

mg/L

0.04

$TM1_{x}$

Optimal Temperature Lower Bound

ยฐC

25

26

17

20

17

$TM2_{x}$

Optimal Temperature Upper Bound

ยฐC

29

31

20

27

22

$KTG1_{x}$

Temperature Effect Coefficient Below Optimal Range

1/ยฐC2

0.02

0.008

0.02

0.01

0.05

$KTG2_{x}$

Temperature Effect Coefficient Above Optimal Range

1/ยฐC2

0.015

0.008

0.01

0.02

0.004

$BM_{x}$

Maximum Basal Metabolism Rate

1/day

0.05

$PR_{x}$

Maximum Predation Rate

1/day

0.07

0.07

0.04

0.1

0.1

$WS_{x}$

Settling Velocity

m/day

0

0

0.1

0.1

0.1

$Ke_{b}$

Background Light Extinction coefficient

1/m

0.305

$Ke_{chl}$

Light Extinction for Chl-a

1/m per mg/m3

0.01

2.4 ๋ชจ๋ธ์˜ ์žฌํ˜„์„ฑ ํ‰๊ฐ€

๋ชจ๋ธ์˜ ์ˆ˜๋ฆฌ ๋ฐ ์ˆ˜์งˆ ์žฌํ˜„์„ฑ์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ•์ •๊ณ ๋ น๋ณด ์ƒ๋ฅ˜ 7 km์— ์œ„์น˜ํ•œ ์„ฑ์ฃผ๋Œ€๊ต(SJ) ๋ฐ ํ•˜๋ฅ˜ 4.47 km์— ์œ„์น˜ํ•œ ์‚ฌ๋ฌธ์ง„๊ต(SMJ)๋ฅผ ๋Œ€์ƒ์œผ๋กœ 2022๋…„ 1์›” 1์ผ๋ถ€ํ„ฐ 12์›” 31์ผ๊นŒ์ง€์˜ ์ˆ˜์œ„, ์ˆ˜์˜จ, DO, TOC, TN, NH4-N, NH3-N, TP, PO4-P, Chl-a, ์œ ํ•ด๋‚จ์กฐ๋ฅ˜ ์„ธํฌ์ˆ˜์˜ ์‹ค์ธก๊ฐ’๊ณผ ๋ชจ์˜๊ฐ’์„ ๋น„๊ตํ•˜์˜€๋‹ค. ๋ณด์ • ์ง€์ ์˜ ์œ„์น˜๋Š” Fig. 1์— ์ œ์‹œํ•˜์˜€๋‹ค.

๋ชจ๋ธ์˜ ์žฌํ˜„์„ฑ ํ‰๊ฐ€์—๋Š” 4๊ฐ€์ง€์˜ ํ†ต๊ณ„ ์ง€ํ‘œ๋ฅผ ํ™œ์šฉํ•˜์˜€์œผ๋ฉฐ, ์‹œ๊ณ„์—ด ์ž๋ฃŒ์˜ ์ฆ๊ฐ ํŒจํ„ด์„ ์ ์ ˆํžˆ ์žฌํ˜„ํ•˜๋Š”์ง€ ๋ถ„์„ํ•˜์˜€๋‹ค. Nash-Sutcliffe Efficiency index (NSE) (Nash and Sutcliffe, 1970)๋Š” ์‹ค์ธก๊ฐ’์˜ ๋ณ€๋™ ํญ ๋Œ€๋น„ ๋ชจ์˜๊ฐ’์˜ ํ‰๊ท  ์˜ค์ฐจ๋กœ ์˜ˆ์ธก์˜ ์ˆ™๋ จ๋„๋ฅผ ํ‰๊ฐ€ํ•˜๋Š” ๋ชจ๋ธ์˜ ํšจ์œจ์ง€์ˆ˜๋ฅผ ๋‚˜ํƒ€๋‚ด๋ฉฐ, 1์— ๊ฐ€๊นŒ์šธ์ˆ˜๋ก ๋ชจ์˜๊ฐ’์ด ๊ด€์ธก๊ฐ’์— ์ผ์น˜ํ•˜๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค. R-squared (R2)๋Š” ๋ชจ์˜๊ฐ’๊ณผ ์‹ค์ธก๊ฐ’์˜ ์„ ํ˜•ํšŒ๊ท€๋ถ„์„์„ ํ†ตํ•œ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋‚˜ํƒ€๋‚ด๋ฉฐ, 1์— ๊ฐ€๊นŒ์šธ์ˆ˜๋ก ๋น„๊ตํ•˜๋Š” ๊ฐ’ ๊ฐ„์˜ ์ƒ๊ด€์„ฑ์ด ๋†’๋‹ค๊ณ  ํŒ๋‹จํ•œ๋‹ค. RMSE๋Š” 0์— ๊ฐ€๊นŒ์šธ์ˆ˜๋ก ๋ชจ๋ธ์˜ ์‹ ๋ขฐ๋„๊ฐ€ ๋†’๋‹ค. Mean Absolute Error (MAE)๋Š” ๊ด€์ธก๊ฐ’๊ณผ ์˜ˆ์ธก๊ฐ’์˜ ํ‰๊ท  ์ ˆ๋Œ€ ์˜ค์ฐจ๋กœ์จ, 0์— ๊ฐ€๊นŒ์šธ์ˆ˜๋ก ๋ชจ๋ธ์˜ ์ •ํ™•๋„๊ฐ€ ๋†’๋‹ค(Hwang et al., 2018; Kim and Cho, 2021; Oh et al., 2023; Shin et al., 2019; Shin et al., 2017).

2.5 ์กฐ๋ฅ˜๊ฒฝ๋ณด ์ง€์ ์˜ ์œ ํ•ด๋‚จ์กฐ๋ฅ˜ ์„ธํฌ์ˆ˜ ์˜ˆ์ธก

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ณด์ •๋œ ๋ชจ๋ธ์„ ํ™œ์šฉํ•˜์—ฌ ์กฐ๋ฅ˜๊ฒฝ๋ณด ์ง€์ ์ธ ๊ฐ•์ •๊ณ ๋ น์—์„œ์˜ ์œ ํ•ด๋‚จ์กฐ๋ฅ˜ ์„ธํฌ์ˆ˜๋ฅผ ์˜ˆ์ธกํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๋ชจ๋ธ์˜ ์‹ ๋ขฐ๋„๋ฅผ ๊ฒ€์ฆํ•˜์˜€๋‹ค. 2013๋…„๋ถ€ํ„ฐ 2022๋…„๊นŒ์ง€ 10๋…„๊ฐ„ ๊ฐ•์ •๊ณ ๋ น ์ง€์ ์˜ ์กฐ๋ฅ˜๊ฒฝ๋ณด ๋ฐœ๋ น ์‹œ๊ธฐ๋ฅผ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ, ์˜ˆ์ธก ๊ธฐ๊ฐ„์€ ์กฐ๋ฅ˜ ๋ฐœ์ƒ์ด ์ง‘์ค‘๋˜๋Š” 6์›”๋ถ€ํ„ฐ 10์›” ์ดˆ๋กœ ์„ค์ •ํ•˜์˜€๋‹ค(ME, 2023a). ์˜ˆ์ธก๋œ ์œ ํ•ด๋‚จ์กฐ๋ฅ˜ ์„ธํฌ์ˆ˜๋Š” ํ™˜๊ฒฝ๋ถ€ ๋ฌผํ™˜๊ฒฝ์ •๋ณด์‹œ์Šคํ…œ์—์„œ ์ œ๊ณตํ•˜๋Š” ๊ฐ•์ •๊ณ ๋ น ์ง€์ ์˜ ์‹ค์ธก๊ฐ’๊ณผ ๋น„๊ตํ•˜์˜€์œผ๋ฉฐ, NSE, R2, RMSE, MAE ๋“ฑ์˜ ์ง€ํ‘œ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํ‰๊ฐ€ํ•˜์˜€๋‹ค.

๋˜ํ•œ, ์ƒ์ž๊ทธ๋ฆผ(box plot)์„ ํ†ตํ•ด ์‹ค์ธก๊ฐ’๊ณผ ๋ชจ์˜๊ฐ’์˜ ๋ถ„ํฌ๋ฅผ ๋น„๊ต ๋ฐ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ƒ์ž๊ทธ๋ฆผ์€ ์‚ฌ๋ถ„์œ„์ˆ˜, ์ค‘์•™๊ฐ’, ์ตœ์†Ÿ๊ฐ’, ์ตœ๋Œ“๊ฐ’ ๋“ฑ์˜ ์ •๋ณด๋ฅผ ์‹œ๊ฐ์ ์œผ๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ์–ด, ์ˆ˜์งˆ ์ž๋ฃŒ์˜ ๋ถ„ํฌ๋ฅผ ํ•œ๋ˆˆ์— ํŒŒ์•…ํ•˜๋Š” ๋ฐ ์œ ์šฉํ•œ ํ†ต๊ณ„ ๊ธฐ๋ฒ•์ด๋‹ค(Kim et al., 2019). ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ๋”์šฑ ์ฒด๊ณ„์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜๊ณ ์ž ํ™˜๊ฒฝ๋ถ€์˜ ์กฐ๋ฅ˜๊ฒฝ๋ณด ๋ฐœ๋ น ๊ธฐ์ค€์„ ์ ์šฉํ•˜์˜€์œผ๋ฉฐ, ๊ฐ•์ •๊ณ ๋ น ์ง€์ ๊ณผ ๊ฐ™์€ ์ƒ์ˆ˜์› ๊ตฌ๊ฐ„์˜ ์กฐ๋ฅ˜๊ฒฝ๋ณด ๋ฐœ๋ น ๊ธฐ์ค€์€ ์œ ํ•ด๋‚จ์กฐ๋ฅ˜ ์„ธํฌ์ˆ˜์— ๋”ฐ๋ผ 4๋‹จ๊ณ„๋กœ ๋ถ„๋ฅ˜๋œ๋‹ค. ์œ ํ•ด๋‚จ์กฐ๋ฅ˜ ์„ธํฌ์ˆ˜๊ฐ€ 1,000 cells/mL ๋ฏธ๋งŒ์ด๋ฉด โ€˜ํ•ด์ œโ€™, 1,000 cells/mL ์ด์ƒ 10,000 cells/mL ๋ฏธ๋งŒ์ธ ๊ฒฝ์šฐ โ€˜๊ด€์‹ฌโ€™, 10,000 cells/mL ์ด์ƒ 1,000,000 cells/mL ๋ฏธ๋งŒ์ธ ๊ฒฝ์šฐ โ€˜๊ฒฝ๊ณ„โ€™, 1,000,000 cells/mL ์ด์ƒ์ธ ๊ฒฝ์šฐ โ€˜์กฐ๋ฅ˜ ๋Œ€๋ฐœ์ƒโ€™์œผ๋กœ ๊ตฌ๋ถ„๋œ๋‹ค(Ahn et al., 2023).

3. Results and Discussion

3.1 ์กฐ๋ฅ˜ ๋งค๊ฐœ๋ณ€์ˆ˜ ์ตœ์ ํ™”

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ง€์ ๋ณ„ ์„ธํฌ๋‹น Chl-a์˜ ์ตœ์  ํ•จ๋Ÿ‰์„ ์‚ฐ์ •ํ•˜๊ธฐ ์œ„ํ•ด Python 3.11.11 ํ™˜๊ฒฝ์—์„œ PyGAD ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ(Gad, 2024)๋ฅผ ํ™œ์šฉํ•˜์—ฌ GA๋ฅผ ์ ์šฉํ•˜์˜€๋‹ค. GA์— ์‚ฌ์šฉํ•œ ๋งค๊ฐœ๋ณ€์ˆ˜๋Š” Table 3์— ์ œ์‹œํ•˜์˜€๋‹ค.

์ง€์ ๋ณ„ Chl-a ํ•จ๋Ÿ‰ ์‚ฐ์ • ์‹œ RMSE ๊ฐ’์˜ ๋ณ€ํ™”๋Š” Fig. 4์— ์ œ์‹œํ•˜์˜€๋‹ค. SJ, B, DS, GH, SMJ, GR ์ง€์ ์—์„œ RMSE๋Š” ๊ฐ๊ฐ 900, 930, 986, 777, 874, 607์„ธ๋Œ€์—์„œ ์ˆ˜๋ ดํ•˜์˜€๋‹ค. GH ์ง€์ ์˜ ๊ฒฝ์šฐ, RMSE ๊ฐ’์ด ๊ฐ€์žฅ ์ปธ์œผ๋ฉฐ, ๋‹ค๋ฅธ ์ง€์ ์— ๋น„ํ•ด ๋น ๋ฅด๊ฒŒ ์ˆ˜๋ ดํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์˜€๋‹ค. ์ด๋Š” GH ์ง€์ ์—์„œ ์‹ค์ธก Chl-a ๊ฐ’์˜ ๋ณ€๋™ ํญ์ด ์ƒ๋Œ€์ ์œผ๋กœ ์ปค, ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์ตœ์ ํ•ด๋ฅผ ์ถฉ๋ถ„ํžˆ ํ•™์Šตํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์ด ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.

GA๋ฅผ ํ†ตํ•ด ์‚ฐ์ •๋œ ์ง€์ ๋ณ„ ์„ธํฌ๋‹น Chl-a์˜ ์ตœ์  ํ•จ๋Ÿ‰์€ Table 4์— ์ œ์‹œํ•˜์˜€๋‹ค. ์กฐ๋ฅ˜ ๋ฐœ์ƒ ํŒจํ„ด๊ณผ ์šฐ์ ํ•˜๋Š” ์กฐ๋ฅ˜ ์ข…์˜ ์ฐจ์ด์— ๋”ฐ๋ผ ์ง€์ ๋ณ„ ์กฐ๋ฅ˜ ๊ตฐ์ง‘๋ณ„ Chl-a ํ•จ๋Ÿ‰์ด ์ƒ์ดํ•˜์˜€๋‹ค(Park et al., 2019a).

Fig. 4. Evolution of RMSE values during generations of optimization for each station: (a) SJ, (b) GH, (c) SMJ.

../../Resources/kswe/KSWE.2025.41.3.163/fig4.png

Table 3 Input parameters used for the Genetic Algorithm

Input parameter

Value

num_generations

1000

num_parents_mating

8

sol_per_pop

500

gene_space

0-0.01

mutation_percent_genes

40

keep_elitism

2

๋งค๊ฐœ๋ณ€์ˆ˜ ์ตœ์ ํ™” ๊ฒฐ๊ณผ์— ๋”ฐ๋ฅด๋ฉด, SJ ์ง€์ ์—์„œ ์œ ํ•ด๋‚จ์กฐ๋ฅ˜ ๊ตฐ์ง‘์˜ ์„ธํฌ๋‹น Chl-a ํ•จ๋Ÿ‰์€ 6.66E-09 ฮผg/cell๋กœ ๊ฐ€์žฅ ๋‚ฎ๊ฒŒ ์‚ฐ์ •๋˜์—ˆ์œผ๋ฉฐ, GH ๋ฐ SMJ ์ง€์ ์€ ๊ฐ๊ฐ 5.71E-06 ฮผg/cell, 1.09E-06 ฮผg/cell๋กœ ๋‹ค๋ฅธ ์ง€์ ์— ๋น„ํ•ด ๋†’๊ฒŒ ์‚ฐ์ •๋˜์—ˆ๋‹ค. ์ด๋Š” ํ•ด๋‹น ์ง€์ ์—์„œ ์œ ํ•ด๋‚จ์กฐ๋ฅ˜์˜ ์šฐ์ ๋„๊ฐ€ ๋†’์•˜์Œ์„ ์‹œ์‚ฌํ•˜๋ฉฐ, ํŠนํžˆ SMJ ์ง€์ ์€ ๊ธˆํ˜ธ๊ฐ•์ด ๋‚™๋™๊ฐ• ๋ณธ๋ฅ˜์™€ ํ•ฉ๋ฅ˜ํ•œ ์ดํ›„์˜ ์ง€์ ์œผ๋กœ, GH ์ง€์ ์—์„œ ์œ ์ž…๋œ ์œ ํ•ด๋‚จ์กฐ๋ฅ˜์˜ ์˜ํ–ฅ์„ ๋ฐ›์€ ๊ฒƒ์œผ๋กœ ํ•ด์„๋œ๋‹ค. ๋ฐ˜๋ฉด, GR ์ง€์ ์—์„œ๋Š” ์œ ํ•ด๋‚จ์กฐ๋ฅ˜๋ฅผ ์ œ์™ธํ•œ ๋‚จ์กฐ๋ฅ˜ ๊ตฐ์ง‘์˜ ์„ธํฌ๋‹น Chl-a ํ•จ๋Ÿ‰์ด 6.90E-09 ฮผg/cell๋กœ ๊ฐ€์žฅ ๋‚ฎ์•˜๊ณ , ๋‹ค๋ฅธ ์กฐ๋ฅ˜ ๊ตฐ์ง‘์˜ ์„ธํฌ๋‹น Chl-a ํ•จ๋Ÿ‰์ด ์ƒ๋Œ€์ ์œผ๋กœ ๋†’์€ ๊ฐ’์„ ๋ณด์˜€๋‹ค. ๋˜ํ•œ, B ์ง€์ ์„ ์ œ์™ธํ•œ ๋ชจ๋“  ์ง€์ ์—์„œ ๊ธฐํƒ€ ์กฐ๋ฅ˜ ๊ตฐ์ง‘์˜ ์„ธํฌ๋‹น Chl-a ํ•จ๋Ÿ‰์ด ์ƒ๋Œ€์ ์œผ๋กœ ๋†’๊ฒŒ ์‚ฐ์ •๋˜์—ˆ์œผ๋ฉฐ, ์ด๋Š” Chl-a ์ด๋Ÿ‰์ด ์ฃผ์š” ์กฐ๋ฅ˜ ๊ตฐ์ง‘ ์™ธ์˜ ์ข…๋“ค์— ์˜ํ•ด ์˜ํ–ฅ์„ ๋ฐ›์„ ๊ฐ€๋Šฅ์„ฑ์„ ๋‚˜ํƒ€๋‚ธ๋‹ค.

๋ณธ ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ๋Š” ๋™์ผํ•œ ๋ถ„๋ฅ˜์˜ ๊ตฐ์ง‘์ด๋ผ๋„ ์‹ค์ œ ๊ฐ ์ง€์ ์˜ ์กฐ๋ฅ˜ ์ข… ์กฐ์„ฑ, ์šฐ์  ์‹œ๊ธฐ, ์ˆ˜์˜จ, ์ˆ˜๋ฆฌํ•™์  ์กฐ๊ฑด, ์˜์–‘์—ผ๋ฅ˜ ๋†๋„ ๋“ฑ์˜ ์ฐจ์ด์— ๋”ฐ๋ผ ์„ธํฌ๋‹น Chl-a ํ•จ๋Ÿ‰์˜ ์ตœ์ ํ™” ๊ฒฐ๊ณผ๊ฐ€ ๋‹ฌ๋ผ์งˆ ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ๊ตญ๋‚ด ์ˆ˜๊ณ„์—์„œ ์ถœํ˜„ํ•œ ์กฐ๋ฅ˜์˜ ์„ธํฌ ๋‚ด Chl-a ํ•จ๋Ÿ‰์„ ์กฐ์‚ฌํ•œ ์‚ฌ๋ก€๊ฐ€ ์ œํ•œ์ ์ด๋ฉฐ, ์กฐ๋ฅ˜๋Š” ์ข…, ์† ๋“ฑ์— ๋”ฐ๋ผ ์„ธํฌ ํฌ๊ธฐ ๋ฐ ํŠน์„ฑ์ด ๋งค์šฐ ๋‹ค์–‘ํ•˜๋ฏ€๋กœ, ์„ธํฌ ์ˆ˜ ๊ธฐ๋ฐ˜ ์ž๋ฃŒ๋ฅผ ์ง์ ‘ ํ™œ์šฉํ•  ๊ฒฝ์šฐ ์˜ค์ฐจ๊ฐ€ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค(Park, 2014). ๋”ฐ๋ผ์„œ GA๋ฅผ ํ†ตํ•ด ์‚ฐ์ •ํ•œ ์ตœ์  ๋งค๊ฐœ๋ณ€์ˆ˜ ๊ฐ’์— ๋Œ€ํ•œ ํ•ด์„์—๋Š” ๋ถˆํ™•์‹ค์„ฑ์ด ๋‹ค์†Œ ์กด์žฌํ•˜๋ฉฐ, ํ–ฅํ›„ ๋‹ค์–‘ํ•œ ์ˆ˜ํ™˜๊ฒฝ ์กฐ๊ฑด์—์„œ์˜ ์กฐ๋ฅ˜ ์ข… ์กฐ์„ฑ์„ ๊ณ ๋ คํ•œ ์‹ค์ธก ๊ธฐ๋ฐ˜ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค.

Table 4 Chl-a content in individual algal groups estimated for each station in this study

Station

Chl-a content per cell (ฮผg/cell)

HAB*

Cyano**

Diatoms

Greens

Others

SJ

6.66E-09

9.49E-08

5.39E-07

4.65E-08

2.03E-06

B

3.16E-08

3.16E-05

3.35E-08

1.39E-07

3.91E-06

DS

2.36E-08

4.36E-07

3.92E-08

9.70E-07

4.84E-06

GH

5.71E-06

2.97E-05

8.88E-07

2.39E-06

3.75E-05

SMJ

1.09E-06

4.85E-06

2.17E-06

6.02E-06

8.39E-06

GR

3.15E-07

6.90E-09

1.44E-06

1.58E-08

2.02E-06

*Algal group of harmful cyanobacteria

**Algal group of cyanobacteria excluding harmful cyanobacteria

3.2 ๋ชจ๋ธ์˜ ์žฌํ˜„์„ฑ ๊ฒ€ํ† 

3.2.1 ์ˆ˜์œ„ ๋ฐ ์ˆ˜์˜จ ๋ณด์ •

๋ชจ๋ธ์˜ ์ˆ˜์œ„ ๋ณด์ •์„ ์œ„ํ•ด ํ™˜๊ฒฝ๋ถ€ ๋ฌผํ™˜๊ฒฝ์ •๋ณด์‹œ์Šคํ…œ์—์„œ ์ œ๊ณตํ•˜๋Š” ์„ฑ์ฃผ๊ตฐ(์„ฑ์ฃผ๋Œ€๊ต) ๋ฐ ๋Œ€๊ตฌ์‹œ(์‚ฌ๋ฌธ์ง„๊ต) ์ง€์ ์˜ ์ผ๋ณ„ ์ˆ˜์œ„ ๊ด€์ธก ์ž๋ฃŒ๋ฅผ ์ด์šฉํ•˜์˜€๋‹ค. ์ˆ˜์˜จ ๋ณด์ •์—๋Š” ํ™˜๊ฒฝ๋ถ€ ๋ฌผํ™˜๊ฒฝ์ •๋ณด์‹œ์Šคํ…œ์—์„œ ์ˆ˜์ง‘ํ•œ ์„ฑ์ฃผ ๋ฐ ํ™”์›๋‚˜๋ฃจ ์ง€์ ์˜ ์ผ๋ณ„ ์ˆ˜์˜จ ์ธก์ • ์ž๋ฃŒ๋ฅผ ํ™œ์šฉํ•˜์˜€๋‹ค. ์ง€์ ๋ณ„ ์ˆ˜์œ„ ๋ฐ ์ˆ˜์˜จ ๋ณด์ • ๊ฒฐ๊ณผ๋Š” ํ†ต๊ณ„ ์ง€ํ‘œ๋ฅผ ํ†ตํ•ด ํ‰๊ฐ€ํ•˜์˜€์œผ๋ฉฐ(Table 5), ์‹ค์ธก๊ฐ’๊ณผ ํ•จ๊ป˜ Fig. 5์— ์ œ์‹œํ•˜์˜€๋‹ค.

Table 5 Statistical analysis of the modeling performance

Station

SJ

SMJ

Statistical index

NSE

R2

RMSE

MAE

NSE

R2

RMSE

MAE

Water elevation

0.92

0.929

0.03 m

0.01 m

0.81

0.977

0.07 m

0.06 m

Water temperature

0.99

0.996

0.66ยฐC

0.38ยฐC

0.98

0.991

1.05ยฐC

0.74ยฐC

DO

0.90

0.940

0.68 mg/L

0.45 mg/L

0.87

0.892

0.61 mg/L

0.40 mg/L

TOC

0.96

0.97

0.16 mg/L

0.06 mg/L

0.43

0.485

1.03 mg/L

0.68 mg/L

TN

0.83

0.842

0.23 mg/L

0.12 mg/L

0.81

0.873

0.58 mg/L

0.37 mg/L

NH4-N

0.76

0.787

0.02 mg/L

0.01 mg/L

0.82

0.827

0.13 mg/L

0.08 mg/L

NO3-N

0.89

0.932

0.22 mg/L

0.17 mg/L

0.76

0.833

0.53 mg/L

0.31 mg/L

TP

0.94

0.942

0.01 mg/L

0.00 mg/L

-0.03

0.507

0.02 mg/L

0.01 mg/L

PO4-P

0.55

0.776

0.01 mg/L

0.01 mg/L

0.73

0.878

0.01 mg/L

0.01 mg/L

Chl-a

0.53

0.683

2.65 mg/m3

1.72 mg/m3

0.48

0.723

6.72 mg/m3

3.76 mg/m3

HAB

0.97

0.978

8,763 cells/mL

5,544 cells/mL

0.63

0.696

2,094 cells/mL

1,046 cells/mL

์ˆ˜์œ„ ๋ณด์ • ๊ฒฐ๊ณผ, SJ ์ง€์ ์˜ NSE๋Š” 0.92, R2๋Š” 0.929, RMSE๋Š” 0.03 m, MAE๋Š” 0.01 m๋กœ ๋ถ„์„๋˜์—ˆ๋‹ค. ์ผ๋ถ€ ์˜ค์ฐจ๊ฐ€ ์žˆ์œผ๋‚˜, ์ˆ˜์œ„ ๋ณ€๋™์ด ํฐ 2022๋…„ 2์›” ๋ฐ 9์›”์˜ ์–‘์ƒ์„ ์ž˜ ๋ฐ˜์˜ํ•˜์—ฌ ์ˆ˜์œ„ ๋ณ€ํ™”๋ฅผ ์ ์ ˆํžˆ ์žฌํ˜„ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. SMJ ์ง€์ ์˜ NSE๋Š” 0.81, R2๋Š” 0.977, RMSE๋Š” 0.07 m, MAE๋Š” 0.06 m๋กœ ๋ถ„์„๋˜์—ˆ๋‹ค. ์ „๋ฐ˜์ ์œผ๋กœ ์ˆ˜์œ„๊ฐ€ ๋‹ค์†Œ ๋†’๊ฒŒ ๋ชจ์˜๋˜์—ˆ์œผ๋‚˜, 2022๋…„ 2์›” ๋ฐ 7์›”โˆผ9์›”์˜ ๋ณ€๋™ ์–‘์ƒ์„ ์ž˜ ๋ชจ์˜ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋ณด์•„ ๋ณด ํ•˜๋ฅ˜์˜ ์ˆ˜์œ„ ๋ณ€ํ™”๋ฅผ ์ž˜ ์žฌํ˜„ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.

์ˆ˜์˜จ ๋ณด์ • ๊ฒฐ๊ณผ, SJ ์ง€์ ์˜ NSE๋Š” 0.99, R2๋Š” 0.996, RMSE๋Š” 0.66ยฐC, MAE๋Š” 0.38ยฐC๋กœ ๋ถ„์„๋˜์—ˆ๋‹ค. 2022๋…„ 1์›”โˆผ2์›” ๋ฐ 10์›”์— ์ˆ˜์˜จ์ด ๋‹ค์†Œ ๋†’๊ฒŒ ๋ชจ์˜๋˜์—ˆ์œผ๋‚˜, ์ „๋ฐ˜์ ์ธ ์ˆ˜์˜จ ์ฆ๊ฐ ํŒจํ„ด์„ ์ ์ ˆํžˆ ์žฌํ˜„ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. SMJ ์ง€์ ์˜ NSE๋Š” 0.98, R2๋Š” 0.991, RMSE๋Š” 1.05ยฐC, MAE๋Š” 0.74ยฐC๋กœ ๋ถ„์„๋˜์—ˆ์œผ๋ฉฐ, ์ˆ˜์˜จ์ด ์ „๋ฐ˜์ ์œผ๋กœ ๋‹ค์†Œ ๋†’๊ฒŒ ๋ชจ์˜๋˜์—ˆ์œผ๋‚˜, ๊ณ„์ ˆ์— ๋”ฐ๋ฅธ ์ˆ˜์˜จ ๋ณ€ํ™”๋ฅผ ์ž˜ ๋ฐ˜์˜ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.

Fig. 5. Comparison of observed and simulated water elevations and water temperatures: (a) SJ and (b) SMJ.

../../Resources/kswe/KSWE.2025.41.3.163/fig5.png

3.2.2 ์ˆ˜์งˆ ๋ณด์ •

์ˆ˜์งˆ ๋ณด์ •์„ ์œ„ํ•œ ์‹ค์ธก๊ฐ’์€ ํ™˜๊ฒฝ๋ถ€ ๋ฌผํ™˜๊ฒฝ์ •๋ณด์‹œ์Šคํ…œ์—์„œ ์ˆ˜์ง‘ํ•œ ์„ฑ์ฃผ, ํ™”์›๋‚˜๋ฃจ ์ง€์ ์˜ ์ผ๋ณ„ DO, TOC, TN, NH4-N, NH3-N, TP, PO4-P ์ธก์ • ์ž๋ฃŒ๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์ง€์ ๋ณ„ ์ˆ˜์งˆ ํ•ญ๋ชฉ์˜ ๋ณด์ • ๊ฒฐ๊ณผ๋Š” ํ†ต๊ณ„ ์ง€ํ‘œ๋ฅผ ํ†ตํ•ด ํ‰๊ฐ€ํ•˜์˜€์œผ๋ฉฐ(Table 5), ์‹ค์ธก๊ฐ’๊ณผ ํ•จ๊ป˜ Fig. 6์— ์ œ์‹œํ•˜์˜€๋‹ค.

DO ๋ณด์ • ๊ฒฐ๊ณผ, SJ ์ง€์ ์˜ NSE๋Š” 0.90, Rยฒ๋Š” 0.940, RMSE๋Š” 0.68 mg/L, MAE๋Š” 0.45 mg/L๋กœ ๋ถ„์„๋˜์—ˆ๋‹ค. 2022๋…„ 2์›” ๋ฐ 10์›”์— DO ๋†๋„๊ฐ€ ๋‹ค์†Œ ๋‚ฎ๊ฒŒ ๋ชจ์˜๋˜์—ˆ์œผ๋ฉฐ, ์ด๋Š” ๋™์ผ ์ง€์ ์—์„œ ์ˆ˜์˜จ ๋ณด์ • ์‹œ ๋‚˜ํƒ€๋‚œ ์˜ค์ฐจ ์–‘์ƒ๊ณผ ์ผ์น˜ํ•˜์˜€๋‹ค. SMJ ์ง€์ ์˜ NSE๋Š” 0.87, Rยฒ๋Š” 0.892, RMSE๋Š” 0.61 mg/L, MAE๋Š” 0.40 mg/L๋กœ ๋ถ„์„๋˜์—ˆ๋‹ค. 2022๋…„ 6โˆผ7์›”์— DO ๋†๋„๊ฐ€ ๋‚ฎ๊ฒŒ ๋ชจ์˜๋œ ๊ฒƒ ๋˜ํ•œ ํ•ด๋‹น ์ง€์ ์˜ ์ˆ˜์˜จ ๋ณด์ •์—์„œ ๋‚˜ํƒ€๋‚œ ์˜ค์ฐจ์™€ ์œ ์‚ฌํ•œ ๊ฒฝํ–ฅ์„ ๋ณด์˜€๋‹ค. ์ „๋ฐ˜์ ์œผ๋กœ, ์ˆ˜์˜จ ์ฆ๊ฐ€์— ๋”ฐ๋ฅธ ์‚ฐ์†Œ ์šฉํ•ด๋„ ๊ฐ์†Œ์— ๋”ฐ๋ผ DO ๋†๋„ ๋ณ€ํ™”๊ฐ€ ์ ์ ˆํžˆ ์žฌํ˜„๋œ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

TOC ๋ณด์ • ๊ฒฐ๊ณผ, SJ ์ง€์ ์€ NSE 0.96, Rยฒ 0.97, RMSE 0.16 mg/L, MAE 0.06 mg/L๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, ์ „๋ฐ˜์ ์œผ๋กœ TOC ๋†๋„ ๋ณ€ํ™”๋ฅผ ์ ์ ˆํžˆ ์žฌํ˜„ํ•˜์˜€๋‹ค. SMJ ์ง€์ ์€ NSE 0.43, Rยฒ 0.485, RMSE 1.03 mg/L, MAE 0.68 mg/L๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, 2022๋…„ 4์›” ๋ฐ 7์›”์— TOC ๋†๋„๊ฐ€ ์‹ค์ธก๊ฐ’๋ณด๋‹ค ๋‚ฎ๊ฒŒ ๋ชจ์˜๋˜์—ˆ๋‹ค.

TN ๋ณด์ • ๊ฒฐ๊ณผ, SJ ์ง€์ ์˜ NSE๋Š” 0.83, Rยฒ๋Š” 0.842, RMSE๋Š” 0.23 mg/L, MAE๋Š” 0.12 mg/L๋กœ ๋ถ„์„๋˜์—ˆ์œผ๋ฉฐ, 2022๋…„ 7์›” ๋ฐ 9์›”์— ์ผ๋ถ€ ๋‚ฎ๊ฒŒ ๋ชจ์˜๋˜๋Š” ๋‚ ์ด ์žˆ์œผ๋‚˜, ์ „๋ฐ˜์ ์œผ๋กœ ๋†๋„ ๋ณ€๋™์„ ์ž˜ ๋ฐ˜์˜ํ•˜์—ฌ ๋ชจ์˜ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. SMJ ์ง€์ ์€ NSE 0.81, Rยฒ 0.873, RMSE 0.58 mg/L, MAE 0.37 mg/L๋กœ ๋ถ„์„๋˜์—ˆ๋‹ค. ํŠนํžˆ, SMJ ์ง€์ ์€ ์ธ์ ‘ํ•œ ์œ ์ž…์›์ธ ๊ธˆํ˜ธ๊ฐ•์˜ TN ๋†๋„ ๋ณ€ํ™”์— ํฐ ์˜ํ–ฅ์„ ๋ฐ›์•„ ๋†๋„ ๋ณ€๋™์ด ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, ๊ธˆํ˜ธ๊ฐ•์˜ ์‹ค์ธก TN ๊ฐ’๊ณผ ๋น„๊ตํ•œ ๊ฒฐ๊ณผ, ์œ ์ž…์›์˜ TN ๋†๋„ ๋ณ€๋™์— ๋”ฐ๋ฅธ ๋ณ€ํ™”๋ฅผ ์ ์ ˆํžˆ ๋ฐ˜์˜ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

NHโ‚„-N ๋ณด์ • ๊ฒฐ๊ณผ, SJ ์ง€์ ์€ NSE 0.76, Rยฒ 0.787, RMSE 0.02 mg/L, MAE 0.01 mg/L๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, SMJ ์ง€์ ์€ NSE 0.82, Rยฒ 0.827, RMSE 0.13 mg/L, MAE 0.08 mg/L๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. SJ ์ง€์ ์— ๋น„ํ•ด SMJ ์ง€์ ์˜ NHโ‚„-N ๋†๋„ ๋ณ€๋™์„ฑ์ด ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ์œผ๋‚˜, ๊ฐ ์ง€์ ์— ๋”ฐ๋ผ ๋†๋„ ๋ณ€ํ™”๊ฐ€ ์ ์ ˆํžˆ ์žฌํ˜„๋˜์—ˆ๋‹ค.

NOโ‚ƒ-N ๋ณด์ • ๊ฒฐ๊ณผ, SJ ์ง€์ ์€ NSE 0.89, Rยฒ 0.932, RMSE 0.22 mg/L, MAE 0.17 mg/L์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, 2022๋…„ 6โˆผ7์›” ์‚ฌ์ด์— ๋‹ค์†Œ ๋†’๊ฒŒ ๋ชจ์˜๋˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์˜€๋‹ค. SMJ ์ง€์ ์€ NSE 0.76, Rยฒ 0.833, RMSE 0.53 mg/L, MAE 0.31 mg/L๋กœ, ์ „๋ฐ˜์ ์œผ๋กœ ๊ธ‰๊ฒฉํ•œ ๋†๋„ ๋ณ€๋™์„ ์ ์ ˆํžˆ ์žฌํ˜„ํ•˜์˜€์œผ๋‚˜ 2022๋…„ 3โˆผ5์›” ์‚ฌ์ด์— ๋‹ค์†Œ ๋‚ฎ๊ฒŒ ๋ชจ์˜๋˜๋Š” ๊ฒฝํ–ฅ์ด ๋‚˜ํƒ€๋‚ฌ๋‹ค.

TP ๋ณด์ • ๊ฒฐ๊ณผ, SJ ์ง€์ ์€ NSE 0.94, Rยฒ 0.942, RMSE 0.01 mg/L, MAE 0.00 mg/L๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, 2022๋…„ 7โˆผ9์›” ์‚ฌ์ด TP ๋†๋„์˜ ๊ธ‰๊ฒฉํ•œ ์ฆ๊ฐ ํŒจํ„ด์„ ์ ์ ˆํžˆ ์žฌํ˜„ํ•˜์˜€๋‹ค. SMJ ์ง€์ ์€ NSE -0.03, Rยฒ 0.507, RMSE 0.02 mg/L, MAE 0.01 mg/L๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, 2022๋…„ 5์›” ๋ฐ 8์›”์— TP ๋†๋„๋ฅผ ๋‹ค์†Œ ๋†’๊ฒŒ ๋ชจ์˜ํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์˜€๋‹ค.

POโ‚„-P๋Š” SJ ์ง€์ ์—์„œ NSE 0.55, Rยฒ 0.776, RMSE 0.01 mg/L, MAE 0.01 mg/L๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, SMJ ์ง€์ ์€ NSE 0.73, Rยฒ 0.878, RMSE 0.01 mg/L, MAE 0.01 mg/L๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋‘ ์ง€์  ๋ชจ๋‘ 2022๋…„ 8โˆผ9์›” ์‚ฌ์ด์— ์ฆ๊ฐ€ํ•˜๋Š” POโ‚„-P ๋†๋„์˜ ๋ณ€๋™์„ฑ์„ ์ ์ ˆํžˆ ์žฌํ˜„ํ•˜์˜€๋‹ค.

Fig. 6. Comparison of observed and simulated DO, TOC, TN, NH4-N, NH3-N, TP, and PO4-P concentrations: (a) SJ and (b) SMJ.

../../Resources/kswe/KSWE.2025.41.3.163/fig6.png

Fig. 7. Comparison of observed and simulated Chl-a and HABs: (a) SJ and (b) SMJ.

../../Resources/kswe/KSWE.2025.41.3.163/fig7.png

Chl-a ๋ฐ ์œ ํ•ด๋‚จ์กฐ๋ฅ˜ ์„ธํฌ์ˆ˜์˜ ์‹ค์ธก๊ฐ’์€ ๊ตญ๋ฆฝํ™˜๊ฒฝ๊ณผํ•™์›์—์„œ 2022๋…„ 5์›” 2์ผ๋ถ€ํ„ฐ 10์›” 12์ผ๊นŒ์ง€ ์ธก์ •ํ•œ ์ž๋ฃŒ๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๋ณด์ • ๊ฒฐ๊ณผ๋Š” ํ†ต๊ณ„ ์ง€ํ‘œ๋ฅผ ํ†ตํ•ด ํ‰๊ฐ€ํ•˜์˜€์œผ๋ฉฐ(Table 5), ์‹ค์ธก๊ฐ’๊ณผ ํ•จ๊ป˜ Fig. 7์— ์ œ์‹œํ•˜์˜€๋‹ค.

Chl-a ๋ณด์ • ๊ฒฐ๊ณผ, SJ ์ง€์ ์˜ NSE๋Š” 0.53, Rยฒ๋Š” 0.683, RMSE๋Š” 2.65 mg/m3, MAE๋Š” 1.72 mg/m3๋กœ ๋ถ„์„๋˜์—ˆ๋‹ค. 2022๋…„ 8์›” ๋ฐ 10์›”์— Chl-a ๋†๋„๊ฐ€ ๋‚ฎ๊ฒŒ ๋ชจ์˜๋˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์œผ๋‚˜, ์ „๋ฐ˜์ ์ธ ์ฆ๊ฐ ํŒจํ„ด์€ ์ ์ ˆํžˆ ์žฌํ˜„๋œ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. SMJ ์ง€์ ์˜ NSE๋Š” 0.48, Rยฒ๋Š” 0.723, RMSE๋Š” 6.72 mg/m3, MAE๋Š” 3.76 mg/m3๋กœ ๋ถ„์„๋˜์—ˆ์œผ๋ฉฐ, ์ „๋ฐ˜์ ์œผ๋กœ ์‹ค์ธก๊ฐ’๋ณด๋‹ค ๋‚ฎ๊ฒŒ ๋ชจ์˜๋˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์œผ๋‚˜ Chl-a ๋†๋„์˜ ๋ณ€๋™ ์–‘์ƒ์€ ์ ์ ˆํžˆ ์žฌํ˜„๋œ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.

์œ ํ•ด๋‚จ์กฐ๋ฅ˜ ์„ธํฌ์ˆ˜ ๋ณด์ • ๊ฒฐ๊ณผ, SJ ์ง€์ ์˜ NSE๋Š” 0.97, Rยฒ๋Š” 0.978, RMSE๋Š” 8,763 cells/mL, MAE๋Š” 5,544 cells/mL๋กœ ๋ถ„์„๋˜์—ˆ๋‹ค. ์—ฌ๋ฆ„์ฒ  ์œ ํ•ด๋‚จ์กฐ๋ฅ˜์˜ ๊ณ ๋ฐ€๋„ ์ฆ์‹์œผ๋กœ ์ธํ•ด ์„ธํฌ์ˆ˜๊ฐ€ ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•˜์—ฌ RMSE ๋ฐ MAE ๊ฐ’ ๋˜ํ•œ ํฐ ๊ฒฝํ–ฅ์ด ๋ณด์˜€์œผ๋‚˜, ์—ฌ๋ฆ„์ฒ  ์ˆ˜์˜จ ์ƒ์Šน์— ๋”ฐ๋ฅธ ์œ ํ•ด๋‚จ์กฐ๋ฅ˜ ์„ฑ์žฅ ํŒจํ„ด์„ ์ž˜ ๋ฐ˜์˜ํ•˜์—ฌ ๋ชจ์˜๋œ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. SMJ ์ง€์ ์˜ NSE๋Š” 0.63, Rยฒ๋Š” 0.696, RMSE๋Š” 2,094 cells/mL, MAE๋Š” 1,046 cells/mL๋กœ ๋ถ„์„๋˜์—ˆ๋‹ค. SMJ ์ง€์ ์€ SJ ์ง€์ ์— ๋น„ํ•ด ์œ ํ•ด๋‚จ์กฐ๋ฅ˜ ์„ธํฌ์ˆ˜ ์‹ค์ธก๊ฐ’์ด ์ƒ๋Œ€์ ์œผ๋กœ ์ž‘์•„ RMSE ๋ฐ MAE ๊ฐ’์ด ์ž‘๊ฒŒ ๋‚˜ํƒ€๋‚œ ๊ฒƒ์œผ๋กœ ๋ณด์ด๋ฉฐ, ์œ ํ•ด๋‚จ์กฐ๋ฅ˜์˜ ์„ฑ์žฅ ํŒจํ„ด์ด ์ ์ ˆํžˆ ๋ฐ˜์˜๋œ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

3.3 ์กฐ๋ฅ˜๊ฒฝ๋ณด ์ง€์ ์˜ ์œ ํ•ด๋‚จ์กฐ๋ฅ˜ ์„ธํฌ์ˆ˜ ์˜ˆ์ธก

๋ณด์ •๋œ ๋ชจ๋ธ์„ ํ™œ์šฉํ•˜์—ฌ ๊ฐ•์ •๊ณ ๋ น ์ง€์ ์˜ 2022๋…„ 6์›”๋ถ€ํ„ฐ 10์›” ์ดˆ ์œ ํ•ด๋‚จ์กฐ๋ฅ˜ ์„ธํฌ์ˆ˜๋ฅผ ๋ชจ์˜ํ•œ ๊ฒฐ๊ณผ, NSE๋Š” 0.77, Rยฒ๋Š” 0.774, RMSE๋Š” 9,210 cells/mL, MAE๋Š” 4,794 cells/mL๋กœ ๋ถ„์„๋˜์—ˆ๋‹ค. ๋˜ํ•œ, Fig. 8์˜ ์ƒ์ž๊ทธ๋ฆผ์„ ํ†ตํ•ด ์‹ค์ธก๊ฐ’๊ณผ ๋ชจ์˜๊ฐ’์˜ ๋ถ„ํฌ๋ฅผ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, ์‹ค์ธก๊ฐ’๊ณผ ๋ชจ์˜๊ฐ’์˜ ๋ฒ”์œ„๋Š” ๊ฐ๊ฐ 75โˆผ79,285 cells/mL, 10โˆผ79,731 cells/mL๋กœ ์œ ์‚ฌํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, 3์‚ฌ๋ถ„์œ„์ˆ˜ ๋˜ํ•œ ๊ฐ๊ฐ 28,263 cells/mL, 27,400 cells/mL๋กœ ์‹ค์ธก๊ฐ’๊ณผ ๋ชจ์˜๊ฐ’์ด ๋น„์Šทํ•œ ๊ฒฝํ–ฅ์„ ๋ณด์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ค‘์•™๊ฐ’์€ ๊ฐ๊ฐ 11,302 cells/mL, 16,753 cells/mL๋กœ, ๋ชจ์˜๊ฐ’์ด ์‹ค์ธก๊ฐ’๋ณด๋‹ค ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, ๋ชจ์˜๊ฐ’์˜ 1์‚ฌ๋ถ„์œ„์ˆ˜๋„ ๊ฐ๊ฐ 1,633 cells/mL, 5,373 cells/mL๋กœ ๋ชจ์˜๊ฐ’์ด ์‹ค์ธก๊ฐ’๋ณด๋‹ค ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Š” ์œ ํ•ด๋‚จ์กฐ๋ฅ˜ ์„ธํฌ์ˆ˜๊ฐ€ ์ˆ˜์‹ญ์—์„œ ์ˆ˜๋งŒ cells/mL๊นŒ์ง€ ๋„“์€ ๋ฒ”์œ„๋กœ ๋ถ„ํฌํ•˜๋Š” ์ˆ˜์งˆ ํ•ญ๋ชฉ์œผ๋กœ, ์ผ๋ฐ˜์ ์ธ ์ˆ˜์งˆ ํ•ญ๋ชฉ์— ๋น„ํ•ด ๋ณ€๋™์ด ์ปค ์ฐจ์ด๊ฐ€ ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚œ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ์กฐ๋ฅ˜๊ฒฝ๋ณด ๊ธฐ์ค€์„ ์ ์šฉํ•˜์—ฌ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, ์‹ค์ธก๊ฐ’๊ณผ ๋ชจ์˜๊ฐ’์˜ 1์‚ฌ๋ถ„์œ„์ˆ˜๋Š” ๋ชจ๋‘ โ€˜๊ด€์‹ฌโ€™ ๋‹จ๊ณ„์— ํ•ด๋‹นํ•˜์˜€์œผ๋ฉฐ, ์ค‘์•™๊ฐ’ ๊ธฐ์ค€์œผ๋กœ๋Š” โ€˜๊ฒฝ๊ณ„โ€™ ๋‹จ๊ณ„์— ์†ํ•˜์—ฌ ๋ชจ์˜๊ฐ’๊ณผ ์‹ค์ธก๊ฐ’์ด ์œ ์‚ฌํ•œ ์ˆ˜์ค€์„ ๋ณด์˜€๋‹ค.

Fig. 8. Box plot of HABs at Gangjeong-Goryeong station.

../../Resources/kswe/KSWE.2025.41.3.163/fig8.png

๋ชจ๋ธ์ด ๊ฐ•์ •๊ณ ๋ น ์ง€์ ์—์„œ ์„ธํฌ์ˆ˜ ๋ฐ€๋„๊ฐ€ ๋‚ฎ์€ ๊ตฌ๊ฐ„์„ ๋‹ค์†Œ ๋†’๊ฒŒ ์˜ˆ์ธกํ•˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์œผ๋ฉฐ, ์ด๋Š” ์ค‘โ‹…๊ณ ๋†๋„ ๊ตฌ๊ฐ„์—์„œ์˜ ๋ชจ๋ธ ์˜ˆ์ธก ์ •ํ™•๋„ ํ–ฅ์ƒ์— ์ง‘์ค‘๋œ ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์‹ค์ œ ์กฐ๋ฅ˜๊ฒฝ๋ณด์ œ ์šด์˜ ์ธก๋ฉด์—์„œ โ€˜๊ฒฝ๊ณ„โ€™, โ€˜์ฃผ์˜โ€™ ๋‹จ๊ณ„ ์ด์ƒ์— ํ•ด๋‹นํ•˜๋Š” ์ค‘โ‹…๊ณ ๋†๋„ ๊ตฌ๊ฐ„์˜ ์˜ˆ์ธก ์ •ํ™•๋„๊ฐ€ ์ •์ฑ…์  ์˜์‚ฌ๊ฒฐ์ •์— ๋” ์ค‘์š”ํ•˜๊ฒŒ ์ž‘์šฉํ•˜๋Š” ์ ์„ ๊ณ ๋ คํ•  ๋•Œ, ๋ณธ ๋ชจ๋ธ์€ ์œ ํ•ด๋‚จ์กฐ๋ฅ˜ ๋ฐœ์ƒ ์œ„ํ—˜์ด ๋†’์€ ์‹œ๊ธฐ์˜ ์กฐ๊ธฐ๊ฒฝ๋ณด ํŒ๋‹จ์„ ์ง€์›ํ•˜๋Š” ๋ฐ ํšจ๊ณผ์ ์œผ๋กœ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค.

4. Conclusion

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‚™๋™๊ฐ• ์ค‘๋ฅ˜ ๊ตฌ๊ฐ„์„ ๋Œ€์ƒ์œผ๋กœ EFDC ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•˜๊ณ , GA๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ง€์ ๋ณ„ ์กฐ๋ฅ˜ ๊ตฐ์ง‘๋ณ„ ์„ธํฌ๋‹น Chl-a ํ•จ๋Ÿ‰์„ ์ตœ์ ํ™”ํ•จ์œผ๋กœ์จ ์œ ํ•ด๋‚จ์กฐ๋ฅ˜ ๋ฐœ์ƒ์„ ๋ชจ์˜ํ•˜์˜€๋‹ค. ์กฐ๋ฅ˜ ๊ตฐ์ง‘์„ ์œ ํ•ด๋‚จ์กฐ๋ฅ˜, ์œ ํ•ด๋‚จ์กฐ๋ฅ˜ ์ œ์™ธ ๋‚จ์กฐ๋ฅ˜, ๊ทœ์กฐ๋ฅ˜, ๋…น์กฐ๋ฅ˜, ๊ธฐํƒ€์กฐ๋ฅ˜๋กœ ์„ธ๋ถ„ํ™”ํ•˜์˜€์œผ๋ฉฐ, GA์˜ ์ ํ•ฉ๋„ ํ•จ์ˆ˜๋กœ RMSE๋ฅผ ์„ค์ •ํ•˜์—ฌ ์„ธํฌ๋‹น Chl-a์˜ ์ตœ์  ํ•จ๋Ÿ‰์„ ์‚ฐ์ •ํ•˜์˜€๋‹ค. ์ตœ์ ํ™” ๊ฒฐ๊ณผ, ์กฐ๋ฅ˜ ๊ตฐ์ง‘๋ณ„ Chl-a ํ•จ๋Ÿ‰์€ ์กฐ๋ฅ˜ ๋ฐœ์ƒ ํŒจํ„ด๊ณผ ์šฐ์  ์กฐ๋ฅ˜ ์ข…์˜ ์ฐจ์ด์— ๋”ฐ๋ผ ์ง€์ ๋ณ„๋กœ ์ƒ์ดํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

๋ชจ๋ธ์˜ ์žฌํ˜„์„ฑ ํ‰๊ฐ€๋ฅผ ์œ„ํ•ด ์—ฐ๊ตฌ ๋Œ€์ƒ ์ง€์—ญ์˜ ์ค‘์‹ฌ์— ์œ„์น˜ํ•œ ๊ฐ•์ •๊ณ ๋ น๋ณด๋ฅผ ๊ธฐ์ค€์œผ๋กœ ๋ณด ์ƒ๋ฅ˜(์„ฑ์ฃผ๋Œ€๊ต) ๋ฐ ๋ณด ํ•˜๋ฅ˜(์‚ฌ๋ฌธ์ง„๊ต) ์ง€์ ์—์„œ ๋ชจ์˜๊ฐ’๊ณผ ์‹ค์ธก๊ฐ’์„ ๋น„๊ตํ•˜์˜€๋‹ค. 2022๋…„์˜ ์ˆ˜์œ„, ์ˆ˜์˜จ, DO, TOC, TN, NH4-N, NH3-N, TP, PO4-P, Chl-a, ์œ ํ•ด๋‚จ์กฐ๋ฅ˜ ์„ธํฌ์ˆ˜ ์‹ค์ธก๊ฐ’๊ณผ ๋ชจ์˜๊ฐ’์„ NSE, Rยฒ, RMSE, MAE ํ†ต๊ณ„ ์ง€ํ‘œ์™€ ์‹œ๊ณ„์—ด ์ฆ๊ฐ ํŒจํ„ด์„ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, ๋ชจ๋“  ํ•ญ๋ชฉ์—์„œ ์ ์ ˆํžˆ ์žฌํ˜„ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋ณด ๋ฐฉ๋ฅ˜๋Ÿ‰ ์กฐ์ ˆ์— ๋”ฐ๋ฅธ ์ˆ˜์œ„ ๋ณ€๋™ ๋ฐ ๊ณ„์ ˆ์— ๋”ฐ๋ฅธ ์ˆ˜์˜จ ๋ณ€ํ™”๊ฐ€ ์ ์ ˆํžˆ ์žฌํ˜„๋˜์—ˆ์œผ๋ฉฐ, ์ˆ˜์˜จ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ DO ๋†๋„ ๋ณ€๋™, ์œ ์ž…์›์˜ ์˜ํ–ฅ์— ๋”ฐ๋ฅธ TN, NH4-N, NH3-N ๋†๋„ ๋ณ€๋™, ์‹œ๊ธฐ์— ๋”ฐ๋ฅธ TP์™€ PO4-P ๋†๋„์˜ ์ฆ๊ฐ€ ์–‘์ƒ์ด ์ ์ ˆํ•˜๊ฒŒ ๋ชจ์˜๋˜์—ˆ๋‹ค. ์กฐ๋ฅ˜ ๋ฐœ์ƒ ์‹œ๊ธฐ์— ๋”ฐ๋ฅธ Chl-a ๋ณ€๋™ ๋ฐ ์œ ํ•ด๋‚จ์กฐ๋ฅ˜์˜ ์„ฑ์žฅ ํŒจํ„ด์„ ๋ฐ˜์˜ํ•œ ์œ ํ•ด๋‚จ์กฐ๋ฅ˜ ์„ธํฌ์ˆ˜๋„ ์‹ค์ธก๊ฐ’๊ณผ ์œ ์‚ฌํ•œ ๊ฒฝํ–ฅ์„ ๋‚˜ํƒ€๋ƒˆ๋‹ค.

์กฐ๋ฅ˜๊ฒฝ๋ณด์ œ ์šด์˜ ์ง€์ ์ธ ๊ฐ•์ •๊ณ ๋ น ์ง€์ ์—์„œ์˜ ์œ ํ•ด๋‚จ์กฐ๋ฅ˜ ์„ธํฌ์ˆ˜๋ฅผ ์˜ˆ์ธกํ•˜์—ฌ ๋ชจ๋ธ์˜ ์‹ ๋ขฐ๋„๋ฅผ ๊ฒ€์ฆํ•œ ๊ฒฐ๊ณผ, ์‹ค์ธก๊ฐ’์„ ์ ์ ˆํžˆ ๋ชจ์˜ํ•˜์˜€๋‹ค. ์ƒ์ž๊ทธ๋ฆผ์„ ํ†ตํ•ด ์‹ค์ธก๊ฐ’๊ณผ ๋ชจ์˜๊ฐ’์˜ ๋ถ„ํฌ๋ฅผ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, ๋ชจ์˜๊ฐ’์ด ๋‹ค์†Œ ๋†’๊ฒŒ ์˜ˆ์ธก๋˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์œผ๋‚˜ ์ „๋ฐ˜์ ์ธ ์˜ˆ์ธก ๋ฒ”์œ„๋Š” ์‹ค์ธก๊ฐ’๊ณผ ์œ ์‚ฌํ•˜์˜€๋‹ค. ํ™˜๊ฒฝ๋ถ€์˜ ์กฐ๋ฅ˜๊ฒฝ๋ณด ๊ธฐ์ค€์„ ์ ์šฉํ•˜์—ฌ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, ์‹ค์ธก๊ฐ’๊ณผ ๋ชจ์˜๊ฐ’์ด โ€˜๊ด€์‹ฌโ€™ ๋ฐ โ€˜๊ฒฝ๊ณ„โ€™ ๋‹จ๊ณ„๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ๋ณ€๋™ํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์ด๋ฉฐ ๋ชจ๋ธ์ด ์กฐ๋ฅ˜ ๋ฐœ์ƒ ์ˆ˜์ค€์„ ์ ์ ˆํžˆ ๋ฐ˜์˜ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

๋ณธ ์—ฐ๊ตฌ๋Š” ๋Œ€์ƒ ์ง€์—ญ์˜ ํ™˜๊ฒฝ์— ๋”ฐ๋ฅธ ์กฐ๋ฅ˜ ๊ตฐ์ง‘๋ณ„ ํŠน์„ฑ์„ ๋ฐ˜์˜ํ•œ ์œ ์ „์ž ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ธฐ๋ฐ˜์˜ ๋งค๊ฐœ๋ณ€์ˆ˜ ์ตœ์ ํ™”๋ฅผ ํ†ตํ•ด ์ง€์ ๋ณ„ ์กฐ๋ฅ˜ ๊ตฐ์ง‘์— ๋”ฐ๋ฅธ Chl-a ํ•จ๋Ÿ‰์˜ ์ฐจ์ด๋ฅผ ๋ฐ˜์˜ํ•จ์œผ๋กœ์จ ๋ชจ๋ธ์˜ ์‹ ๋ขฐ๋„๊ฐ€ ํ–ฅ์ƒ๋  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์˜€๋‹ค. ์ด๋Š” ์œ ํ•ด๋‚จ์กฐ๋ฅ˜ ์ค‘์‹ฌ์˜ ์กฐ๋ฅ˜๊ฒฝ๋ณด์ œ ์šด์˜์— ์žˆ์–ด ํ™˜๊ฒฝ ์กฐ๊ฑด์„ ๊ณ ๋ คํ•œ ์ˆ˜์น˜๋ชจ๋ธ ๊ธฐ๋ฐ˜ ์˜ˆ์ธก ๊ธฐ๋ฒ•์˜ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ์ œ์‹œํ•  ์ˆ˜ ์žˆ๋‹ค.

๊ทธ๋Ÿฌ๋‚˜ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์งˆ์†Œ ๋ฐ ์ธ์˜ ๋ฐ˜ํฌํ™” ์ƒ์ˆ˜, Chl-a:ํƒ„์†Œ ๋น„ ๋“ฑ์˜ ์ผ๋ถ€ ๋งค๊ฐœ๋ณ€์ˆ˜๊ฐ€ ๋ชจ๋“  ์กฐ๋ฅ˜ ๊ตฐ์ง‘์— ๋Œ€ํ•ด ์ผ์ •ํ•œ ๊ฐ’์œผ๋กœ ์„ค์ •๋˜์–ด ์กฐ๋ฅ˜ ๊ตฐ์ง‘ ๊ฐ„์˜ ์˜์–‘์—ผ๋ฅ˜ ํŠน์„ฑ์ด๋‚˜ ํƒ„์†Œ ์ „ํ™˜ ํšจ์œจ์˜ ์ฐจ์ด๊ฐ€ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜๋˜์ง€ ๋ชปํ•˜์˜€๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์กด์žฌํ•œ๋‹ค. ์ด๋กœ ์ธํ•ด ํŠน์ • ์‹œ๊ธฐ ๋˜๋Š” ์ง€์ ์—์„œ ๋ชจ์˜ ์˜ค์ฐจ๊ฐ€ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์กฐ๋ฅ˜ ๊ตฐ์ง‘๋ณ„ ๋งค๊ฐœ๋ณ€์ˆ˜ ์„ค์ •์˜ ๋ถˆํ™•์‹ค์„ฑ์ด ๋ชจ๋ธ ์˜ˆ์ธก์— ์˜ํ–ฅ์„ ๋ฏธ์น  ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ๋‹ค. ๋˜ํ•œ, ๋ถ€์œ ๋ฌผ์งˆ(Suspended Solids, SS)์€ ๊ด‘ ๊ฐ์‡  ๋ฐ ์กฐ๋ฅ˜ ์„ฑ์žฅ ์ œํ•œ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ˆ˜์งˆ ํ•ญ๋ชฉ์ด๋ฏ€๋กœ, ํ–ฅํ›„ SS์˜ ์‹œโ‹…๊ณต๊ฐ„์  ๋ถ„ํฌ์™€ SS์™€ ์กฐ๋ฅ˜ ์„ฑ์žฅ ๊ฐ„์˜ ์ƒ๊ด€์„ฑ์„ ๊ณ ๋ คํ•œ ๋ถ„์„์ด ํ•„์š”ํ•˜๋‹ค.

๋ณธ ์—ฐ๊ตฌ๋Š” ๋‹จ๊ธฐ๊ฐ„์˜ ๊ด€์ธก ์ž๋ฃŒ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ˆ˜ํ–‰๋˜์—ˆ์œผ๋ฏ€๋กœ, ์žฅ๊ธฐ์ ์ธ ๊ด€์ธก ์ž๋ฃŒ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์กฐ๋ฅ˜ ๊ตฐ์ง‘๋ณ„ ๋ณ€๋™ ํŠน์„ฑ์— ๋Œ€ํ•œ ๋ถ„์„์„ ๋”์šฑ ์ •๋ฐ€ํ•˜๊ฒŒ ์ˆ˜ํ–‰ํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ์ด์™€ ๋”๋ถˆ์–ด, ์กฐ๋ฅ˜ ๊ตฐ์ง‘๋ณ„ ์„ธํฌ๋‹น Chl-a ํ•จ๋Ÿ‰๋ฟ ์•„๋‹ˆ๋ผ ์กฐ๋ฅ˜ ์„ฑ์žฅ ์†๋„์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ตœ์  ์„ฑ์žฅ ์˜จ๋„, ์ตœ๋Œ€ ์„ฑ์žฅ๋ฅ  ๋“ฑ์˜ ์กฐ๋ฅ˜ ๋งค๊ฐœ๋ณ€์ˆ˜์— ๋Œ€ํ•œ ์ตœ์ ํ™” ๋ฐฉ์•ˆ๋„ ํ–ฅํ›„ ์—ฐ๊ตฌ์—์„œ ๊ณ ๋ ค๋˜์–ด์•ผ ํ•œ๋‹ค.

Acknowledgement

๋ณธ ์—ฐ๊ตฌ๋Š” 2022๋…„ ๊ตญ๋ฆฝํ™˜๊ฒฝ๊ณผํ•™์›์˜ ๋ณด ๊ตฌ๊ฐ„ ๊ด‘์—ญ ์กฐ๋ฅ˜ ์ •๋ฐ€ ๋ชจ๋‹ˆํ„ฐ๋ง(โ…ค) ์‚ฌ์—…(11-1480523-005031-01: NIER-SP2022-283)์˜ ์ž๋ฃŒ๋ฅผ ์ œ๊ณต๋ฐ›์•˜์œผ๋ฉฐ, ํ•œ๊ตญ์—ฐ๊ตฌ์žฌ๋‹จ์˜ 4๋‹จ๊ณ„ ๋‘๋‡Œํ•œ๊ตญ21์‚ฌ์—… ์ดํ™”์—ฌ์ž๋Œ€ํ•™๊ต ํ™˜๊ฒฝ๊ณตํ•™๊ณผ ใ€Œ์‹ ์ข… ์œ ํ•ด๋ฌผ์งˆ ๋Œ€์‘ ๋‹ค๋งค์ฒด ํ†ตํ•ฉ์ ‘๊ทผ๋ก  ๊ต์œก์—ฐ๊ตฌํŒ€ใ€์˜ ์ง€์›์„ ๋ฐ›์•„ ์ˆ˜ํ–‰๋œ ์—ฐ๊ตฌ์ž…๋‹ˆ๋‹ค.

References

1 
Ahn, J. M., Kim, J., Kwak, S., and Kang, T. (2023). Optimized microcystis prediction model using EFDC-NIER and LH-OAT method, KSCE Journal of Civil Engineering, 27(3), 1066-1076. https://doi.org/10.1007/s12205-023-1886-yDOI
2 
Bae, S. and Seo, D. (2018). Analysis and modeling of algal blooms in the Nakdong River, Korea, Ecological Modelling, 372, 53-63. https://doi.org/10.1016/j.ecolmodel.2018.01.019DOI
3 
Bozorg-Haddad, O., Soleimani, S., and Loรกiciga, H. A. (2017). Modeling water-quality parameters using genetic algorithmโ€“least squares support vector regression and genetic programming, Journal of Environmental Engineering, 143(7), 04017021. https://doi.org/10.1061/(ASCE)EE.1943-7870.001217DOI
4 
Ch, S. and Mathur, S. (2012). Particle swarm optimization trained neural network for aquifer parameter estimation, KSCE Journal of Civil Engineering, 16, 298-307. https://doi.org/10.1007/s12205-012-1452-5DOI
5 
Cho, J. H. (2011). Application of the QUAL2Kw model to a polluted river for automatic calibration and sensitivity analysis of genetic algorithm parameters, Journal of Environmental Impact Assessment, 20(3), 357-365. [Korean Literature] https://doi.org/10.14249/eia.2011.20.3.357DOI
6 
Cho, J. H. and Lee, J. H. (2006). Parameter optimization for runoff calibration of SWMM, Journal of Environmental Impact Assessment, 15(6), 435-441. [Korean Literature]Google Search
7 
Cho, J. H., Sung, K. S., and Ha, S. R. (2004). A river water quality management model for optimising regional wastewater treatment using a genetic algorithm, Journal of Environmental Management, 73(3), 229-242. https://doi.org/10.1016/j.jenvman.2004.07.004DOI
8 
Choi, H. G., Kim, D. I., Na, C. H., and Han, K. Y. (2012). Assessment of EFDC model for water quality analysis in Nakdong River, Journal of Korea Water Resources Association, 45(7), 685-696. [Korean Literature] https://doi.org/10.3741/JKWRA.2012.45.7.685DOI
9 
Choi, J., Min, J. H., and Kim, D. W. (2015). Three-dimensional algal dynamics modeling study in lake euiam based on limited monitoring data, Journal of Korean Society on Water Environment, 31(2), 181-195. [Korean Literature] http://dx.doi.org/10.15681/KSWE.2015.31.2.181DOI
10 
DSI LLC. (2024). EFDC+ Theory, Version 12., Published by DSI LLC, Edmonds WA, Available at https://www.eemodelingsystem.com/wp-content/Download/Documentation/EFDC Theory_Document_Ver_12.pdfGoogle Search
11 
Fadel, A., Sharaf, N., Siblini, M., Slim, K., and Kobaissi, A. (2019). A simple modelling approach to simulate the effect of different climate scenarios on toxic cyanobacterial bloom in a eutrophic reservoir, Ecohydrology & Hydrobiology, 19(3), 359-369. https://doi.org/10.1016/j.ecohyd.2019.02.005DOI
12 
Gad, A. F. (2024). Pygad: An intuitive genetic algorithm python library, Multimedia Tools and Applications, 83(20), 58029-58042. https://doi.org/10.1007/s11042-023-17167-yDOI
13 
Holland, J. H. (1973). Genetic algorithms and the optimal allocation of trials, SIAM Journal on Computing, 2(2), 88-2019105. https://doi.org/10.1137/0202009DOI
14 
Hwang, S., Shin, S. B., Song, J. H., Yoon, K. S., and Kang, M. S. (2018). Simulating arsenic concentration changes in small agricultrual reservoir using EFDC-WASP linkage model, Journal of the Korean Society of Agricultural Engineers, 60(5), 29-40. [Korean Literature] https://doi.org/10.5389/KSAE.2018.60.5.29DOI
15 
Jeon, J. H., Chung, S. W., Park, H. S., and Jang, J. R. (2011). Evaluation of EFDC for the simulations of water quality in Saemangeum Reservoir, Journal of Korean Society on Water Environment, 27(4), 445-460. [Korean Literature]Google Search
16 
Jung, W. S., Kim, S. E., and Kim, Y. D. (2021). Analysis of influential factors of cyanobacteria in the mainstream of Nakdong River using random forest, Journal of Wetlands Research, 23(1), 27-34. [Korean Literature] https://doi.org/10.17663/JWR.2021.23.1.27DOI
17 
Katoch, S., Chauhan, S. S., and Kumar, V. (2021). A review on genetic algorithm: Past, present, and future, Multimedia Tools and Applications, 80, 8091-8126. https://doi.org/10.1007/s11042-020-10139-6DOI
18 
Kim, E., Park, C., Na, M., Park, H., and Kim, B. (2018). Impact analysis of tributaries and simulation of water pollution accident scenarios in the water source section of Han River using 3-D hydrodynamic model, Journal of Korean Society on Water Environment, 34(4), 363-374. [Korean Literature] https://doi.org/10.15681/KSWE.2018.34.4.363DOI
19 
Kim, H. J., Kwak, S., Yoon, M., Kim, I. K., Kim, Y. S., and Kim, D. S. (2019). Effect of a floating photovoltaic system (FPV) at Chungju Dam (Cheongpung Lake) on water quality, Korean Journal of Ecology and Environment, 52(4), 293-305. [Korean Literature] https://doi.org/10.11614/KSL.2019.52.4.293DOI
20 
Kim, J. W. and Cho, Y. G. (2021). A study on the short-term water quality change in the lower Yeongsan River, Journal of the Korean Society for Marine Environment & Energy, 24 (2), 72-79. [Korean Literature] https://doi.org/10.7846/JKOSMEE.2021.24.2.72DOI
21 
Kim, J., Kim, H., Kim, K., and Ahn, J. M. (2024). Assessing the applicability of deep-learning method for predicting Cyanobacteria in a regulated river, Journal of Environmental Engineering, 150(5), 04024012. https://doi.org/10.1061/JOEEDU.EEENG-7427DOI
22 
Kim, J., Lee, T., and Seo, D. (2017). Algal bloom prediction of the lower Han River, Korea using the EFDC hydrodynamic and water quality model, Ecological Modelling, 366, 27-36. https://doi.org/10.1016/j.ecolmodel.2017.10.015DOI
23 
Kim, M. S. and Han, J. S. (2003). Study estimation of optimal parameter on water quality model using artificial intelligence technical methods, Journal of Korean Society of Environmental Administration, 9(1), 1-9. [Korean Literature]Google Search
24 
Kwak, I., Choi, B., Jeon, H., Kim, S., Bae, J., Kim, S., and Kim, J. (2020). Analysis of water quality improvement effect by securing water quality characteristics and flow rate in the Geumho River, Journal of Environmental Impact Assessment, 29(6), 414-429. [Korean Literature] https://doi.org/10.14249/eia.2020.29.6.414DOI
25 
Lee, H. K. (2008). Improvement of convergence properties for genetic algorithms, Journal of Advanced Navigation Technology, 12(5), 412-419. [Korean Literature]Google Search
26 
Lee, T., Kim, S., Lee, J., Kim, K., Lee, H., and Kim, D. (2024). A study on algal bloom forecast system based on hydro-meteorological factors in the mainstream of Nakdong River using machine learning, Journal of Wetlands Research, 26(3), 245-253. [Korean Literature] https://doi.org/10.17663/JWR.2024.26.3.245DOI
27 
Liang, S., Han, S., and Sun, Z. (2015). Parameter optimization method for the water quality dynamic model based on data-driven theory, Marine Pollution Bulletin, 98(1-2), 137-147. https://doi.org/10.1016/j.marpolbul.2015.07.004DOI
28 
Lim, S., Gim, H. J., Lee, E., Lee, S. Y., Lee, W. Y., Lee, Y. H., Cassardo, C., and Park, S. K. (2021). Optimization of Snow-Related Parameters in Noah Land Surface Model (v3. 4.1) Using Micro-Genetic Algorithm (v1. 7a), Geoscientific Model Development Discussions, 2021, 1-20. https://doi.org/10.5194/gmd-15-8541-2022DOI
29 
Manriquez-Padilla, C. G., Cueva-Perez, I., Dominguez-Gonzalez, A., Elvira-Ortiz, D. A., Perez-Cruz, A., and Saucedo-Dorantes, J. J. (2023). State of charge estimation model based on genetic algorithms and multivariate linear regression with applications in electric vehicles, Sensors, 23(6), 2924. https://doi.org/10.3390/s23062924DOI
30 
Ministry of Environment (ME). (2023a). 2022 report on the occurrence and response to algae (Green Tide) in Korea, Ministry of Environment, Ministry of Environment. [Korean Literature]Google Search
31 
Ministry of Environment (ME). (2023b). 2022 statistics of water works, Ministry of Environment. [Korean Literature]Google Search
32 
Ministry of Environment (ME). (2024a). 2023 report on the occurrence and response to algae (green tide) in Korea, Ministry of Environment, Ministry of Environment. [Korean Literature]Google Search
33 
Ministry of Environment (ME). (2024b). Water resources Management Information System (WAMIS), http://www.wamis.go.kr/ (accessed Dec. 2024)Google Search
34 
Ministry of Land, Transport and Maritime Affairs (MLTMA). (2009a). Basic Plan(rivised) for river maintenance of Nakdong River: Nakdong River(from the confluence with the Geumho River to the estuary), Miryanggang, and Yangsancheon, Ministry of Land, Transport and Maritime Affairs. [Korean Literature]Google Search
35 
Ministry of Land, Transport and Maritime Affairs (MLTMA). (2009b). Basic Plan(rivised) for river maintenance of Nakdong River: Nakdong River(from the national river starting point to the confluence with the Geumho River), Ministry of Land, Transport and Maritime Affairs. [Korean Literature]Google Search
36 
Nash, J. E. and Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I โ€” A discussion of principles, Journal of Hydrology, 10(3), 282-290. https://doi.org/10.1016/0022-1694(70)90255-6DOI
37 
National Institute of Environment Research (NIER). (2022). Intensive monitoring on the regional distribution of Phytoplankton in the Weir Areas(V), National Institute of Environment Research. [Korean Literature]Google Search
38 
Noh, S., Park, H., Choi, H., and Lee, J. (2014). Effect of climate change for cyanobacteria growth pattern in Chudong station of Lake Daechung, Journal of Korean Society on Water Environment, 30(4), 377-385. [Korean Literature] https://doi.org/10.15681/KSWE.2014.30.4.377DOI
39 
Oh, H. Y., Kim, E. J., and Choi, J. H. (2023). Analysis of behavior characteristics of water pollutants in Yeongsan River using 3D hydraulic model, Journal of Korean Society on Water Environment, 39(6), 439-450. [Korean Literature] https://doi.org/10.15681/KSWE.2023.39.6.439DOI
40 
Park, D. Y., Kim, S. J., Park, H. S., and Chung, S. W. (2019a). Simulations of the effect of flow control and phosphate loading on the reduction of algae biomass in Gangjeong-Goryong Weir, Journal of Environmental Impact Assessment, 28(6), 507-524. [Korean Literature] https://doi.org/10.14249/eia.2019.28.6.507DOI
41 
Park, D. Y., Park, H. S., Kim, S. J., and Chung, S. W. (2019b). Analysis of water quality variation by lowering of water level in Gangjeong-Goryong Weirin Nakdong River, Journal of Environmental Impact Assessment, 28(3), 245-262. [Korean Literature] https://doi.org/10.14249/eia.2019.28.3.245DOI
42 
Park, H. K. (2014). Elemental stoichiometry of natural phytoplankton communities in reservoirs of the Han River systems, Journal of Korean Society on Water Environment, 30(6), 665-672. [Korean Literature] https://doi.org/10.15681/KSWE.2014.30.6.665DOI
43 
Pelletier, G. J., Chapra, S. C., and Tao, H. (2006). QUAL2Kwโ€“A framework for modeling water quality in streams and rivers using a genetic algorithm for calibration, Environmental Modelling and Software, 21(3), 419-425. https://doi.org/10.1016/j.envsoft.2005.07.002DOI
44 
Ranjbar, M. H., Hamilton, D. P., Etemad-Shahidi, A., and Helfer, F. (2021). Individual-based modelling of cyanobacteria blooms: Physical and physiological processes, Science of the Total Environment, 792, 148418. https://doi.org/10.1016/j.scitotenv.2021.148418DOI
45 
Seo, D. I., Nam, G. S., Lee, S. H., Lee, E. H., Kim, M., Choi, J. Y., and Chang, K. H. (2013). Plankton community in weir section of the Nakdong River and its relation with selected environmental factors, Korean Journal of Environmental Biology, 31(4), 362-369. [Korean Literature] http://dx.doi.org/10.11626/KJEB.2013.31.4.362DOI
46 
Seo, D., Kim, J., and Kim, J. (2020). Analysis of influence on water quality and harmful algal blooms due to weir gate control in the Nakdong River, Geum River, and Yeongsan River, Journal of Korea Water Resources Association, 53(10), 877-887. [Korean Literature] https://doi.org/10.3741/JKWRA.2020.53.10.877DOI
47 
Shin, C. M., Kim, D., and Song, Y. (2019). Analysis of hydraulic characteristics of Yeongsan river and estuary using EFDC model, Journal of Korean Society on Water Environment, 35(6), 580-588. [Korean Literature] https://doi.org/10.15681/KSWE.2019.35.6.580DOI
48 
Shin, C. M., Min, J. H., Park, S. Y., Choi, J., Park, J. H., Song, Y. S., and Kim, K. (2017). Operational water quality forecast for the Yeongsan river using EFDC model, Journal of Korean Society on Water Environment, 33(2), 219-229. [Korean Literature] https://doi.org/10.15681/KSWE.2017.33.2.219DOI
49 
Shin, H. J. and Lee, O. M. (2014). The dynamic of phytoplankton communities and the biological water quality assessment at three artificial weirs in downstream of Namhan-river, Journal of Korean Society on Water Environment, 30(6), 612-621. [Korean Literature] https://doi.org/10.15681/KSWE.2014.30. 6.612DOI
50 
Tetra Tech. (2006). A hydrodynamic and water quality model for the Lower Charles River Basin, Massachusetts, Tetra Tech.Google Search
51 
Woo, C. Y., Yun, S. L., Kim, S. G., and Lee, W. T. (2020). Occurrence of harmful Blue-green algae at algae alert system and water quality forecast system sites in Daegu and Gyeongsangbuk-do between 2012 and 2019, Journal of Korean Society of Environmental Engineers, 42, 664-673. [Korean Literature] https://doi.org/10.4491/KSEE.2020.42.12.664DOI
52 
Wu, G. and Xu, Z. (2011). Prediction of algal blooming using EFDC model: Case study in the Daoxiang Lake, Ecological Modelling, 222(6), 1245-1252. https://doi.org/10.1016/j.ecolmodel.2010.12.021DOI
53 
Xu, S., He, G., Fang, H., Bai, S., and Wu, X. (2022). Parameter uncertainty and sensitivity analysis of the three Gorges Reservoir and Xiangxi River EFDC model, Journal of Hydrology, 610, 127881. https://doi.org/10.1016/j.jhydrol.2022.127881DOI
54 
Yu, N., Kim, S., Yun, J., Seo, D., and Hwang, H. (2024). A study on the causal analysis and reduction measures of blue-green algae using the EFDC model, Journal of Korea Water Resources Association, 57(10), 797-808. [Korean Literature] https://doi.org/10.3741/JKWRA.2024.57.10.797DOI
55 
Yun, Y., Jang, E., Park, H. S., and Chung, S. W. (2018). Evaluation of eutrophication and control alternatives in Sejong weir using EFDC model, Journal of Environmental Impact Assessment, 27(6), 548-561. [Korean Literature] https://doi.org/10.14249/eia.2018.27.6.548DOI