The Journal of
the Korean Society on Water Environment

The Journal of
the Korean Society on Water Environment

Bimonthly
  • ISSN : 2289-0971 (Print)
  • ISSN : 2289-098X (Online)
  • KCI Accredited Journal

Editorial Office





Kyeongan stream, Pollutant load delivery model, Total maximum daily load, Water quality

1. Introduction

์œ ์—ญ์—์„œ ๋ฐœ์ƒ๋œ ์˜ค์—ผ๋ฌผ์งˆ์€ ์‚ญ๊ฐ์‹œ์„ค์„ ๊ฑฐ์ณ ๋ฐฐ์ถœ(๋ฐฐ์ถœ๋ถ€ํ•˜๋Ÿ‰, discharge load)๋˜์–ด ์œ ํ•˜๊ณผ์ •์— ์ฆ๊ฐ๋œ ํ›„ ๊ณต๊ณต์ˆ˜์—ญ์˜ ํŠน์ • ์ง€์ ์— ๋„๋‹ฌ(์œ ๋‹ฌ๋ถ€ํ•˜๋Ÿ‰, delivery load)ํ•˜๋ฉฐ, ์œ ๋‹ฌ์œจ(delivery ratio)์€ ํŠน์ • ์ง€์ ์˜ ์œ ๋‹ฌ๋ถ€ํ•˜๋Ÿ‰์„ ๋ฐฐ์ถœ๋ถ€ํ•˜๋Ÿ‰์œผ๋กœ ๋‚˜๋ˆˆ ๋น„์œจ๋กœ ์ •์˜๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์˜ค์—ผ๋ฌผ์งˆ์˜ ๊ฑฐ๋™์€ ์˜ค์—ผ์›์˜ ์œ ํ˜•์€ ๋ฌผ๋ก  ๊ธฐ์ƒ, ์ง€ํ˜• ๋“ฑ ๋‹ค์–‘ํ•œ ๋ฌผ๋ฆฌ, ํ™”ํ•™, ์ƒ๋ฌผํ•™์  ์š”์ธ์— ์˜ํ–ฅ์„ ๋ฐ›๋Š”๋‹ค. ๋”ฐ๋ผ์„œ ์œ ๋‹ฌ์œจ์€ ์ƒ์ˆ˜๊ฐ€ ์•„๋‹ˆ๋ผ ๋ณ€์ˆ˜๋กœ์„œ ๊ณ ๋ ค๋˜์–ด์•ผ ํ•œ๋‹ค.

์˜ค์—ผ๋ฌผ์งˆ์˜ ์œ ๋‹ฌ๊ณผ์ •์„ ๋ชจ์˜ํ•˜๋Š” ๋ชจํ˜•์€ ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€๋กœ ๊ตฌ๋ถ„๋œ๋‹ค. ์ฒซ์งธ๋Š” ์›๋‹จ์œ„๋ฒ•์œผ๋กœ ์ถ”์ •๋œ ๋ฐฐ์ถœ๋ถ€ํ•˜๋Ÿ‰๊ณผ ๊ด€์ธก์œ ๋Ÿ‰์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๊ฐ„๋‹จํ•œ ๊ฒฝํ—˜์‹ ํ˜•ํƒœ์˜ ์œ ๋‹ฌ๋ชจํ˜•์ด๋ฉฐ, ๋‘˜์งธ๋Š” ๋‹ค์–‘ํ•œ ์š”์ธ์ด ๊ณ ๋ ค๋œ ์ง€๋ฐฐ๋ฐฉ์ •์‹ ๊ธฐ๋ฐ˜์˜ ๋ถ„ํฌํ˜• ๋˜๋Š” ์ค€๋ถ„ํฌํ˜• ์œ ์—ญ๋ชจ๋ธ์ด๋‹ค. ํ›„์ž์ธ ์œ ์—ญ๋ชจ๋ธ์€ ๊ตฌ์ฒด์ ์ธ ์ˆ˜๋ฌธ/์ˆ˜์งˆ ๋ชจ์˜๊ณผ์ •์„ ๋ฌ˜์‚ฌํ•  ์ˆ˜ ์žˆ์œผ๋‚˜, ๋ชจ์˜ ๊ณผ์ •์ด ๋ณต์žกํ•˜๋ฉฐ ๋ณด์ • ๊ณผ์ •์— ๋งŽ์€ ์‹œ๊ฐ„๊ณผ ๋…ธ๋ ฅ์„ ์š”๊ตฌํ•˜๋Š” ๋‹จ์ ์ด ์žˆ๋‹ค(Kim et al., 2018). ๋˜ํ•œ ๋งŽ์€ ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ๊ณ ๋ คํ•˜๋Š” ๊ณผ์ •์—์„œ ๋ถˆํ™•์‹ค์„ฑ์ด ์ปค์งˆ ์ˆ˜ ์žˆ๋‹ค.

๊ฒฝํ—˜์‹ ํ˜•ํƒœ์˜ ์œ ๋‹ฌ๋ชจํ˜•์—์„œ๋Š” ์œ ๋‹ฌ๊ณผ์ •์˜ ๋งŽ์€ ์š”์ธ๋“ค์ด ์†Œ์ˆ˜์˜ ๊ณ„์ˆ˜์— ํ•จ์ถ•(lumped)๋˜์–ด ๋ฐ˜์˜๋˜๊ธฐ ๋•Œ๋ฌธ์— ์ •ํ™•๋„์™€ ์ •๋ฐ€๋„๊ฐ€ ๋‚ฎ์„ ์ˆ˜ ์žˆ์œผ๋‚˜ ๊ณ„์‚ฐ๊ณผ์ •์ด ์‰ฝ๊ณ  ๊ฒฐ๊ณผ์— ๋Œ€ํ•œ ํ•ด์„์ด ์ง๊ด€์ ์ด๋ผ๋Š” ์ ์—์„œ ์žฅ์ ์ด ์žˆ๋‹ค. ๋˜ํ•œ SWAT์ด๋‚˜ HSPF์™€ ๊ฐ™์€ ์œ ์—ญ๋ชจ๋ธ์—์„œ๋„ ์ ์˜ค์—ผ์›์œผ๋กœ๋ถ€ํ„ฐ ๋ฐฐ์ถœ๋œ ์˜ค์—ผ๋ฌผ์งˆ์˜ ์œ ๋‹ฌ๋ถ€ํ•˜๋Ÿ‰์€ ๋ณ„๋„๋กœ ํ•ด์„๋˜์–ด์•ผ ํ•˜๋ฏ€๋กœ ์ด ๊ฒฝ์šฐ์—๋„ ์œ ๋‹ฌ๋ชจํ˜•์ด ํ•„์š”ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ธฐ์กด์— ์•Œ๋ ค์ง„ ์—ฌ๋Ÿฌ ์œ ํ˜•์˜ ์œ ๋‹ฌ๋ชจํ˜•์— ๋Œ€ํ•œ ์ ์šฉ์„ฑ๊ณผ ๋ฌธ์ œ์ ์„ ๊ฒ€ํ† ํ•˜๊ณ  ์ด๋ฅผ ๋ณด์™„ํ•œ ๋ชจํ˜•์„ ๊ฐœ๋ฐœํ•˜์—ฌ ์ ์šฉํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์œ ๋‹ฌ๋ชจํ˜•์€ ์ฃผ๋กœ ์œ ๋Ÿ‰๊ณผ ์ˆ˜์งˆ์ด ๊ณ„์ธก๋œ ์œ ์—ญ์˜ ์ž๋ฃŒ๋กœ๋ถ€ํ„ฐ ๋„์ถœ๋˜๋ฉฐ ํ•ด๋‹น ์œ ์—ญ์˜ ์žฅ๋ž˜ ์ˆ˜์งˆ์„ ์˜ˆ์ธกํ•˜๊ฑฐ๋‚˜ ๋ฏธ๊ณ„์ธก ์œ ์—ญ์˜ ์œ ๋‹ฌ ๋†๋„๋ฅผ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค.

2. Materials and Methods

2.1 ์ž๋ฃŒ์ˆ˜์ง‘

๋ถ„์„์— ์‚ฌ์šฉ๋œ ์ž๋ฃŒ๋Š” ํ•œ๊ฐ•์ˆ˜๊ณ„์˜ ๊ฒฝ์•ˆA์™€ ๊ฒฝ์•ˆB ์˜ค์—ผ์ด๋Ÿ‰๊ด€๋ฆฌ ๋‹จ์œ„์œ ์—ญ ๋ง๋‹จ์ง€์ ์—์„œ 2021๋…„๋ถ€ํ„ฐ 2023๋…„๊นŒ์ง€ ์ธก์ •๋œ ์œ ๋Ÿ‰๊ณผ ์ˆ˜์งˆ๋กœ ํ™˜๊ฒฝ๋ถ€ ๋ฌผํ™˜๊ฒฝ์ •๋ณด์‹œ์Šคํ…œ(http://water.nier.go.kr)์—์„œ ์ถ”์ถœํ•˜์˜€๋‹ค. ์œ ์—ญ๋ฉด์ , ๊ฐœ๋ณ„์ ๋ฐฐ์ถœ์œ ๋Ÿ‰ ๋ฐ ๋ถ€ํ•˜๋Ÿ‰, ์›๋‹จ์œ„ ๊ธฐ๋ฐ˜ ๋น„์ ๋ฐฐ์ถœ๋ถ€ํ•˜๋Ÿ‰ ์ž๋ฃŒ๋Š” ์šฉ์ธ์‹œ์™€ ๊ด‘์ฃผ์‹œ์˜ ์˜ค์—ผ์ด๋Ÿ‰๊ด€๋ฆฌ์‹œํ–‰๊ณ„ํš ์ดํ–‰ํ‰๊ฐ€ ๋ณด๊ณ ์„œ์—์„œ ๋ฐœ์ทŒํ•˜์˜€๋‹ค. ์—ฌ๊ธฐ์—์„œ ๊ฐœ๋ณ„์ ๋ฐฐ์ถœ์ด๋ž€ ํ˜„ํ–‰ ์ˆ˜์งˆ์˜ค์—ผ์ด๋Ÿ‰๊ด€๋ฆฌ๊ธฐ์ˆ ์ง€์นจ์˜ ๊ฐœ๋ณ„๋ฐฐ์ถœ์— ํ•ด๋‹นํ•˜๋Š” ๊ฒƒ์œผ๋กœ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์˜ค์—ผ์›์˜ ์œ ํ˜•์„ ๋ช…ํ™•ํžˆ ๊ตฌ๋ถ„ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ˆ˜์ •ํ•˜์—ฌ ์ ์šฉํ•œ ์šฉ์–ด์ด๋‹ค.

ํ™˜๊ฒฝ๊ธฐ์ดˆ์‹œ์„ค ๋ฐฉ๋ฅ˜์œ ๋Ÿ‰ ๋ฐ ๋†๋„๋Š” ์ „๊ตญ์˜ค์—ผ์›์กฐ์‚ฌ(https://wems.nier.go.kr)์˜ ์ผ๋ณ„ ์ž๋ฃŒ์—์„œ ์ถ”์ถœํ•˜์˜€๋‹ค. ํ•ด๋‹น ํ™˜๊ฒฝ๊ธฐ์ดˆ์‹œ์„ค์€ ์ผ ์ฒ˜๋ฆฌ์šฉ๋Ÿ‰์ด 500 m3 ์ด์ƒ์ธ 11๊ฐœ ํ•˜์ˆ˜์ฒ˜๋ฆฌ์žฅ์œผ๋กœ ๊ฒฝ์•ˆA ๋‹จ์œ„์œ ์—ญ์˜ 5๊ฐœ์†Œ(์šฉ์ธ, ์˜คํฌ, ๋ชจํ˜„, ์šฉ์ธ๋™๋ถ€, ์ถ”๊ณ„), ๊ฒฝ์•ˆB ๋‹จ์œ„์œ ์—ญ์˜ 6๊ฐœ์†Œ(๊ด‘์ฃผ์‹œ, ๊ณค์ง€์•”, ์–‘๋ฒŒ, ์‚ผ๋ฆฌ, ๋„์ฒ™, ๋งค์‚ฐ)์˜€๋‹ค. ๊ฐœ๋ณ„์ ๋ฐฐ์ถœ๋ถ€ํ•˜๋Ÿ‰๊ณผ ๋น„์ ๋ฐฐ์ถœ๋ถ€ํ•˜๋Ÿ‰์€ ๊ฐ ํ•ด์˜ 12์›” ๋ง ๊ธฐ์ค€์œผ๋กœ ์‚ฐ์ถœ๋œ ๊ฒƒ์ด๋ฏ€๋กœ ํŠน์ • ์ผ์ž์˜ ํ•ด๋‹น ๊ฐ’์€ ์ผ๋ณ„ ๋ณด๊ฐ„๋ฒ•์œผ๋กœ ์‚ฐ์ถœํ•˜์—ฌ ์ ์šฉํ•˜์˜€๋‹ค.

2.2 ์œ ๋‹ฌ๋ชจํ˜• ๋„์ถœ

๊ธฐ์กด์— ๋ณด๊ณ ๋œ ์˜ค์—ผ๋ถ€ํ•˜ ์œ ๋‹ฌ๋ชจํ˜•์€ ๊ฐ€์žฅ ๋‹จ์ˆœํ•œ L-Q (๋ถ€ํ•˜-์œ ๋Ÿ‰) ๋ชจํ˜•์„ ๋น„๋กฏํ•˜์—ฌ ๋‹ค์ธ์ž๋ฅผ ๊ณ ๋ คํ•œ ๋‹ค์†Œ ๋ณต์žกํ•œ ์œ ํ˜•์— ์ด๋ฅด๊ธฐ๊นŒ์ง€ ๋‹ค์–‘ํ•˜๋‹ค(Table 1).

๋ฏธ๊ตญ USGS (United States Geological Survey)์—์„œ๋Š” ์œ ๋Ÿ‰, ์œ ๋Ÿ‰ ๋ฐฑ๋ถ„์œ„, ์‹ญ์ง„์‹œ๊ฐ„(decimal time)์˜ ์กฐํ•ฉ์œผ๋กœ ์œ ๋‹ฌ๋ถ€ํ•˜๋Ÿ‰์„ ๋ชจ์˜ํ•˜๋Š” 11๊ฐ€์ง€ ๋กœ๊ทธ ์„ ํ˜• ํšŒ๊ท€๋ชจํ˜•(LOAD ESTimation, LOADEST)์„ ๊ฐœ๋ฐœํ•˜์˜€์œผ๋ฉฐ(Runkel et al., 2004), ์ด๋Š” ์šฐ๋ฆฌ๋‚˜๋ผ์—์„œ๋„ ๋‹ค์–‘ํ•œ ์—ฐ๊ตฌ์ž๋“ค์— ์˜ํ•ด ์ด์šฉ ๋ฐ ํ‰๊ฐ€๋˜๊ณ  ์žˆ๋‹ค(Kim et al., 2018). C-Q (๋†๋„-์œ ๋Ÿ‰) ๋ชจํ˜•์€ ์œ ๋Ÿ‰์„ ๊ณฑํ•˜๋ฉด L-Q ๋ชจํ˜•์œผ๋กœ ๋ณ€ํ˜•๋  ์ˆ˜ ์žˆ๋Š”๋ฐ, Westfall et al. (2025)์€ ๋ฌผ ํ๋ฆ„์˜ ์œ ํ˜•์— ๋”ฐ๋ผ ๋‹ค์–‘ํ•œ C-Q ๋ชจํ˜•์„ ์ œ์‹œํ•œ ๋ฐ” ์žˆ๋‹ค.

L-Q ๋˜๋Š” C-Q ๋ชจํ˜•์€ ๋ถ€ํ•˜๋Ÿ‰์ด๋‚˜ ์ˆ˜์งˆ์˜ ์œ ๋Ÿ‰์˜์กด์„ฑ ๋ฐ ๊ณ„์ ˆ์„ฑ์„ ๋ถ„์„ํ•˜๊ฑฐ๋‚˜ ์œ ๋Ÿ‰์˜ ๋ณ€๋™์„ ๋ฐฐ์ œํ•œ ์กฐ๊ฑด์—์„œ ์ˆ˜์งˆ์˜ ์žฅ๊ธฐ๋ณ€ํ™”๋ฅผ ๋ชจ์˜ํ•˜๋Š”๋ฐ ํ™œ์šฉ๊ฐ€๋Šฅํ•˜๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์œ ์—ญ ๋‚ด ์˜ค์—ผ๋ฌผ์งˆ์˜ ๋ฐฐ์ถœ๋ถ€ํ•˜๋Ÿ‰์„ ๊ณ ๋ คํ•˜์ง€ ์•Š๋Š” ๋ชจํ˜•์€ ๋ณต์žก๋„์— ์ƒ๊ด€์—†์ด ์˜ค์—ผ์› ๋ณ€ํ™”๋‚˜ ๊ด€๋ฆฌ์— ๋”ฐ๋ฅธ ์ˆ˜์งˆ ์˜ํ–ฅ์„ ํŒ๋‹จํ•˜๋Š”๋ฐ ์ ์šฉ๋  ์ˆ˜ ์—†๋‹ค.

์œ ์—ญ์˜ ์˜ค์—ผ๋ฌผ์งˆ ๋ฐฐ์ถœ๋ถ€ํ•˜๋ฅผ ๊ณ ๋ คํ•œ ์œ ๋‹ฌ๋ชจํ˜•์€ L-Q๋‚˜ C-Q ๋ชจํ˜•์— ๋น„ํ•ด์„œ ์—ฐ๊ตฌ๋œ ๋ฐ”๊ฐ€ ์ ๋‹ค. Ha and Bae (2003), Ha et al. (2007)์€ ๋ฐฐ์ถœ๋œ ์˜ค์—ผ๋ฌผ์งˆ์ด ์œ ์—ญ ํ˜•์ƒ๊ณ„์ˆ˜๋ฅผ ์ ์šฉํ•œ ์ง€์ˆ˜๊ฐ์†Œ ์‹์— ๋”ฐ๋ผ ์œ ๋‹ฌ๋˜๋Š” ๊ฒƒ์œผ๋กœ ๊ฐ€์ •ํ•œ ๊ด€๊ณ„์‹์„ ์ œ์•ˆํ•œ ๋ฐ” ์žˆ๋‹ค. Eom (2004)์€ ๋ฐฐ์ถœ๋ถ€ํ•˜๋Ÿ‰, ์œ ์ถœ๊ณ ์˜ ์—ญ์ˆ˜, ์œ ์—ญ ํ˜•์ƒ๊ณ„์ˆ˜, ์œ ๋‹ฌ๊ฑฐ๋ฆฌ๋ฅผ ์กฐํ•ฉํ•œ ๋ชจํ˜•์„ ์ ์šฉํ•˜์˜€๋‹ค. Yoon et al. (2007)์€ ๋ฐœ์ƒ๋ถ€ํ•˜๋Ÿ‰๊ณผ ์ฒ˜๋ฆฌํšจ์œจ ๋ฐ ์œ ์ถœ๊ณ ๋ฅผ ๊ณ ๋ คํ•œ ๋ชจํ˜•์„ ์ œ์•ˆํ•˜์˜€๋Š”๋ฐ, ์ด๋Š” ๊ณง ๋ฐฐ์ถœ๋ถ€ํ•˜๋Ÿ‰๊ณผ ์œ ๋Ÿ‰์„ ๊ณ ๋ คํ•œ ๋‹จ์ˆœํ•œ ๊ด€๊ณ„์‹์— ํ•ด๋‹น๋œ๋‹ค.

Park et al. (2007)์€ ๋ฐฐ์ถœ๋ถ€ํ•˜๋ฅผ ์ ๋ฐฐ์ถœ๋ถ€ํ•˜์™€ ๋น„์ ๋ฐฐ์ถœ๋ถ€ํ•˜๋กœ ๊ตฌ๋ถ„ํ•˜๊ณ  ์œ ๋‹ฌ๊ฑฐ๋ฆฌ์™€ ๋น„์ ์œ ์ถœ๊ณ ๋ฅผ ๊ณ ๋ คํ•˜์˜€๋‹ค. Kong and Jung (2015)์€ ์ ๋ฐฐ์ถœ๋ถ€ํ•˜๋ฅผ ํ™˜๊ฒฝ๊ธฐ์ดˆ์‹œ์„ค ๋ฐฉ๋ฅ˜๋ถ€ํ•˜์™€ ๊ฐœ๋ณ„์ ๋ฐฐ์ถœ๋ถ€ํ•˜๋กœ ์„ธ๋ถ„ํ•˜๊ณ  ๋น„์ ๋ฐฐ์ถœ๋ถ€ํ•˜์™€ ์œ ์ถœ๊ณ ๋ฅผ ๊ณ ๋ คํ•˜์˜€๋‹ค. Kong et al. (2015)์€ Kong and Jung (2015)์˜ ๋ชจํ˜•์— Cohn et al. (1992)์˜ ๋กœ๊ทธ-์„ ํ˜•๋ชจํ˜•์˜ ๊ณ„์ ˆํ•จ์ˆ˜๋ฅผ ์ ์šฉํ•˜์˜€๋‹ค. ์ด์ƒ์˜ ๋‘ ๋ชจํ˜•์€ ๊ฐ๊ฐ ์ƒˆ๋งŒ๊ธˆ ์œ ์—ญ๊ณผ ํ•œ๊ฐ•์ˆ˜๊ณ„์˜ ๊ฒฝ์•ˆ์ฒœ ์œ ์—ญ์— ์ ์šฉ๋˜์—ˆ์œผ๋‚˜ ์•„์ง ํ•™์ˆ ์ง€์— ๋ณด๊ณ ๋œ ๊ฒƒ์€ ์•„๋‹ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ƒˆ๋กœ์ด ์ œ์‹œ๋˜๋Š” ๋ชจํ˜•์€ Cohn et al. (1992)์˜ ๋กœ๊ทธ-์„ ํ˜• ๋ชจํ˜•์„ ์†์„ฑ๋ณ„๋กœ ์„ธ๋ถ„ํ•˜์—ฌ Kong et al. (2015)์˜ ์‹์— ์กฐํ•ฉํ•œ ๊ฒƒ์œผ๋กœ(Table 2), ์œ ๋‹ฌ๋ถ€ํ•˜(L, delivery load)-์œ ๋Ÿ‰(Q, flowrate)-๋ฐฐ์ถœ๋ถ€ํ•˜(L, discharge load)-๊ณ„์ ˆ์„ฑ(S, seasonality)์„ ๊ณ ๋ คํ•˜๋ฏ€๋กœ LQLS๋กœ ์•ฝ์นญํ•˜๊ณ ์ž ํ•œ๋‹ค.

Cohn et al. (1992)์€ ์ˆ˜์งˆ($C$)๊ณผ ์œ ๋Ÿ‰($Q$) ๋ฐ ๋ˆ„์ ์ผ์ˆ˜์˜ ์‹ญ์ง„์ˆ˜ ๊ฐ’($T$)์˜ ๊ด€๊ณ„๋ฅผ ๋กœ๊ทธ-์„ ํ˜•๋ชจํ˜•์œผ๋กœ ์ œ์‹œํ•œ ๋ฐ” ์žˆ๋‹ค(์‹ 1). ์ด ์‹์—์„œ $\widetilde{Q}$๋Š” ์œ ๋Ÿ‰์˜ ์ค‘์‹ฌ๊ฐ’, $\widetilde{T}$๋Š” ๋ˆ„์ ์ผ์ˆ˜์˜ ์‹ญ์ง„์ˆ˜ ์ค‘์‹ฌ๊ฐ’, ์‚ฌ์ธํ•จ์ˆ˜์™€ ์ฝ”์‚ฌ์ธ ํ•จ์ˆ˜๋กœ ๊ตฌ์„ฑ๋œ ํ•ญ์€ ๊ณ„์ ˆํ•จ์ˆ˜์ด๋‹ค. ์ด ์‹์€ ๋‹จ์ˆœํ•œ C-Q ๋ชจํ˜•์— ๋น„ํ•˜์—ฌ ์žฅ๊ธฐ์ ์ธ ์ˆ˜์งˆ๋ณ€ํ™”์™€ ๊ณ„์ ˆ์ ์ธ ์ˆ˜์งˆ๋ณ€๋™์„ ํ•ด์„ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์—์„œ ์œ ์šฉํ•˜๋‹ค(Cohn, et al., 1992; Na and Park, 2003).

Table 1 Previous pollutant load delivery models

Models

Remarks

Reference

$a Q^{b}$

$Q$: flowrate

Tabuchi and Kuroda (1993)

$L_{s}e^{-\psi /F}$

$L_{s}$: discharge load

$F$: shape factor of watershed

Ha and Bae (2003)

Ha et al. (2007)

$L_{s}e^{-\left(\alpha\sqrt{\dfrac{A}{Q}}F^{\beta}\right)l}$

$L_{s}$: discharge load

$A$: area of watershed

$Q$: flowrate

$F$: shape factor of watershed

$l$: delivery length

Eom (2004)

$L_{g}(1-\alpha)(Q/\beta)^{r}$

$L_{g}$: generation load

$\alpha$: treatment rate

$Q$: flowrate

Yoon et al. (2007)

$L_{p}e^{-k_{p}l}+a L_{nm}\rho^{b}e^{-(k_{n}-\beta)l}$

$\rho =\dfrac{Q}{A}\cos\theta$

$L_{p}$: discharge load from point source

$l$: delivery length

$L_{nm}$: annual mean discharge load from nonpoint source (NPS)

$\rho$: runoff depth

$\theta$: slope of watershed

Park et al. (2007)

Park et al. (2008)

$L_{t}+R(L_{p}+a L_{nm}q_{n}^{b})$

$q_{n}=\dfrac{Q-Q_{t}-Q_{p}}{A}$

$q=\dfrac{Q-Q_{t}}{A}$

$R=\alpha q^{\beta}$

$L_{t}$: effluent load from sewage treatment plant (STP)

$R$: delivery ratio of IPS and NPS load

$L_{p}$: discharge load from IPS

$L_{nm}$: annual mean discharge load from NPS

$q_{n}$: runoff depth from NPS

$Q$: flowrate

$Q_{t}$: flowrate from STP

$Q_{p}$: flowrate from IPS

$A$: area of watershed

$q$: efflux depth from IPS and NPS

Kong and Jung (2015)

$L_{t}+f(a L_{p}+b L_{nm}q_{n}^{c})$

$f=e^{\beta_{1}\sin(2\pi T)+\beta_{2}\cos(2\pi T)}$

$q_{n}=\dfrac{Q-Q_{t}-Q_{p}}{A}$

$L_{t}$: effluent load from STP

$f$: seasonal function

$L_{p}$: discharge load from IPS

$L_{nm}$: annual mean discharge load from NPS

$q_{n}$: runoff depth from NPS

$T$: radian day

$Q$: flowrate

$Q_{t}$: flowrate from STP

$Q_{p}$: flowrate from IPS

$A$: area of watershed

Kong et al. (2015)

Table 2 Summary of the novel model (LQLS model) and core parameters

Models

Remarks

Reference

$R_{t}L_{t}+\alpha(L_{p}+\beta L_{nm})\Phi$

$\alpha =\alpha_{1}q_{pn}^{\alpha_{2}}\alpha_{3}^{(\ln q_{pn})^{2}}$

$q_{pn}=\dfrac{Q-Q_{t}}{A}$

$\beta =\beta_{1}q_{n}^{\beta_{2}}\beta_{3}^{q_{n}^{\beta_{2}}}$

$q_{n}=\dfrac{Q-Q_{t}-Q_{p}}{A}$

$\Phi =e^{\gamma_{1}\sin(2\pi T)+\gamma_{2}\cos(2\pi T)}$

$R_{t}$: delivery ratio of STP load

$L_{t}$: effluent load from STP

$L_{p}$: discharge load from IPS

$L_{nm}$: annual mean discharge load from NPS

$q_{pn}$: runoff depth from IPS and NPS

$q_{n}$: runoff depth from NPS

$Q$: flowrate

$Q_{t}$: flowrate from STP

$Q_{p}$: flowrate from IPS

$A$: area of watershed

$\Phi$: seasonal function

$T$: radian day

This model

์‹ 1
$\ln C=\beta_{o}+\beta_{1}\ln\left(\dfrac{Q}{\widetilde{Q}}\right)+\beta_{2}\left[\ln\left(\dfrac{Q}{\widetilde{Q}}\right)\right]^{2}+\beta_{3}(T-\widetilde{T})\\ +\beta_{4}(T-\widetilde{T})^{2}+\beta_{5}\sin(2\pi T)+\beta_{6}\cos(2\pi T) $

์‹ 1์˜ ๋กœ๊ทธ ์œ ๋‹ฌ๋†๋„($\ln C$)๋ฅผ ํ™˜์›ํ•˜์—ฌ ๋น„์„ ํ˜•์œผ๋กœ ์žฌ์ •๋ฆฌํ•˜๋ฉด ์œ ๋‹ฌ๋†๋„($C$)๋Š” ์†์„ฑ๋ณ„๋กœ ๊ฐ๊ฐ ์œ ๋Ÿ‰ํ•จ์ˆ˜($f_{Q}$), ์‹œ๊ณ„์—ดํ•จ์ˆ˜($f_{T}$), ๊ณ„์ ˆํ•จ์ˆ˜($\Phi$)๋กœ ๋ถ„๋ฆฌ๋  ์ˆ˜ ์žˆ๋‹ค(์‹ 2).

์‹ 2

$C=f_{Q}f_{T}\Phi$

$f_{Q}=e^{\beta_{0}}\left(\dfrac{Q}{\widetilde{Q}}\right)^{\beta_{1}+\beta_{2}\left[\ln\left(\dfrac{Q}{\widetilde{Q}}\right)\right]^{2}}$, $f_{T}=e^{\beta_{3}(T-T_{m})+\beta_{4}(T-T_{m})^{2}}$,

$\Phi =e^{\beta_{5}\sin(2\pi T)+\beta_{6}\cos(2\pi T)}$

์‹ 2์—์„œ ์‹œ๊ณ„์—ดํ•จ์ˆ˜๋Š” ์ž์—ฐ์  ์š”์ธ๊ณผ ์ธ์œ„์  ์š”์ธ์„ ํฌ๊ด„ํ•œ ๋ฉ์–ด๋ฆฌ์ธ์ž(lumped parameter)์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์‹ 2์˜ ์‹œ๊ณ„์—ดํ•จ์ˆ˜ $f_{T}$๋ฅผ ๊ฐœ๋ณ„์ ๋ฐฐ์ถœ๋ถ€ํ•˜์™€ ๋น„์ ๋ฐฐ์ถœ๋ถ€ํ•˜ ํ•จ์ˆ˜($f_{L}$)๋กœ ๋Œ€์น˜ํ•˜๊ณ  ๊ณ„์ ˆํ•จ์ˆ˜์™€ ์—ฐ๊ณ„ํ•˜์˜€๋‹ค. ํ•˜์ฒœ์˜ ๋ณธ๋ฅ˜๋กœ ์ง์œ ์ž…๋˜๋Š” ํ™˜๊ฒฝ๊ธฐ์ดˆ์‹œ์„ค ๋ฐฉ๋ฅ˜๋ถ€ํ•˜๋Š” ๊ฐœ๋ณ„์ ๋ฐฐ์ถœ๋ถ€ํ•˜์™€ ๋น„์ ๋ฐฐ์ถœ๋ถ€ํ•˜์™€๋Š” ๋ณ„๋„๋กœ ๊ณ ๋ คํ•˜์˜€๋‹ค(์‹ 3).

์‹ 3์—์„œ $C$๋Š” ์œ ๋‹ฌ๋†๋„, $C_{t}$๋Š” ํ™˜๊ฒฝ๊ธฐ์ดˆ์‹œ์„ค ๋ฐฉ๋ฅ˜์˜ ๋ถ€๋ถ„๋†๋„(partial concentration; ๋Œ€์ƒ ํ•˜์ฒœ ์ง€์ ์˜ ๋†๋„ ์ค‘ ํ™˜๊ฒฝ๊ธฐ์ดˆ์‹œ์„ค ๋ฐฉ๋ฅ˜๊ฐ€ ๋ฏธ์น˜๋Š” ๋†๋„), $R_{t}$๋Š” ํ™˜๊ฒฝ๊ธฐ์ดˆ์‹œ์„ค ๋ฐฉ๋ฅ˜๋ถ€ํ•˜์˜ ์œ ๋‹ฌ๋ฅ , $L_{t}$๋Š” ํ™˜๊ฒฝ๊ธฐ์ดˆ์‹œ์„ค ๋ฐฉ๋ฅ˜๋ถ€ํ•˜๋Ÿ‰, $Q$๋Š” ๋ชฉํ‘œ์ง€์ ์˜ ์œ ๋‹ฌ์œ ๋Ÿ‰, $L_{p}$๋Š” ๊ฐœ๋ณ„์ ๋ฐฐ์ถœ๋ถ€ํ•˜๋Ÿ‰, $L_{nm}$์€ ์ˆ˜์งˆ์˜ค์—ผ์ด๋Ÿ‰๊ด€๋ฆฌ๊ธฐ์ˆ ์ง€์นจ์— ์˜๊ฑฐํ•˜์—ฌ ์‚ฐ์ถœ๋œ ์œˆ๋‹จ์œ„ ๊ธฐ๋ฐ˜ ์—ฐํ‰๊ท  ๋น„์ ๋ฐฐ์ถœ๋ถ€ํ•˜๋Ÿ‰์ด๋‹ค.

์‹ 3

$C=C_{t}+f_{Q}f_{L}\Phi$

$C_{t}=\dfrac{R_{t}L_{t}}{Q}$, $f_Q \to \alpha$, $f_{L}=\dfrac{L_{p}}{Q}+\dfrac{\beta L_{nm}}{Q}$, $\Phi =e^{\gamma_{1}\sin(2\pi T)+\gamma_{2}\cos(2\pi T)}$

์‹ 3์—์„œ $\alpha$๋Š” ๊ณ„์ ˆ์„ฑ์„ ๊ณ ๋ คํ•˜์ง€ ์•Š์€ ์ƒํƒœ์—์„œ์˜ ๊ฐœ๋ณ„์ ๋ฐฐ์ถœ๋ถ€ํ•˜์™€ ๋น„์ ๋ฐฐ์ถœ๋ถ€ํ•˜์˜ ์œ ๋Ÿ‰์˜์กด ์œ ๋‹ฌ๋ฅ ์ด๋ฉฐ, $\beta$๋Š” ์›๋‹จ์œ„ ๊ธฐ๋ฐ˜ ์—ฐํ‰๊ท  ๋น„์ ๋ฐฐ์ถœ๋ถ€ํ•˜์— ๋Œ€ํ•œ ์œ ๋Ÿ‰์˜์กด ๋ณด์ •ํ•ญ์ด๋‹ค. ์‹ 3์˜ ์–‘๋ณ€์— ์œ ๋Ÿ‰์„ ๊ณฑํ•˜๋ฉด ๋ถ€ํ•˜๋Ÿ‰ ์‹์ด ๋œ๋‹ค(์‹ 4). ๋ณธ๋ฅ˜์— ์ง์œ ์ž…๋˜๋Š” ํ™˜๊ฒฝ๊ธฐ์ดˆ์‹œ์„ค ๋ฐฉ๋ฅ˜๋ถ€ํ•˜๋Š” ์œ ๋Ÿ‰๊ณผ ์ƒ๊ด€์—†์ด ์ผ์ • ์ƒ์ˆ˜์˜ ์œ ๋‹ฌ๋ฅ ($R_{t}$)๋กœ ๋ชฉํ‘œ์ง€์ ์— ๋„๋‹ฌํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๊ฐ€์ •ํ•˜๊ณ  ์œ ์—ญ์— ์‚ฐ์žฌ๋œ ๊ฐœ๋ณ„์ ์˜ค์—ผ์›๊ณผ ๋น„์ ์˜ค์—ผ์›์—์„œ ๋ฐฐ์ถœ๋˜๋Š” ์˜ค์—ผ๋ฌผ์งˆ์€ ์œ ๋Ÿ‰์— ์˜์กดํ•˜์—ฌ ํ•จ๊ป˜ ์œ ํ•˜ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋ณธ ๊ฒƒ์ด๋‹ค.

์‹ 4
$L=R_{t}L_{t}+\alpha\left(L_{p}+\beta L_{nm}\right)\Phi$

์—ฌ๊ธฐ์—์„œ $\alpha$๋Š” ๋‹ค์Œ ๊ณผ์ •์œผ๋กœ ๋„์ถœ๋œ๋‹ค. ์œ ์—ญ์—์„œ ์œ ์ถœ๋˜๋Š” ๊ฐœ๋ณ„์ ๋ฐฐ์ถœ์œ ๋Ÿ‰($Q_{p}$)๊ณผ ๋น„์ ๋ฐฐ์ถœ์œ ๋Ÿ‰($Q_{n}$)์„ ํ•ฉํ•œ $Q_{pn}$์„ ์œ ์—ญ์˜ ์œ ๋‹ฌ๊ณผ์ •์— ๊ด€์—ฌํ•˜๋Š” ์œ ๋Ÿ‰์„ฑ๋ถ„์œผ๋กœ ๊ฐ„์ฃผํ•  ๋•Œ ๊ทธ ์ค‘์‹ฌ์น˜์ธ $\widetilde{Q}_{pn}$์€ ์œ ์—ญ๋ฉด์ ์— ๋น„๋ก€ํ•œ๋‹ค๊ณ  ๋ณผ ์ˆ˜ ์žˆ๋‹ค(์‹ 5).

์‹ 5
$\widetilde{Q}_{pn}\propto A$

์‹ 5์— ๋น„๋ก€์ƒ์ˆ˜ $r$์„ ์ ์šฉํ•˜๊ณ  ํ™˜๊ฒฝ๊ธฐ์ดˆ์‹œ์„ค์˜ ๋ฐฉ๋ฅ˜๋Ÿ‰์„ ์ œ์™ธํ•œ ์œ ์—ญ์˜ ์œ ์ถœ๊ณ (runoff depth)๋กœ ๋Œ€์น˜ํ•˜๋ฉด ์œ ๋Ÿ‰๋น„($Q_{pn}/\widetilde{Q_{pn}}$)๋Š” ์‹ 6์œผ๋กœ ํ‘œํ˜„๋œ๋‹ค.

์‹ 6
$\dfrac{Q_{pn}}{\widetilde{Q_{pn}}}=r\dfrac{Q_{pn}}{A}=rq_{pn}$

์‹ 2์˜ $f_{Q}$์—์„œ ์œ ๋Ÿ‰๋น„($Q/\widetilde{Q}$)์— ์‹ 6์„ ๋Œ€์น˜ํ•˜๋ฉด $\alpha$๋Š” ์‹ 7๋กœ ์ •๋ฆฌ๋œ๋‹ค.

์‹ 7

$\alpha =e^{\beta_{0}}\left(\dfrac{Q_{pn}}{\widetilde{Q_{pn}}}\right)^{\beta_{1}}e^{\beta_{2}\left(\ln\dfrac{Q_{pn}}{\widetilde{Q_{pn}}}\right)^{2}}\\ =e^{\beta_{0}}r^{\beta_{1}}q_{pn}^{\beta_{1}}e^{\beta_{2}[(\ln r)^{2}+2\ln r\ln q_{pn}+(\ln q_{pn})^{2}]}\\ =\alpha_{1}q_{pn}^{\alpha_{2}}\alpha_{3}^{(\ln q_{pn})^{2}}$

$\alpha_{1}=e^{\beta_{0}+\beta_{2}(\ln r)^{2}}r^{\beta_{1}}$, $\alpha_{2}=q_{pn}^{\beta_{1}+2\ln r}$, $\alpha_{3}=e^{\beta_{2}}$

์‹ 4์˜ $\beta$์— ๋Œ€ํ•œ ์ถ”์ • ๊ณผ์ •์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ๋น„์ ๋ฐฐ์ถœ์›์—์„œ ๋ฐฐ์ถœ๋˜๋Š” ์˜ค์—ผ๋ฌผ์งˆ์˜ ๋†๋„๋ฅผ $C_{n}$์ด๋ผ ํ•  ๋•Œ, ์ด๋Š” ์›๋‹จ์œ„ ๊ธฐ๋ฐ˜์˜ ์—ฐํ‰๊ท ๋ฐฐ์ถœ๋ถ€ํ•˜๋Ÿ‰($L_{nm}$)์„ ์œ ์—ญ๋ฉด์ ($A$)๋กœ ๋‚˜๋ˆˆ ๋‹จ์œ„๋ฉด์ ๋‹น ์—ฐํ‰๊ท  ๋ฐฐ์ถœ๋ถ€ํ•˜๋Ÿ‰๊ณผ ๋น„์ ์œ ์ถœ๊ณ ($q_{n}$)์— ๋”ฐ๋ฅธ ๋น„์ ๋ฐฐ์ถœํ•จ์ˆ˜($f_{q_{n}}$)์˜ ๊ณฑ์— ๋น„๋ก€ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๊ฐ€์ •ํ•˜์˜€๋‹ค(์‹ 8).

์‹ 8

$C_{n}\propto\dfrac{L_{nm}}{A}f_{q_{n}}$

$q_{n}=\dfrac{Q_{n}}{A}=\dfrac{Q-Q_{t}-Q_{p}}{A}$

์ผ๋ฐ˜์ ์œผ๋กœ ๊ฐ•์šฐ์ดˆ๊ธฐ์— ์ฒจ๋‘๋†๋„๋Š” ์ฒจ๋‘์œ ์ถœ ์ด์ „ ์‹œ์ ์— ๋ฐœ์ƒํ•˜๊ณ  ์ฒจ๋‘์œ ์ถœ ์ดํ›„์—๋Š” ํฌ์„์œผ๋กœ ๊ฐ์†Œํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์ธ๋‹ค(Lee and Bang, 2000). ๋ณธ ์—ฐ๊ตฌ์—์„œ ๋น„์ ๋ฐฐ์ถœํ•จ์ˆ˜๋Š” ๋น„์ ์œ ์ถœ๊ณ ์— ๋”ฐ๋ผ ํ™•๋ฅ ๋ถ„ํฌ๋ฅผ ๋”ฐ๋ฅธ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜๊ณ  Weibull ๋ถ„ํฌ์˜ ํ™•๋ฅ ๋ฐ€๋„ํ•จ์ˆ˜๋ฅผ ์ ‘๋ชฉํ•˜์˜€๋‹ค(์‹ 9). Weibull ๋ถ„ํฌ๋Š” ์ •๊ทœ๋ถ„ํฌ๋‚˜ ๋Œ€์ˆ˜์ •๊ทœ๋ถ„ํฌ, ๊ฐ๋งˆ๋ถ„ํฌ ๋“ฑ์˜ ๋‹ค๋ฅธ ๋ถ„ํฌ์— ๋น„ํ•˜์—ฌ ๋Œ€์นญ๋ถ„ํฌ, ์ •์ ํŽธํฌ(positively skewed distribution), ๋ถ€์ ํŽธํฌ(negatively skewed distribution) ๋“ฑ์— ์ƒ๋Œ€์ ์œผ๋กœ ์œ ์—ฐ์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์ด๋ฅผ ์ ์šฉํ•œ ๊ฒƒ์ด๋‹ค.

์‹ 9
$f_{q_{n}}=\dfrac{k}{\lambda^{k}}q_{n}^{k-1}e^{-\left(\dfrac{q_{n}}{\lambda}\right)^{k}}$

์‹ 8์— ๋น„๋ก€์ƒ์ˆ˜ $a$๋ฅผ ์ ์šฉํ•˜๊ณ  ์‹ 9๋ฅผ ๋Œ€์ž…ํ•˜๋ฉด ๋น„์ ๋ฐฐ์ถœ ๋†๋„๋Š” ์‹ 10๊ณผ ๊ฐ™์ด ์žฌ์ •๋ฆฌ๋œ๋‹ค.

์‹ 10
$C_{n}=a\dfrac{k}{\lambda^{k}}\dfrac{Q_{n}^{k-1}}{A^{k}}e^{-\left(\dfrac{q_{n}}{\lambda}\right)^{k}}L_{nm}$

์‹ 10์˜ ์–‘๋ณ€์— ๋น„์ ๋ฐฐ์ถœ์œ ๋Ÿ‰($Q_{n}$)์„ ๊ณฑํ•˜๋ฉด ๋น„์ ๋ฐฐ์ถœ๋ถ€ํ•˜๋Ÿ‰์€ ์‹ 11๊ณผ ๊ฐ™์ด ํ‘œํ˜„๋œ๋‹ค.

์‹ 11

$L_{n}=a\dfrac{k}{\lambda^{k}}\left(\dfrac{Q_{n}}{A}\right)^{k}e^{-\left(\dfrac{q_{n}}{\lambda}\right)^{k}}L_{nm}=a\dfrac{k}{\lambda^{k}}q_{n}^{k}e^{-\left(\dfrac{q_{n}}{\lambda}\right)^{k}}L_{nm}=\beta L_{nm}$

$\beta =\beta_{1}q_{n}^{\beta_{2}}\beta_{3}^{q_{n}^{\beta_{2}}}$, $\beta_{1}=a\dfrac{k}{\lambda^{k}}$, $\beta_{2}=k$, $\beta_{3}=e^{-\dfrac{1}{\lambda^{k}}}$

์ด์ƒ์˜ ๊ณผ์ •์„ ์กฐํ•ฉํ•˜๋ฉด ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆ๋˜๋Š” LQLS ๋ชจํ˜•์€ ์‹ 12๋กœ ์š”์•ฝ๋œ๋‹ค.

์‹ 12
$L=R_{t}L_{t}+\alpha\left(L_{p}+\beta L_{nm}\right)\Phi \\ =R_{t}L_{t}+\alpha_{1}q_{pn}^{\alpha_{2}}\alpha_{3}^{(\ln q_{pn})^{2}}\left(L_{p}+\beta_{1}q_{n}^{\beta_{2}}\beta_{3}^{q_{n}^{\beta_{2}}}L_{nm}\right)\Phi $

2.3 ๋ชจํ˜•์ธ์ž ์ถ”์ •

2.3.1 MLE ๋ฐ LSE

์‹ 12์˜ ๋น„์„ ํ˜• ํšŒ๊ท€๋ชจํ˜•์—์„œ ๊ด€์ธก์น˜์™€ ์ถ”์ •์น˜ ๊ฐ„ ์ž”์ฐจ(residual)์˜ ํ‰๊ท ์ด 0์ด๊ณ  ํ‘œ์ค€ํŽธ์ฐจ๊ฐ€ $\sigma$์ธ ์ •๊ทœ๋ถ„ํฌ๋ฅผ ๋”ฐ๋ฅธ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜๋ฉด ์ตœ๋Œ€์šฐ๋„์ถ”์ •๋ฒ•(maximum likelihood estimation, MLE)๊ณผ ์ตœ์†Œ์ œ๊ณฑ์ถ”์ •๋ฒ•(least squared error, LSE)์— ์˜ํ•ด์„œ ์‚ฐ์ถœ๋˜๋Š” ๋ชจํ˜•์ธ์ž์˜ ๊ฐ’์€ ๊ฐ™๋‹ค. ์ด๋Ÿฌํ•œ ์ถ”์ •๋ฒ•์€ ์˜ค์ฐจ์˜ ์ œ๊ณฑ์œผ๋กœ ๋ฐ˜์˜๋˜๊ธฐ ๋•Œ๋ฌธ์— ๊ทน๋‹จ ๊ฐ’์˜ ์˜ํ–ฅ์„ ํฌ๊ฒŒ ๋ฐ›์œผ๋ฉฐ ๋†๋„์™€ ๋ถ€ํ•˜๋Ÿ‰์— ๋Œ€ํ•œ MLE ๊ฐ’์ด ๋‹ฌ๋ฆฌ ๋‚˜ํƒ€๋‚œ๋‹ค. ์œ ๋‹ฌ๋†๋„๋Š” ๋ชฉํ‘œ์ง€์ ์˜ ์ˆ˜์งˆํ‰๊ฐ€์— ์ค‘์š”ํ•˜๊ณ  ์œ ๋‹ฌ๋ถ€ํ•˜๋Ÿ‰์€ ํ•˜๋ฅ˜ ์ˆ˜์ฒด์— ํฐ ์ €๋ฅ˜์‹œ์„ค์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ƒ๋Œ€์ ์œผ๋กœ ์ค‘์š”ํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ๋†๋„์™€ ๋ถ€ํ•˜๋Ÿ‰์— ๋Œ€ํ•œ MLE ๊ฐ’๊ณผ ๋ณด์ •๋˜๋Š” ๋ชจํ˜•์ธ์ž์˜ ๊ฐ’์ด ๋‹ค๋ฅผ ๋•Œ ์–ด๋–ค ๋ฐฉ๋ฒ•์„ ๋”ฐ๋ฅผ์ง€ ํŒ๋‹จํ•˜๊ธฐ ์–ด๋ ค์šด ๋ฌธ์ œ๊ฐ€ ์•ผ๊ธฐ๋˜๋ฏ€๋กœ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” MLE๋‚˜ LSE ๋ฐฉ๋ฒ•์€ ์ ์šฉํ•˜์ง€ ์•Š์•˜๋‹ค.

2.3.2 MAPE ๋ฐ SMAPE

ํ‰๊ท  ์ ˆ๋Œ€๋น„์œจ ์˜ค์ฐจ(mean absolute percentage error, MAPE)์™€ ๋Œ€์นญ ํ‰๊ท  ์ ˆ๋Œ€๋น„์œจ ์˜ค์ฐจ(symmetric mean absolute percentage error, SMAPE)๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ ๊ด€์ธก์น˜์™€ ์ถ”์ •์น˜์˜ ์ ํ•ฉ๋„ ํ‰๊ฐ€์— ํ™œ์šฉ๋˜์ง€๋งŒ ๋ชจ์ˆ˜ ์ถ”์ •์„ ์œ„ํ•œ ๋ชฉ์ ํ•จ์ˆ˜๋กœ ์ด์šฉ๋˜๊ธฐ๋„ ํ•˜๋ฉฐ ํŠนํžˆ ๋ณธ ์—ฐ๊ตฌ์™€ ๊ฐ™์€ ์‹œ๊ณ„์—ด ์˜ˆ์ธก์—์„œ ์ž์ฃผ ์‚ฌ์šฉ๋œ๋‹ค(Shin et al., 2018). ์ด์ค‘ MAPE๋Š” ์ˆ˜์งˆ ๋ฐ์ดํ„ฐ ์ค‘ ์ธ ๋†๋„์™€ ๊ฐ™์ด ๊ด€์ธก๊ฐ’์ด ์ž‘์„ ๊ฒฝ์šฐ ๋งค์šฐ ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚  ์ˆ˜ ์žˆ์œผ๋ฉฐ ๊ด€์ธก๊ฐ’์ด 0์ธ ๊ฒฝ์šฐ์—๋Š” ๊ณ„์‚ฐ ๋ถˆ๋Šฅ์ด ๋œ๋‹ค. ๋˜ํ•œ ์ถ”์ •์˜ค์ฐจ์˜ ์ ˆ๋Œ€๊ฐ’์˜ ํ•ฉ์„ 0์œผ๋กœ ์ˆ˜๋ ด์‹œํ‚ค๊ธฐ ์œ„ํ•˜์—ฌ ํฐ ๊ด€์ธก๊ฐ’์˜ ์˜ค์ฐจ๋ฅผ ๊ณผ์†Œํ‰๊ฐ€ํ•˜์—ฌ ๊ฒฝํ–ฅ์„ฑ์„ ์™œ๊ณกํ•˜๋Š” ๊ฒฐ๊ณผ๋ฅผ ๋ณด์ผ ์ˆ˜๋„ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ์„ ๋ณด์™„ํ•œ SMAPE๋ฅผ ๋ชฉ์ ํ•จ์ˆ˜๋กœ ํ•˜๊ณ  Microsoft Excel์˜ ํ•ด ์ฐพ๊ธฐ(slover) ๊ธฐ๋Šฅ์„ ์ด์šฉํ•˜์—ฌ ๊ทธ ๊ฐ’์ด ์ตœ์†Œ๊ฐ€ ๋˜๋Š” ์œ ๋‹ฌ๋ชจํ˜•์˜ ์ธ์ž ๊ฐ’์„ ๋„์ถœํ•˜์˜€๋‹ค(์‹ 13). SMAPE๋Š” ๋ถ€ํ•˜๋Ÿ‰๊ณผ ๋†๋„ ๋ชจ๋‘ ๋™์ผํ•œ ๊ฐ’์œผ๋กœ ๋„์ถœ๋˜๋ฉฐ ๊ด€์ธก์น˜์˜ ์ˆ˜์ค€์— ๋ฌด๊ด€ํ•˜๊ฒŒ ํ‰๊ฐ€๋œ๋‹ค. SMAPE๋Š” ๊ด€์ธก์น˜์™€ ์ถ”์ •์น˜์˜ ๋ถ€ํ˜ธ๊ฐ€ ๋‹ค๋ฅผ ๋•Œ ํ‰๊ฐ€์— ๋ฌธ์ œ๊ฐ€ ์žˆ์„ ์ˆ˜ ์žˆ์ง€๋งŒ(Shin et al., 2018), ๋ณธ ์—ฐ๊ตฌ์ž๋ฃŒ์—์„œ๋Š” ๊ด€์ธก์น˜๋‚˜ ๋ชจ๋ธ ์ถ”์ •์น˜ ๋ชจ๋‘ ์–‘์˜ ๊ฐ’์„ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฏ€๋กœ ํ•ด๋‹น ์‚ฌํ•ญ์€ ์—†๋‹ค.

์‹ 13

$SMAPE(\%)=\dfrac{\sum_{i=1}^{n}\left | O_{i}-C_{i}\right |}{\sum_{i=1}^{n}\left | O_{i}\right | +\sum_{i=1}^{n}\left | C_{i}\right |}\times 100$

$O_{i}:$ ๊ด€์ธก์น˜, $C_{i}:$ ์ถ”์ •์น˜

๋ชจํ˜• ์ธ์ž ์ถ”์ • ์‹œ ํ™˜๊ฒฝ๊ธฐ์ดˆ์‹œ์„ค ๋ฐฉ๋ฅ˜๋ถ€ํ•˜๋Ÿ‰์˜ ์œ ๋‹ฌ๋ฅ  $R_{t}$๋Š” ๊ด€์ธก ์œ ๋‹ฌ๋ถ€ํ•˜๋Ÿ‰์˜ ์ตœ์†Œ๊ฐ’์„ ํ™˜๊ฒฝ๊ธฐ์ดˆ์‹œ์„ค ๋ฐฉ๋ฅ˜๋ถ€ํ•˜๋Ÿ‰์œผ๋กœ ๋‚˜๋ˆˆ ๊ฐ’์œผ๋กœ ์„ค์ •ํ•˜๋˜ ๊ทธ ๊ฐ’์ด 1๋ณด๋‹ค ํฐ ๊ฒฝ์šฐ๋Š” 1์„ ์ ์šฉํ•˜์˜€๋‹ค. ๋น„์„ ํ˜• ์ค‘์•™์ฐจ๋ถ„์œผ๋กœ ํ•ด ์ฐพ๊ธฐ๋ฅผ ์‹œํ–‰ํ•˜์˜€์œผ๋ฉฐ, $\alpha$๊ฐ’์ด 1๋ณด๋‹ค ํฌ๊ฒŒ ๊ณ„์‚ฐ๋˜๋Š” ๊ฒฝ์šฐ๋Š” 1์„ ์ ์šฉํ•˜์˜€๊ณ , ์ด๋ก ์ ์œผ๋กœ 1์„ ๋„˜์„ ์ˆ˜ ์—†๋Š” ์‹ 11์˜ $\beta_{3}$๊ฐ’์€ 1๋ณด๋‹ค ์ž‘์€ ์–‘์˜ ๊ฐ’์œผ๋กœ ์ œ์•ฝํ•˜์˜€๋‹ค.

2.4 ์ ํ•ฉ๋„ ํ‰๊ฐ€

SMAPE ๊ทธ ์ž์ฒด๊ฐ€ ์ ํ•ฉ๋„๋ฅผ ํ‰๊ฐ€ํ•˜๋Š” ์ง€ํ‘œ ์ค‘ ํ•˜๋‚˜์ด์ง€๋งŒ ๋ณธ ์—ฐ๊ตฌ์—์„œ SMAPE๋Š” ๋ชจํ˜•์ธ์ž์˜ ์ถ”์ •์— ํ™œ์šฉ๋˜์—ˆ์œผ๋ฏ€๋กœ ์ถ”๊ฐ€์ ์œผ๋กœ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์ง€ํ‘œ๋กœ ์ ํ•ฉ๋„๋ฅผ ํ‰๊ฐ€ํ•˜์˜€๋‹ค.

2.4.1 Determination coefficient ($R^{2}$)

๊ฒฐ์ •๊ณ„์ˆ˜($R^{2}$)(์‹ 14)๋Š” ๋ณ€์ˆ˜ ๊ฐ„ ์ƒ๊ด€์„ฑ์„ ํŒŒ์•…ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์‚ฐ์ถœ๋˜์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ฒฐ์ •๊ณ„์ˆ˜๋Š” ๊ด€์ธก์น˜์™€ ์ถ”์ •์น˜ ๊ฐ„์— 1:1 ๋Œ€์‘ ๊ด€๊ณ„๊ฐ€ ์•„๋‹Œ ๊ฒฝ์šฐ์—๋„ ๋†’์€ ๊ฐ’์„ ๋ณด์ผ ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ ์ด๋Š” ๋‘ ์ˆ˜์น˜ ๊ฐ„ ๊ด€๊ณ„์„ฑ์„ ๊ฒ€ํ† ํ•˜๋Š” ๋ชฉ์ ์œผ๋กœ๋งŒ ์ด์šฉ๋  ์ˆ˜ ์žˆ๋‹ค.

์‹ 14
$R^{2}=\dfrac{\left[\sum_{i=1}^{n}\left(O_{i}-\overline{O_{i}}\right)\left(C_{i}-\overline{C_{i}}\right)\right]^{2}}{\sum_{i=1}^{n}\left(O_{i}-\overline{O_{i}}\right)^{2}\sum_{i=1}^{n}\left(C_{i}-\overline{C_{i}}\right)^{2}}$

2.4.2 PBIAS (Percent bias)

๋ฐฑ๋ถ„์œจ์˜ค์ฐจ(์‹ 15)๋Š” ๊ด€์ธก์น˜์™€ ์ถ”์ •์น˜ ๊ฐ„์˜ ํ‰๊ท ์ ์ธ ์ผ์น˜์„ฑ ๋ฐ ํŽธ์˜์„ฑ์„ ๊ฒ€์ •ํ•˜๊ธฐ ์œ„ํ•œ ๊ฒƒ์œผ๋กœ U.S. EPA์—์„œ๋Š” ํ™˜๊ฒฝ๋ฐ์ดํ„ฐ์˜ ํ’ˆ์งˆ ํ‰๊ฐ€์—์„œ ํ•ต์‹ฌ์ ์ธ ์ง€ํ‘œ๋กœ ํ™œ์šฉํ•˜๊ณ  ์žˆ๋‹ค(U. S. EPA., 2002). ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Š” ํ‰๊ท ์ ์ธ ์ˆ˜์ค€์—์„œ์˜ ํ‰๊ฐ€์ง€ํ‘œ์ด๋ฏ€๋กœ ๊ฐœ๋ณ„ ๊ด€์ธก์น˜์— ๋Œ€ํ•œ ์ถ”์ •์น˜์˜ ์ ํ•ฉ๋„๋Š” ๋ฐ˜์˜ํ•˜์ง€ ์•Š๋Š”๋‹ค(์‹ 15).

์‹ 15
$PBIAS=100\dfrac{\sum_{i=1}^{n}C_{i}-\sum_{i=1}^{n}O_{i}}{\sum_{i=1}^{n}O_{i}}$

2.4.3 NSE (Nashโ€“Sutcliffe efficiency)

Nash and Sutcliffe (1970)๊ฐ€ ์ œ์•ˆํ•œ NSE(์‹ 16)๋Š” ๋ชจ๋ธํšจ์œจ๊ณ„์ˆ˜๋กœ๋„ ๋ถˆ๋ฆฐ๋‹ค. NSE๋Š” $-\infty$์—์„œ 1์˜ ๋ฒ”์œ„๋ฅผ ๊ฐ€์ง€๋Š”๋ฐ, 1์ผ ๋•Œ ์ตœ์ ์ด๊ณ , 0์—์„œ 1 ๊ฐ’์€ ๋ชจํ˜•์˜ ์ ์šฉ ๊ฐ€๋Šฅ ๋ฒ”์œ„์ด๋ฉฐ, ์Œ์˜ ๊ฐ’์€ ์ ํ•ฉ๋„๊ฐ€ ๋ถˆ๋Ÿ‰ํ•จ์„ ์˜๋ฏธํ•œ๋‹ค(Pรฉrez-Sรกnchez et. al., 2017).

์‹ 16
$NSE=1-\dfrac{\sum_{i=1}^{n}\left(O_{i}-C_{i}\right)^{2}}{\sum_{i=1}^{n}\left(O_{i}-\overline{O_{i}}\right)^{2}}$

2.4.4 RSR (RMSE-observations standard deviation ratio)

Moriasi et al. (2007)์ด ์ œ์•ˆํ•œ RSR(์‹ 17)์€ ๊ด€์ธก์น˜์™€ ๊ด€์ธก์น˜ ๊ฐ„ ํ‰๊ท ์ œ๊ณฑ๊ทผ์˜ค์ฐจ(root mean squared error, RMSE)๋ฅผ ๊ด€์ธก์น˜์˜ ํ‘œ์ค€ํŽธ์ฐจ๋กœ ์ •๊ทœํ™”ํ•œ ๊ฒƒ์œผ๋กœ 0์—์„œ $\infty$์˜ ๋ฒ”์œ„๋ฅผ ๊ฐ€์ง€๋ฉฐ 0์— ๊ฐ€๊นŒ์šธ์ˆ˜๋ก ์ ํ•ฉ๋„๊ฐ€ ๋†’์Œ์„ ์˜๋ฏธํ•œ๋‹ค.

์‹ 17
$RSR=\sqrt{\dfrac{\sum_{i=1}^{n}\left(O_{i}-C_{i}\right)^{2}}{\sum_{i=1}^{n}\left(O_{i}-\overline{O_{i}}\right)^{2}}}$

2.4.5 IOA (Index of agreement)

Willmott (1981)๊ฐ€ ์ œ์•ˆํ•œ IOA(์‹ 18)๋Š” ๊ด€์ธก์น˜ ํŽธ์ฐจ์˜ ์ ˆ๋Œ€๊ฐ’๊ณผ ์ถ”์ •์น˜ ํŽธ์ฐจ์˜ ์ ˆ๋Œ€๊ฐ’์„ ํ•ฉํ•œ ๊ฐ’์˜ ์ œ๊ณฑํ•ฉ ๋Œ€๋น„ ์˜ค์ฐจ ์ œ๊ณฑํ•ฉ์˜ ๋น„์œจ๋กœ ์ •์˜๋˜๋ฉฐ, 0โˆผ1 ์‚ฌ์ด์˜ ๋ฒ”์œ„๋ฅผ ๊ฐ€์ง€๋Š”๋ฐ ํŽธ์ฐจ๊ฐ€ ํฌ๊ณ  ์˜ค์ฐจ๊ฐ€ ์ž‘์„์ˆ˜๋ก 1์— ๊ฐ€๊นŒ์›Œ์ง„๋‹ค.

์‹ 18
$IOA=1-\dfrac{\sum_{i=1}^{n}\left(O_{i}-C_{i}\right)^{2}}{\sum_{i=1}^{n}\left(\left | O_{i}-\overline{O_{i}}\right | +\left | C_{i}-\overline{C_{i}}\right |\right)^{2}}$

์ด์ƒ์— ์ˆ˜๋ก๋œ ๊ฐ ์ง€ํ‘œ์˜ ์žฅ๋‹จ์ ์€ ์—ฌ๋Ÿฌ ์—ฐ๊ตฌ์—์„œ ๊ฒ€ํ† ๋˜์—ˆ๊ณ  ๋‹ค์–‘ํ•œ ์ ํ•ฉ๋„ ๊ธฐ์ค€์ด ์ œ์•ˆ๋˜์—ˆ์ง€๋งŒ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” Moriasi et al. (2007)๊ณผ Moriasi et al. (2015)๊ฐ€ ๊ด‘๋ฒ”์œ„ํ•œ ์ž๋ฃŒ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋น„๊ต๋ถ„์„์„ ํ†ตํ•ด ์ œ์•ˆํ•œ Table 3์˜ ๊ธฐ์ค€์œผ๋กœ ์ ํ•ฉ๋„๋ฅผ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. NSE์— ๋Œ€ํ•ด์„œ๋Š” Moriasi et al. (2015)์˜ ์ˆ˜์ •์น˜๋ฅผ ์ ์šฉํ•˜์—ฌ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. Table 3์€ ์›”๊ฐ„ ์ž๋ฃŒ ๊ธฐ๋ฐ˜์ด๊ณ  IOA๋Š” ์œ ๋Ÿ‰์— ํ•œํ•œ ๊ธฐ์ค€์ด๊ธฐ ๋•Œ๋ฌธ์—, ๋ณธ ์—ฐ๊ตฌ์˜ ์ฃผ๊ฐ„ ์ˆ˜์งˆ์ž๋ฃŒ์— ์ด๋ฅผ ์ ์šฉํ•œ ํ‰๊ฐ€๋Š” ๋‹ค์†Œ ์—„๊ฒฉํ•œ ์ˆ˜์ค€์—์„œ ์ด๋ฃจ์–ด์ง„ ๊ฒƒ์ด๋ผ ํ•  ์ˆ˜ ์žˆ๋‹ค.

Table 3 Classification of goodness of fit for a monthly time step according to Moriasi et al. (2007) and Moriasi et al. (2015)

Performance rating

Moriasi et al. (2007)

Moriasi et al. (2015)

$RSR$ $NSE$ $PBIAS$

(N, P)*

Watershed scale

Field scale

$NSE$

(N, P)*

$R^{2}$

(N)*

$IOA$

(Flow)

Very good

0.00$\le$โˆผ$\le$0.50

0.75๏ผœโˆผ$\le$1.00

๏ผœ$\pm $25

๏ผž0.65

๏ผž0.70

๏ผž0.90

Good

0.50๏ผœโˆผ$\le$0.60

0.65๏ผœโˆผ$\le$0.75

$\pm $25$\le$โˆผ๏ผœ$\pm $40

0.50๏ผœโˆผ$\le$0.65

0.60๏ผœโˆผ$\le$0.70

0.85๏ผœโˆผ$\le$0.90

Satisfactory

0.60๏ผœโˆผ$\le$0.70

0.50๏ผœโˆผ$\le$0.65

$\pm $40$\le$โˆผ๏ผœ$\pm $70

0.35๏ผœโˆผ๏ผœ0.50

0.30๏ผœโˆผ$\le$0.60

0.75๏ผœโˆผ๏ผœ0.85

Unsatisfactory

๏ผž0.70

$\le$0.50

$\ge$$\pm $70

$\le$0.35

$\le$0.30

$\le$0.75

N: nitrogen, P: phosphorus

2.5 ๋ฏผ๊ฐ๋„ ๋ถ„์„

๋ฏผ๊ฐ๋„ ๋ถ„์„๋ฐฉ๋ฒ•์€ ํฌ๊ฒŒ ๋‹จ๋ณ€๋Ÿ‰ ๊ฐ๋„ ๋ถ„์„(One-At-a-Time, univariate sensitivity analysis, OAT)๊ณผ ์ „์—ญ ๊ฐ๋„ ๋ถ„์„(global sensitivity analysis, GSA)์œผ๋กœ ๊ตฌ๋ถ„๋œ๋‹ค. OAT๋Š” ๋ชจํ˜• ์ธ์ž๋‚˜ ๋ณ€์ˆ˜๋ฅผ ํ•˜๋‚˜์”ฉ ๋…๋ฆฝ์ ์œผ๋กœ ๋ณ€ํ™”์‹œํ‚ค๋ฉฐ ์ถœ๋ ฅ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ํ‰๊ฐ€ํ•˜๋Š” ๋ฐ˜๋ฉด GSA๋Š” ์ „์ฒด ์ž…๋ ฅ ๋ฒ”์œ„์—์„œ ๋ชจํ˜• ์ธ์ž๋‚˜ ๋ณ€์ˆ˜๋“ค์„ ๋™์‹œ์— ๋ณ€ํ™”์‹œํ‚ค๋ฉฐ ์ถœ๋ ฅ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ํ‰๊ฐ€ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. OAT๋Š” ๋ณ€์ˆ˜ ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์ด ๋ฌด์‹œ๋˜๊ณ  ๊ตญ์†Œ ๋ฏผ๊ฐ๋„๋งŒ ๋ฐ˜์˜๋˜์–ด ๊ฒฐ๊ณผ๊ฐ€ ์™œ๊ณก๋  ์ˆ˜ ์žˆ๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ์œผ๋‚˜ ๋ฏผ๊ฐ๋„ ์ˆœ์œ„๋ฅผ ๊ฐœ๋žต์ ์œผ๋กœ ํŒŒ์•…ํ•˜๋Š”๋ฐ ์šฉ์ดํ•˜๊ณ  ๊ทธ ๊ฒฐ๊ณผ๊ฐ€ ์ง๊ด€์ ์ด๋ž€ ์ ์—์„œ ์—ฌ์ „ํžˆ ์‹ค์šฉ์ ์œผ๋กœ ํ™œ์šฉ๋˜๊ณ  ์žˆ๋‹ค(Saltelli et al., 2008).

๋ณธ ์—ฐ๊ตฌ์—์„œ ๊ฒ€ํ† ๋œ ๋ชจํ˜•๋“ค์˜ ์ธ์ž์™€ ๋ณ€์ˆ˜๋Š” ๋ชจ๋‘ ๋…๋ฆฝ์ ์ธ ๊ฒƒ์ด์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๊ฐ๊ฐ์˜ ์ธ์ž์™€ ๋ณ€์ˆ˜์˜ ๊ฐœ๋žต์ ์ธ ๋ฏผ๊ฐ๋„ ์ˆœ์œ„๋ฅผ ํŒŒ์•…ํ•˜๋Š” ๊ฒƒ์— ์ค‘์ ์„ ๋‘๊ณ  OAT ๋ฐฉ๋ฒ•์„ ์ ์šฉํ•˜์˜€๋‹ค. ๋ณด์ •๋œ ๋ชจํ˜•์ธ์ž ๊ฐ’($p$)๊ณผ ํ‰๊ท ๋†๋„ ์ถ”์ •๊ฐ’($\overline{C}$)์„ ๊ธฐ์ค€์œผ๋กœ ๋ชจํ˜•์ธ์ž์˜ $\pm $50% ๊ฐ’์˜ ์ฐจ์ด($\Delta p$)์— ๋Œ€ํ•œ ํ‰๊ท ๋†๋„ ์ถ”์ •๊ฐ’์˜ ๋ณ€ํ™”($\Delta\overline{C}$)๋กœ ๋ฏผ๊ฐ๋„($S$)๋ฅผ ํ‰๊ฐ€ํ•˜์˜€๋‹ค(์‹ 19). ๋‹ค๋งŒ ๊ทธ ๊ฐ’์ด 1๋ณด๋‹ค ์ž‘์€ ๊ฐ’์œผ๋กœ ์ œ์•ฝ๋˜๋Š” $\beta_{3}$์— ๋Œ€ํ•ด์„œ๋Š” ๋ณด์ •๋œ ๊ฐ’์„ ๊ธฐ์ค€์œผ๋กœ โ€“50% ๊ฐ’์„ ์ ์šฉํ•˜์˜€์„ ๋•Œ์˜ ๋†๋„ ๋ณ€ํ™”๋กœ ํ‰๊ฐ€ํ•˜์˜€๋‹ค(์‹ 20). ์ƒํƒœ๋ณ€์ˆ˜์ธ ์œ ๋Ÿ‰์˜ ๋ฏผ๊ฐ๋„๋Š” ๋ชจ๋“  ์œ ๋Ÿ‰ ๊ด€์ธก์น˜์˜ $\pm $10% ๊ฐ’์„ ์ ์šฉํ•˜์˜€์„ ๋•Œ์˜ ํ‰๊ท ์œ ๋Ÿ‰๋น„์™€ ํ‰๊ท ๋†๋„๋น„๋กœ ๋ฏผ๊ฐ๋„๋ฅผ ํ‰๊ฐ€ํ•˜์˜€๋‹ค(์‹ 21).

์‹ 19
$S=\dfrac{\Delta\overline{C}/\overline{C}}{\Delta p/p}=\dfrac{\Delta\overline{C}/\overline{C}}{(1.5p-0.5p)/p}=\dfrac{\Delta\overline{C}}{\overline{C}}$
์‹ 20
$S=\dfrac{\Delta\overline{C}/\overline{C}}{\Delta p/p}=\dfrac{\Delta\overline{C}/\overline{C}}{(p-0.5p)/p}=2\dfrac{\Delta\overline{C}}{\overline{C}}$
์‹ 21
$S=\dfrac{\Delta\overline{C}/\overline{C}}{\Delta\overline{Q}/\overline{Q}}=\dfrac{\Delta\overline{C}/\overline{C}}{(1.1\overline{Q}-0.9\overline{Q})/\overline{Q}}=10\dfrac{\Delta\overline{C}}{\overline{C}}$

3. Results and Discussion

3.1 ์ˆ˜์งˆํ†ต๊ณ„

๊ฒฝ์•ˆA ์ง€์ ๊ณผ ๊ฒฝ์•ˆB ์ง€์ ์—์„œ 2021โˆผ2023๋…„ ๊ฐ„ ์ˆ˜์งˆ์˜ ๋ณ€์ด๋Š” ์œ ๋Ÿ‰์˜ ๋ณ€์ด์— ๋น„ํ•˜์—ฌ ์ž‘์•˜์œผ๋ฉฐ ์ด์งˆ์†Œ์˜ ๋ณ€์ด๊ฐ€ BOD5๋‚˜ ์ด์ธ ๋†๋„์˜ ๋ณ€์ด์— ๋น„ํ•˜์—ฌ ๋น„๊ต์  ์ž‘์•˜๋‹ค(Table 4).

3.2 ๋ชจํ˜•๋ณ„ ๊ฒฐ๊ณผ

Table 1์˜ ๊ธฐ์กด ๋ชจํ˜• ์ค‘ ๊ฐ€์žฅ ๋‹จ์ˆœํ•œ ์œ ํ˜•($L=a Q^{b}$) (Model 1), Kong and Jung (2015)์˜ ๋ชจํ˜•(Model 2), ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ƒˆ๋กœ์ด ์ œ์•ˆ๋œ Table 2์˜ ๋ชจํ˜•(LQLS)์— ๋Œ€ํ•˜์—ฌ ์ ์šฉ์„ฑ์„ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ๋น„์‹œ๊ณ„์—ด ๋ชจํ˜•์ธ Ha and Bae (2003)์™€ Ha et al. (2007)์˜ ๋ชจํ˜•, ๋ฐฐ์ถœ๋ถ€ํ•˜๋Ÿ‰์„ ์„ธ๋ถ„ํ•˜์ง€ ์•Š์€ Eom (2004), Yoon et al. (2007), Park et al. (2007)๊ณผ Park et al. (2008)์˜ ๋ชจํ˜•์€ ํ‰๊ฐ€ํ•˜์ง€ ์•Š์•˜๋‹ค.

3.2 ๋ชจํ˜•๋ณ„ ๊ฒฐ๊ณผ

3.2.1 Model 1

Model 1์—์„œ ๋ฐฐ์ถœ๋ถ€ํ•˜๋Ÿ‰ ๋“ฑ์˜ ์ œ๋ฐ˜ ์š”์ธ์€ ํ•จ์ˆ˜์‹์˜ ๊ณ„์ˆ˜(coefficient, $a$)์— ๋‚ด์žฌ๋˜๊ณ  ์œ ๋‹ฌํŠน์„ฑ์€ ์œ ๋Ÿ‰์˜์กด์„ฑ์„ ๋‚˜ํƒ€๋‚ด๋Š” ์Šน์ˆ˜(exponent, $b$)๋กœ ๊ณ ๋ ค๋œ๋‹ค. Model 1์œผ๋กœ ์ถ”์ •๋œ ๋†๋„๋Š” ๊ณ ์œ ๋Ÿ‰์˜ ์‹œ๊ธฐ์— ์•ฝ๊ฐ„์˜ ๋ณ€๋™์„ ๋ณด์˜€์„ ๋ฟ ๊ฑฐ์˜ ์ผ์ •ํ•œ ์ˆ˜์ค€์„ ๋ณด์˜€๋‹ค(Fig. 1).

๊ฒฝ์•ˆ A ์ง€์ ๊ณผ ๊ฒฝ์•ˆ B ์ง€์ ์˜ ๊ด€์ธก๋†๋„ ๋ฐ ๋ถ€ํ•˜๋Ÿ‰๊ณผ Model 1 ์ถ”์ •์น˜์˜ ๊ด€๊ณ„๋Š” Fig. 2์™€ ๊ฐ™๋‹ค. BOD5, T-N ๋ฐ T-P ๋†๋„ ์ถ”์ •์น˜๋Š” ๋ชจ๋‘ ๋‘ ์ง€์ ์˜ ํ‰๊ท ์ ์ธ ์ˆ˜์ค€์„ ๋ณด์—ฌ์ค„ ๋ฟ ๊ด€์ธก์น˜์˜ ๋ณ€๋™์„ ๋”ฐ๋ฅด์ง€ ๋ชปํ•˜์˜€๋‹ค. ์ด์™€ ๋ฐ˜๋ฉด ๋ถ€ํ•˜๋Ÿ‰ ์ถ”์ •์น˜๋Š” ๊ด€์ธก๋ถ€ํ•˜๋Ÿ‰๊ณผ ๋šœ๋ ทํ•˜๊ฒŒ ๋ฐ€์ ‘ํ•œ ๊ด€๊ณ„๋ฅผ ๋ณด์˜€๋Š”๋ฐ, ์ด๋Š” ๊ด€์ธก๋ถ€ํ•˜๋Ÿ‰๊ณผ ์ถ”์ •๋ถ€ํ•˜๋Ÿ‰์— ์œ ๋Ÿ‰์ด ์ž ์žฌ๋ณ€์ˆ˜๋กœ ์ž‘์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์ฆ‰ ์œ ๋Ÿ‰๋ณ€๋™์— ๋น„ํ•˜์—ฌ ์ˆ˜์งˆ๋ณ€๋™์ด ์ž‘์•„์„œ(Table 4) ์ˆ˜์งˆ๋ณ€๋™์— ๊ด€๊ณ„์—†์ด ์œ ๋Ÿ‰๋ณ€๋™๋งŒ์œผ๋กœ๋„ ๋ถ€ํ•˜๋Ÿ‰์˜ ๋ณ€๋™์ด ๊ฒฐ์ •๋˜๊ธฐ ๋•Œ๋ฌธ์— ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜ํƒ€๋‚œ ๊ฒƒ์œผ๋กœ ๋ณผ ์ˆ˜ ์žˆ๋‹ค.

Fig. 1. Results of Model 1 at Kyeongan A and Kyeongan B (2021-2023).

../../Resources/kswe/KSWE.2025.41.5.321/fig1.png

Fig. 2. Comparison of observed and modeled concentration and load at Kyeongan A and Kyeongan B (2021-2023) (Model 1).

../../Resources/kswe/KSWE.2025.41.5.321/fig2.png

Table 4 Summary statistics of flowrate, BOD5, T-N, and T-P at Kyeongan A and Kyeongan B: Mean and coefficient of variation (C.V.) (2021โ€“2023)

Flowrate

BOD5

(mg/L)

T-N

(mg/L)

T-P

Mean

(m3/s)

C.V.

Mean

(mg/L)

C.V.

Mean

(mg/L)

C.V.

Mean

(mg/L)

C.V.

Kyeongan A

5.0

1.22

2.6

0.60

3.44

0.28

0.087

0.50

Kyeongan B

13.4

1.44

1.8

0.60

3.78

0.34

0.065

0.66

3.2.2 Model 2

Model 2๋กœ ์ถ”์ •๋œ ๊ฒฐ๊ณผ๋Š” Model 1์— ๋น„ํ•˜์—ฌ ๊ด€์ธก๋†๋„์˜ ๋ณ€๋™์„ ๋ณด๋‹ค ์ ํ•ฉํ•˜๊ฒŒ ์žฌํ˜„ํ•˜์˜€์œผ๋‚˜ ๊ทธ ์ •๋„๋Š” ๋†’์ง€ ์•Š์•˜๋‹ค(Fig. 3).

Model 2๋กœ ์ถ”์ •๋œ BOD5, T-N, T-P ๋†๋„๋Š” ๋ชจ๋‘ ์ €๋†๋„ ๊ตฌ๊ฐ„์—์„œ ๊ณผ๋Œ€ํ‰๊ฐ€๋˜๊ณ  ๊ณ ๋†๋„ ๊ตฌ๊ฐ„์—์„œ๋Š” ๊ณผ์†Œํ‰๊ฐ€๋˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์˜€๋‹ค(Fig. 4). ์ด๋Š” Model 1์—์„œ์™€ ๊ฐ™์ด Model 2์—์„œ๋„ ์ •๋„์—๋Š” ์ฐจ์ด๊ฐ€ ์žˆ์ง€๋งŒ ์ถ”์ •๊ฒฐ๊ณผ๊ฐ€ ํ‰๊ท ์น˜๋กœ ์น˜์šฐ์น˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์ด๊ณ  ์žˆ์Œ์„ ์˜๋ฏธํ•œ๋‹ค.

Fig. 3. Results of Model 2 at Kyeongan A and Kyeongan B (2021-2023).

../../Resources/kswe/KSWE.2025.41.5.321/fig3.png

Fig. 4. Comparison of observed and modeled concentration and load at Kyeongan A and Kyeongan B (2021-2023) (Model 2).

../../Resources/kswe/KSWE.2025.41.5.321/fig4.png

3.2.3 This model (LQLS)

๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆ๋œ ๋ชจํ˜•์˜ ์ถ”์ •๋†๋„๋Š” Model 1์ด๋‚˜ Model 2์— ๋น„ํ•˜์—ฌ ๋šœ๋ ทํ•˜๊ฒŒ ๊ด€์ธก๋†๋„์˜ ๋ณ€๋™์„ ์ž˜ ์žฌํ˜„ํ•˜์˜€๋‹ค(Fig. 5). Model 2์™€ LQLS ๋ชจํ˜•์˜ ์ฃผ์š” ์ฐจ์ด์ ์€ ๊ณ„์ ˆ์„ฑ์— ๋Œ€ํ•œ ๊ณ ๋ ค ์—ฌ๋ถ€์ด๋‹ค. ๋”ฐ๋ผ์„œ ๊ณ„์ ˆ์„ฑ์„ ๊ณ ๋ คํ•  ๋•Œ ์œ ๋‹ฌ๋ชจํ˜•์˜ ์žฌํ˜„์„ฑ์ด ํฌ๊ฒŒ ํ–ฅ์ƒ๋จ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.

LQLS ๋ชจํ˜•์œผ๋กœ ๋ชจ์˜๋œ BOD5, T-N, T-P ๋†๋„๋Š” Model 1์ด๋‚˜ Model 2์— ๋น„ํ•˜์—ฌ ์ €๋†๋„ ๊ตฌ๊ฐ„์—์„œ ๊ณผ๋Œ€ํ‰๊ฐ€๋˜๊ฑฐ๋‚˜ ๊ณ ๋†๋„ ๊ตฌ๊ฐ„์—์„œ ๊ณผ์†Œํ‰๊ฐ€๋˜๋Š” ๊ฒฝํ–ฅ์ด ์ ์—ˆ๋‹ค(Fig. 6).

Fig. 5. Results of this model (LQLS) at Kyeongan A and Kyeongan B (2021-2023).

../../Resources/kswe/KSWE.2025.41.5.321/fig5.png

Fig. 6. Comparison of observed and modeled concentration and load at Kyeongan A and Kyeongan B (2021-2023) (This model).

../../Resources/kswe/KSWE.2025.41.5.321/fig6.png

3.3 ์ ํ•ฉ๋„ ํ‰๊ฐ€

๋ชจํ˜•๋ณ„ ์ ํ•ฉ๋„ ํ‰๊ฐ€์ง€ํ‘œ ๊ฐ’๊ณผ Table 3์˜ ๊ธฐ์ค€์— ๋”ฐ๋ฅธ ์ ํ•ฉ๋„๋Š” Table 5์™€ ๊ฐ™๋‹ค. ๋†๋„์— ๋Œ€ํ•œ Model 1์˜ ์ ํ•ฉ๋„๋Š” PBIAS๋ฅผ ์ œ์™ธํ•˜๊ณค ๋ชจ๋‘ ๋ฏธํก(unsatisfactory)ํ•˜์˜€๊ณ , ๋ถ€ํ•˜๋Ÿ‰์— ๋Œ€ํ•œ ์ ํ•ฉ๋„๋Š” ๋งค์šฐ์–‘ํ˜ธ(very good) ๋˜๋Š” ์–‘ํ˜ธ(good)ํ•˜์˜€๋‹ค.

Model 2๋Š” Model 1์— ๋น„ํ•˜์—ฌ ์ ํ•ฉ๋„๊ฐ€ ์ „๋ฐ˜์ ์œผ๋กœ ๋†’์•„์กŒ์œผ๋‚˜ ๋†๋„์ถ”์ •์˜ ์ ํ•ฉ๋„๋Š” PBIAS์™€ ์ด์งˆ์†Œ์˜ ์ด์ธ์˜ ๊ฒฐ์ •๊ณ„์ˆ˜๋ฅผ ์ œ์™ธํ•˜๊ณค ์—ฌ์ „ํžˆ ๋ฏธํกํ•˜์˜€๋‹ค. ๋ฐ˜๋ฉด ๋ถ€ํ•˜๋Ÿ‰ ์ถ”์ •์˜ ์ ํ•ฉ๋„๋Š” ๋ชจ๋‘ ๋งค์šฐ์–‘ํ˜ธ(very good)ํ•˜์˜€๋‹ค.

LQLS ๋ชจํ˜•์˜ ๋†๋„์ถ”์ •์— ๋Œ€ํ•œ ์ ํ•ฉ๋„๋Š” ์ด์ธ์˜ RSR์„ ์ œ์™ธํ•˜๊ณค ๋ชจ๋‘ ๋ณดํ†ต(satisfactory) ์ด์ƒ์˜ ์ ํ•ฉ๋„๋ฅผ ๋ณด์—ฌ, ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ƒˆ๋กœ์ด ์ œ์‹œํ•˜๋Š” LQLS ๋ชจํ˜•์€ ์ˆ˜์งˆ๋ชจ์˜์— ์ ์šฉ์„ฑ์ด ๋†’์€ ๊ฒƒ์œผ๋กœ ํŒ๋‹จํ•  ์ˆ˜ ์žˆ๋‹ค.

Table 5 Performance rating of model 1 at Kyeongan A and Kyeongan B

Concentration

Load

BOD5

T-N

T-P

BOD5

T-N

T-P

Model 1

$SMAPE$

22.9

11.7

16.0

22.9

11.7

16.0

$PBIAS$

-14.9

VG

-4.3

VG

-9.2

VG

-18.3

VG

-4.8

VG

-15.1

VG

$R^{2}$

0.15

US

0.14

US

0.22

US

0.76

VG

0.91

VG

0.92

VG

$NSE$

0.08

US

0.11

US

0.19

US

0.68

VG

0.91

VG

0.90

VG

$RSR$

0.96

US

0.94

US

0.90

US

0.56

G

0.29

VG

0.32

VG

$IOA$

0.44

US

0.41

US

0.51

US

0.87

G

0.97

VG

0.97

VG

Model 2

$SMAPE$

21.3

ใ€€

10.3

ใ€€

15.1

ใ€€

21.3

ใ€€

10.3

ใ€€

15.1

ใ€€

$PBIAS$

-7.6

VG

-4.5

VG

-4.2

VG

-1.8

VG

-7.6

VG

-5.2

VG

$R^{2}$

0.24

US

0.34

S

0.34

S

0.86

VG

0.88

VG

0.95

VG

$NSE$

0.22

US

0.29

US

0.32

US

0.84

VG

0.88

VG

0.96

VG

$RSR$

0.88

US

0.85

US

0.83

US

0.39

VG

0.34

VG

0.21

VG

$IOA$

0.64

US

0.59

US

0.64

US

0.96

VG

0.96

VG

0.99

VG

This model

(LQLS)

$SMAPE$

16.0

ใ€€

6.8

ใ€€

13.0

ใ€€

16.0

ใ€€

6.8

ใ€€

13.0

ใ€€

$PBIAS$

0.0

VG

0.0

VG

0.0

VG

4.2

VG

-5.0

VG

4.0

VG

$R^{2}$

0.54

S

0.69

G

0.38

S

0.82

VG

0.89

VG

0.95

VG

$NSE$

0.53

G

0.69

VG

0.36

S

0.77

VG

0.85

VG

0.95

VG

$RSR$

0.68

S

0.56

G

0.80

US

0.48

VG

0.39

VG

0.22

VG

$IOA$

0.84

S

0.90

G

0.76

S

0.95

VG

0.95

VG

0.99

VG

VG: very good, G: good, S: satisfactory, US: unsatisfactory

3.4 ๋ฏผ๊ฐ๋„ ํ‰๊ฐ€

LQLS ๋ชจํ˜•์˜ ๋ณด์ •๋œ ์ธ์ž ๊ฐ’๊ณผ ๋ฏผ๊ฐ๋„ ๋ฐ ์ƒํƒœ๋ณ€์ˆ˜์ธ ์œ ๋Ÿ‰์˜ ๋ฏผ๊ฐ๋„๋ฅผ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ๋Š” Table 6๊ณผ ๊ฐ™๋‹ค. ๋ชจ๋“  ์ˆ˜์งˆํ•ญ๋ชฉ์— ๋Œ€ํ•˜์—ฌ ๊ฐ€์žฅ ๋ฏผ๊ฐํ•œ ๋ชจํ˜•์ธ์ž๋Š” ์œ ๋‹ฌ๋ฅ  ํ•ญ์˜ $\alpha_{1}$์ด์—ˆ๋‹ค. ๋น„์ ๋ฐฐ์ถœํ•จ์ˆ˜ํ•ญ์—์„œ๋Š” $\beta_{1}$๊ณผ $\beta_{3}$์˜ ๋ฏผ๊ฐ๋„๊ฐ€ ๋†’์•˜์œผ๋ฉฐ ๊ณ„์ ˆํ•จ์ˆ˜ํ•ญ์—์„œ๋Š” $\gamma_{2}$๊ฐ€ $\gamma_{1}$์— ๋น„ํ•˜์—ฌ ์ƒ๋Œ€์ ์œผ๋กœ ๋” ๋ฏผ๊ฐํ•˜์˜€๋‹ค.

์œ ๋Ÿ‰์€ BOD5 ๋†๋„์— ๊ฐ€์žฅ ๋ฏผ๊ฐํ•˜๊ฒŒ ์˜ํ–ฅ์„ ์ฃผ์—ˆ์œผ๋ฉฐ ์ด์งˆ์†Œ ๋†๋„์—๋Š” ๊ฐ€์žฅ ์˜ํ–ฅ๋„๊ฐ€ ์ž‘์•˜๊ณ , ์ด์ธ์— ๋Œ€ํ•œ ์˜ํ–ฅ๋„๋Š” ๊ทธ ์ค‘๊ฐ„ ์ˆ˜์ค€์ด์—ˆ๋‹ค. ๋˜ํ•œ ์œ ๋Ÿ‰์ด ์ฆ๊ฐ€ํ•  ๋•Œ ์—ฐํ‰๊ท  BOD5์™€ ์ด์งˆ์†Œ์˜ ๋†๋„๋Š” ๊ฐ์†Œํ•˜๋Š” ๋ฐ˜๋ฉด ์ธ์€ ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒฐ๊ณผ๋ฅผ ๋ณด์˜€๋‹ค.

Table 6 Sensitivity analysis of model parameters and flowrate according to water quality items

ใ€€Model parameters

BOD5

T-N

T-P

Coefficient

$OAT$

Coefficient

$OAT$

Coefficient

$OAT$
$\alpha_{1}$

0.780

0.70

0.825

0.51

0.330

0.68

$\alpha_{2}$

0.489

-0.16

0.653

-0.14

1.219

-0.10

$\alpha_{3}$

0.841

-0.13

0.864

-0.23

0.777

-0.58

$\beta_{1}$

0.086

0.17

0.677

0.38

0.124

0.22

$\beta_{2}$

1.873

0.15

1.176

0.01

1.504

0.24

$\beta_{3}$

0.994

0.20

0.989

0.30

0.994

0.31

$\gamma_{1}$

0.153

0.05

0.101

0.00

0.074

0.00

$\gamma_{2}$

-0.339

0.20

0.233

0.04

-0.184

0.08

$Q$

-0.44

-0.02

0.15

3.5 ๋ชจํ˜•์˜ ํ™œ์šฉ

3.5.1 ์œ ๋‹ฌ ์†์„ฑ ๋ถ„์„

LQLS ๋ชจํ˜•์—์„œ๋Š” ๊ณ„์ ˆํ•จ์ˆ˜๋‚˜ ๋น„์ ๋ฐฐ์ถœํ•จ์ˆ˜๋ฅผ ๋ถ„๋ฆฌํ•˜์—ฌ ๊ทธ ํŠน์„ฑ์„ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ๋‹ค. BOD5์˜ ๊ณ„์ ˆํ•จ์ˆ˜ ๊ฐ’์€ 5โˆผ6์›”์— ์ตœ๋Œ€๊ฐ’์„ ๋ณด์ด๊ณ  11์›” ๋ง์— ์ตœ์†Œ๊ฐ’์„ ๋ณด์˜€์œผ๋ฉฐ ์—ฐ๊ฐ„์˜ ๋ณ€๋™๊ณ„์ˆ˜(coefficient of variance)๋Š” ์•ฝ 26%์˜€๋‹ค(Fig. 7). ์ด๋Š” ๋น„์ ์˜ค์—ผ์› ๋ฐ ์‚ฐ์žฌ๋œ ๊ฐœ๋ณ„์ ์˜ค์—ผ์›์—์„œ ๋ชฌ์ˆœ๊ธฐ ์ด์ „์˜ ์˜ค์—ผ๋ฌผ์งˆ ์ถ•์ ๊ณผ ๋ชฌ์ˆœ๊ธฐ์˜ ์”ป๊น€ ํšจ๊ณผ๋ฅผ ๋ฐ˜์˜ํ•˜๊ณ  ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ํ•ด์„๋œ๋‹ค.

Fig. 7. Seasonal correction coefficients at Kyeongan A and Kyeongan B (2021-2023).

../../Resources/kswe/KSWE.2025.41.5.321/fig7.png

์ด์งˆ์†Œ์˜ ๊ณ„์ ˆํ•จ์ˆ˜ ๊ฐ’์€ 1์›” ์ค‘์— ์ตœ๋Œ€๊ฐ’์„ ๋ณด์ด๊ณ  7์›” ์ค‘์— ์ตœ์†Œ๊ฐ’์„ ๋ณด์˜€์œผ๋ฉฐ ์—ฐ๊ฐ„์˜ ๋ณ€๋™๊ณ„์ˆ˜๋Š” ์•ฝ 18%์˜€๋‹ค. ํ† ์–‘์— ์ง‘์ ๋œ ์งˆ์‚ฐ์—ผ์€ ์ฃผ๋กœ ์Œ์ „ํ•˜๋ฅผ ๋„๋Š” ํ† ์–‘ํ‘œ๋ฉด์— ํก์ฐฉ๋˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์— ํ† ์–‘ ๊ณต๊ทน์ˆ˜์— ์˜ํ•˜์—ฌ ์‰ฝ๊ฒŒ ์ด๋™๋  ์ˆ˜ ์žˆ๋‹ค(Bellini et al., 1996). ํ† ์–‘์˜ ๊ณต๊ทน์ˆ˜์— ์งˆ์‚ฐ์—ผ ํ˜•ํƒœ๋กœ ๋…น์•„ ์žˆ๊ฑฐ๋‚˜ ๋น—๋ฌผ์—๋„ ๋‹ค๋Ÿ‰ ์œ ์ž…๋˜๋Š” ์งˆ์†Œ๋Š” ๊ฐ•์šฐ์— ์˜ํ•œ ์”ป๊น€ํšจ๊ณผ์— ์˜ํ•ด ๋ชฌ์ˆœ๊ธฐ ์ดˆ๊ธฐ์— ๋Œ€๋ถ€๋ถ„ ์œ ์ถœ๋˜๊ณ , ์—ฌ๋ฆ„์ฒ  ํฐ ๊ฐ•์šฐ์—๋Š” ์ ๊ฒŒ ๋ฐฐ์ถœ๋˜๊ธฐ ๋•Œ๋ฌธ์— ๋‚ฎ์€ ๋†๋„๋ฅผ ๋ณด์ด๋Š” ๊ฒƒ์œผ๋กœ ์ถ”์ •๋œ๋‹ค. ์ด์ธ์˜ ๊ณ„์ ˆํ•จ์ˆ˜ ๊ฐ’์˜ ๋ณ€๋™์€ BOD5์™€ ์œ ์‚ฌํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚ฌ์œผ๋‚˜ ์—ฐ๊ฐ„ ๋ณ€๋™๊ณ„์ˆ˜๋Š” 14%๋กœ BOD5๋‚˜ ์ด์งˆ์†Œ์— ๋น„ํ•˜์—ฌ ์ƒ๋Œ€์ ์œผ๋กœ ์ž‘์•˜๋‹ค. ์ด๋Š” ์ธ์ด ํ† ์–‘์ž…์ž์— ํก์ฐฉ๋˜์–ด ์žˆ๋Š” ๊ฒฝํ–ฅ์ด ํฌ๊ธฐ ๋•Œ๋ฌธ์—(Kim et al., 2019) ์—ฌ๋ฆ„์ฒ  ๊ฐ•์šฐ์— ์˜ํ•œ ์”ป๊น€ํšจ๊ณผ๊ฐ€ ์ƒ๋Œ€์ ์œผ๋กœ ์ž‘๊ธฐ ๋•Œ๋ฌธ์ธ ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค.

์‹ 10์—์„œ ๋„์ถœ๋˜๋Š” ๋น„์ ๋ฐฐ์ถœ๋†๋„๋Š” ์ˆ˜์งˆํ•ญ๋ชฉ๋งˆ๋‹ค ๋‹ค๋ฅธ ํŠน์„ฑ์„ ๋ณด์˜€๋‹ค(Fig. 8). ๋น„๋น„์ ๋ฐฐ์ถœ๋†๋„๊ฐ€ ์ตœ๊ณ ๊ฐ’์— ์ด๋ฅด๋Š” ๋น„์ ์œ ์ถœ๊ณ ๋Š” BOD5๊ฐ€ ์•ฝ 10 mm/d, ์ด์งˆ์†Œ๋Š” ์•ฝ 9 mm/d, ์ด์ธ์€ ์•ฝ 10 mm/d๋กœ ๋ถ„์„๋˜์—ˆ๋‹ค. ๋˜ํ•œ BOD5๋Š” ์ž‘์€ ๋น„์ ์œ ์ถœ๊ณ ์—์„œ๋Š” ๋‚ฎ์€ ๋†๋„๋ฅผ ๋ณด์ด๊ณ  ์ตœ๊ณ ๊ฐ’์— ์ด๋ฅธ ํ›„์—๋Š” ํ˜„์ €ํžˆ ๊ฐ์†Œํ•˜๋Š” ๋ฐ˜๋ฉด, ํ† ์–‘ ๊ณต๊ทน์ˆ˜๋‚˜ ๋น—๋ฌผ์— ์งˆ์‚ฐ์—ผ ํ˜•ํƒœ๋กœ ๋…น์•„ ์žˆ๋Š” ์ด์งˆ์†Œ๋Š” ์ž‘์€ ๋น„์ ์œ ์ถœ๊ณ ์—์„œ๋„ ๋†’์€ ๋†๋„๋ฅผ ๋ณด์ด๊ณ  ์ตœ๊ณ ๊ฐ’์— ์ด๋ฅธ ํ›„์—๋„ ์™„๋งŒํ•˜๊ฒŒ ๊ฐ์†Œํ•˜์—ฌ ๋ณ€ํ™” ์ •๋„๊ฐ€ BOD5์™€ ์ด์ธ์— ๋น„ํ•˜์—ฌ ์ƒ๋Œ€์ ์œผ๋กœ ์ž‘์€ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ฃผ๋กœ ํ† ์–‘์ž…์ž์— ํก์ฐฉ๋˜์–ด ์žˆ๋Š” ์ด์ธ์˜ ๋†๋„๋Š” ๋น„์ ์œ ์ถœ๊ณ ์— ๊ฐ€์žฅ ํฌ๊ฒŒ ์˜ํ–ฅ์„ ๋ฐ›์œผ๋ฉฐ ์ž‘์€ ๋น„์ ์œ ์ถœ๊ณ ์—์„œ๋Š” ๋‚ฎ๊ณ  ๋น„์ ์œ ์ถœ๊ณ ๊ฐ€ ์ฆ๊ฐ€ํ•  ๋•Œ ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์ถ”์ •๋˜์—ˆ๋‹ค.

Fig. 8. Discharge concentration from nonpoint source according to NPS runoff depth at Kyeongan A and Kyeongan B (2021-2023).

../../Resources/kswe/KSWE.2025.41.5.321/fig8.png

๋ณธ ์—ฐ๊ตฌ์—์„œ ๋ฐฐ๊ฒฝ๋ถ€ํ•˜๋Ÿ‰์€ ๋ณ„๋„๋กœ ๋ถ„๋ฆฌ๋˜์ง€ ์•Š๊ณ  ๋น„์ ๋ฐฐ์ถœ๋ถ€ํ•˜๋Ÿ‰์— ํฌํ•จ๋˜์–ด ๋ชจ์˜๋œ๋‹ค. ์ €์œ ๋Ÿ‰์—์„œ๋„ ๋น„์ ๋ฐฐ์ถœ๋†๋„๊ฐ€ ๋†’์€ ๊ฒƒ์€ ๊ธฐ์ €์œ ์ถœ์— ์˜ํ•œ ์งˆ์†Œ ๋ถ€ํ•˜๋Ÿ‰์ด ์œ ์˜ํ•œ ์ˆ˜์ค€์œผ๋กœ ๋†’์€ ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค. ์šฐ๋ฆฌ๋‚˜๋ผ์˜ ์งˆ์†Œ ๋ฐฐ๊ฒฝ๋†๋„๋Š” ์ œ์™ธ๊ตญ์— ๋น„ํ•˜์—ฌ ๋งค์šฐ ๋†’์€ ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ์œผ๋ฉฐ, Kim and Lee (2009)๋Š” ๊ธฐ์ €์œ ์ถœ์— ์˜ํ•œ ์งˆ์‚ฐ์„ฑ ์งˆ์†Œ๋ถ€ํ•˜๊ฐ€ ๋น„๊ฐ•์šฐ๊ธฐ๋Š” ๋ฌผ๋ก  ๊ฐ•์šฐ๊ธฐ์—๋„ ํฐ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค๊ณ  ๋ณด๊ณ ํ•œ ๋ฐ” ์žˆ๋‹ค.

๊ทธ๋Ÿฌ๋‚˜ ๋ณธ ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ๋Š” ์•ˆ์ „์‚ฌ๊ณ ์˜ ์šฐ๋ ค ๋•Œ๋ฌธ์— ๋น„์ ๋ฐฐ์ถœ์˜ ์˜ํ–ฅ์ด ์ ์€ ์ €์œ ๋Ÿ‰์˜ ์‹œ๊ธฐ์— ์ฃผ๋กœ ์ธก์ •๋œ ์ž๋ฃŒ์—์„œ ๋„์ถœ๋œ ๊ฒƒ์ด๋‹ค. Fig. 8์—์„œ๋„ ๋ณผ ์ˆ˜ ์žˆ๋“ฏ์ด ๊ณ ์œ ๋Ÿ‰์˜ ์‹œ๊ธฐ์— ์ธก์ •๋œ ์ž๋ฃŒ๊ฐ€ ์ผ๋ถ€์— ๋ถˆ๊ณผํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋น„์ ์œ ์ถœ๊ณ ์™€ ๋น„์ ๋ฐฐ์ถœ๋†๋„์˜ ๊ด€๊ณ„๊ฐ€ ๋‹ค์†Œ ์™œ๊ณก๋˜์—ˆ์„ ๊ฐ€๋Šฅ์„ฑ๋„ ๋ฐฐ์ œํ•  ์ˆ˜ ์—†๋‹ค. ํ–ฅํ›„ ๊ณ ์œ ๋Ÿ‰์˜ ์‹œ๊ธฐ์— ์ธก์ •๋œ ์ž๋ฃŒ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋ณด๋‹ค ์ •๋ฐ€ํ•œ ๊ด€๊ณ„๋ฅผ ๊ฒ€ํ† ํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค.

3.5.2 ์˜ค์—ผ์› ๊ธฐ์—ฌ๋„ ํ‰๊ฐ€

์œ ๋‹ฌ๋ชจํ˜•์—์„œ ์ถ”์ •๋˜๋Š” ๊ฐ ์˜ค์—ผ์›๋ณ„ ์œ ๋‹ฌ๋ถ€ํ•˜๋Ÿ‰์„ ์ด ์œ ๋Ÿ‰์œผ๋กœ ๋‚˜๋ˆ„๋ฉด ๊ฐ ์˜ค์—ผ์›์ด ๋ฏธ์น˜๋Š” ๋ถ€๋ถ„๋†๋„(partial concentration)๊ฐ€ ๋œ๋‹ค. Fig. 9๋Š” ๊ฒฝ์•ˆ A ์ง€์ ๊ณผ ๊ฒฝ์•ˆ B ์ง€์ ์˜ BOD5 ๋†๋„์— ๋ฏธ์น˜๋Š” ๊ฐ ์˜ค์—ผ์›๋ณ„ ๋ถ€๋ถ„๋†๋„๋ฅผ ๋ชจ์˜ํ•œ ๊ฒฐ๊ณผ์ด๋‹ค. ๋น„์ ๋ฐฐ์ถœ์— ์˜ํ•œ ์˜ํ–ฅ์€ 6โˆผ9์›”์˜ ๋ชฌ์ˆœ๊ธฐ์— ์ง‘์ค‘๋˜๋ฉฐ ๊ทธ ์™ธ์˜ ์‹œ๊ธฐ์—๋Š” ๊ฐœ๋ณ„์ ๋ฐฐ์ถœ๊ณผ ํ™˜๊ฒฝ๊ธฐ์ดˆ์‹œ์„ค ๋ฐฉ๋ฅ˜์— ์˜ํ–ฅ์„ ๋ฐ›๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์—ฐํ‰๊ท  ์ˆ˜์ค€์œผ๋กœ ๋ณผ ๋•Œ ์ „์ฒด ๋ฐฐ์ถœ๋ถ€ํ•˜์—์„œ ํ™˜๊ฒฝ๊ธฐ์ดˆ์‹œ์„ค ๋ฐฉ๋ฅ˜๋ถ€ํ•˜๋Š” 5% ์ˆ˜์ค€์ด์ง€๋งŒ ์œ ๋‹ฌ๋†๋„๋กœ๋Š” 13โˆผ20%์˜ ๊ธฐ์—ฌ๋„๋ฅผ ๋ณด์ด๊ณ , ๊ฐœ๋ณ„์ ๋ฐฐ์ถœ๋ถ€ํ•˜๋Š” ์ „์ฒด ๋ฐฐ์ถœ๋ถ€ํ•˜์˜ 21โˆผ32%์ด์ง€๋งŒ ์œ ๋‹ฌ๋†๋„๋กœ๋Š” 63โˆผ73%์˜ ๊ธฐ์—ฌ๋„๋ฅผ ๋ณด์ด๋Š” ๋ฐ˜๋ฉด ๋น„์ ๋ฐฐ์ถœ๋ถ€ํ•˜๋Š” ์ „์ฒด ๋ฐฐ์ถœ๋ถ€ํ•˜์˜ 63โˆผ74%์ด์ง€๋งŒ ์œ ๋‹ฌ๋†๋„ ๊ธฐ์—ฌ๋„๋Š” 13โˆผ20%์— ๋ถˆ๊ณผํ•œ ๊ฒƒ์œผ๋กœ ํ‰๊ฐ€๋˜์—ˆ๋‹ค.

Fig. 9. LQLS-simulated partial BOD5 concentrations by pollution sources (a1, b1) and annual average relative contribution on the concentration (a2, b2).

../../Resources/kswe/KSWE.2025.41.5.321/fig9.png

์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ์ด์œ ์—์„œ ๋น„๋กฏ๋˜๋Š” ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋˜๋Š”๋ฐ ์ฒซ์งธ๋Š” ๋น„์ ์˜ค์—ผ์›์˜ ๋ฐฐ์ถœ์ด ์—ฐ์ค‘ ์ผ์ •ํ•˜์ง€ ์•Š๊ณ  ํŠน์ • ๊ฐ•์šฐ๊ธฐ์— ์ง‘์ค‘๋˜๊ธฐ ๋•Œ๋ฌธ์— ์—ฐ๊ฐ„์˜ ์‚ฐ์ˆ ํ‰๊ท ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ •๋„๊ฐ€ ์ ๋‹ค๋Š” ๊ฒƒ์ด๋ฉฐ, ๋‘˜์งธ๋Š” ์œ ๋Ÿ‰ ๋ฐ ์ˆ˜์งˆ ๊ด€์ธก์น˜๊ฐ€ ๋น„์ ๋ฐฐ์ถœ์˜ ์˜ํ–ฅ์ด ์ ์€ ์ €์œ ๋Ÿ‰์˜ ์‹œ๊ธฐ์— ์ฃผ๋กœ ์ธก์ •๋œ ๊ฒƒ์ด๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๊ฐ•์šฐ๊ธฐ์— ์ง‘์ค‘๋ฐฐ์ถœ๋˜๋Š” ๋น„์ ์˜ค์—ผ์›์˜ ์˜ํ–ฅ์€ ์ƒ์‹œ๋ฐฐ์ถœ๋˜๋Š” ์ ์˜ค์—ผ์›์— ๋น„ํ•˜์—ฌ ๊ฐ™์€ ๋ถ€ํ•˜๋Ÿ‰์ด๋ผ๋„ ์—ฐํ‰๊ท  ์ˆ˜์งˆ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์ด ์ ์„ ์ˆ˜๋ฐ–์— ์—†๋‹ค.

๋˜ํ•œ ๊ฒฝ์•ˆ์ฒœ์˜ ์ˆ˜์งˆ์€ ๊ทธ๊ฐ„ ํ™˜๊ฒฝ๊ธฐ์ดˆ์‹œ์„ค์˜ ๋ฐฉ๋ฅ˜๋ถ€ํ•˜๋Ÿ‰ ์ €๊ฐ์„ ํ†ตํ•ด ๋งŽ์ด ๊ฐœ์„ ๋˜์–ด ์™”์œผ๋ฉฐ ๊ทธ์— ๋”ฐ๋ผ ์˜ค์—ผ์›๋ณ„ ๊ธฐ์—ฌ๋„ ์—ญ์‹œ ํฌ๊ฒŒ ๋ณ€ํ™”ํ•˜์˜€๋‹ค. Kim et al. (2009)์€ 2006๋…„๋„์— ๊ฒฝ์•ˆB ์ง€์ ์˜ BOD5 ์œ ๋‹ฌ๋ถ€ํ•˜๋Ÿ‰์—์„œ ํ•˜์ˆ˜์ฒ˜๋ฆฌ์žฅ์˜ ๋ฐฉ๋ฅ˜๋ถ€ํ•˜๊ฐ€ ์ฐจ์ง€ํ•˜๋Š” ๋น„์œจ์„ 53.6%๋กœ ์ถ”์ •ํ•œ ๋ฐ” ์žˆ๋‹ค. ์ด์™€ ๋น„๊ตํ•  ๋•Œ ์ตœ๊ทผ์—๋Š” ํ•˜์ˆ˜์ฒ˜๋ฆฌ์žฅ ๋ฐฉ๋ฅ˜๋ถ€ํ•˜์˜ ์˜ํ–ฅ๋„๊ฐ€ ํฌ๊ฒŒ ๊ฐ์†Œํ•˜์˜€์Œ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค.

์ด์งˆ์†Œ ๋†๋„์— ๋Œ€ํ•œ ๋น„์ ๋ฐฐ์ถœ์˜ ์˜ํ–ฅ์€ 6โˆผ9์›”์˜ ๋ชฌ์ˆœ๊ธฐ์— ์ปค์ง€๊ธฐ๋Š” ํ•˜์ง€๋งŒ ๊ทธ ์ด์™ธ์˜ ์‹œ๊ธฐ์—๋„ ์˜ํ–ฅ๋„๊ฐ€ ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚˜๋Š”๋ฐ ์ด๋Š” ์œ„์—์„œ ์ถ”์ •๋œ ๋ฐ”์™€ ๊ฐ™์ด ์งˆ์†Œ์˜ ๋ฐฐ๊ฒฝ๋†๋„๊ฐ€ ๋†’๊ธฐ ๋•Œ๋ฌธ์ธ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค(Fig. 10). Kim and Lee (2009)๋Š” ๋†์ง€ ๋ฐ ์ž„์•ผ๊ฐ€ ๋Œ€๋ถ€๋ถ„์ธ ๊ฐ‘์ฒœ ์ค‘์ƒ๋ฅ˜ ์œ ์—ญ์˜ ํŠน์ • ์ง€์ ์—์„œ ๊ธฐ์ €์œ ์ถœ์— ์˜ํ•œ ์งˆ์‚ฐ์„ฑ ์งˆ์†Œ๋ถ€ํ•˜๊ฐ€ ์ „์ฒด์˜ 59%์— ๋‹ฌํ•œ๋‹ค๊ณ  ๋ณด๊ณ ํ•œ ๋ฐ” ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ ์ง€์ ์€ ์šฉ์ธ์‹œ์™€ ๊ด‘์ฃผ์‹œ์˜ ๋„์‹ฌํ•˜์ฒœ์ด๋ฏ€๋กœ ์ง์ ‘์ ์ธ ๋น„๊ต๋Š” ์–ด๋ ต์ง€๋งŒ ์‹œ๊ณ„์—ด์  ๊ฒฝํ–ฅ์„ ๋ณผ ๋•Œ ๋ฐฐ๊ฒฝ๋ถ€ํ•˜์˜ ์˜ํ–ฅ์ด ์ƒ๋‹นํ•œ ๊ฒƒ์œผ๋กœ ํ‰๊ฐ€๋œ๋‹ค.

๋ฐฐ์ถœ๋ถ€ํ•˜์˜ 24% ์ˆ˜์ค€์ธ ํ™˜๊ฒฝ๊ธฐ์ดˆ์‹œ์„ค ๋ฐฉ๋ฅ˜๋ถ€ํ•˜๋Š” ์œ ๋‹ฌ๋†๋„์— 34โˆผ36%, ๋ฐฐ์ถœ๋ถ€ํ•˜์˜ 19โˆผ24%๋ฅผ ์ฐจ์ง€ํ•˜๋Š” ๊ฐœ๋ณ„์ ๋ฐฐ์ถœ๋ถ€ํ•˜๋Š” ์œ ๋‹ฌ๋†๋„์— 26โˆผ32%, ๋ฐฐ์ถœ๋ถ€ํ•˜์˜ 52โˆผ57%๋ฅผ ์ฐจ์ง€ํ•˜๋Š” ๋น„์ ๋ฐฐ์ถœ๋ถ€ํ•˜๋Š” ์œ ๋‹ฌ๋†๋„์— 34โˆผ38% ๊ธฐ์—ฌํ•˜๋Š” ๊ฒƒ์œผ๋กœ ํ‰๊ฐ€๋˜์—ˆ๋‹ค. Kim et al. (2009)์€ 2006๋…„๋„์— ๊ฒฝ์•ˆB ์ง€์ ์˜ T-N ์œ ๋‹ฌ๋ถ€ํ•˜๋Ÿ‰์—์„œ ํ•˜์ˆ˜์ฒ˜๋ฆฌ์žฅ์˜ ๋ฐฉ๋ฅ˜๋ถ€ํ•˜๊ฐ€ ์ฐจ์ง€ํ•˜๋Š” ๋น„์œจ์„ 47.9%๋กœ ์ถ”์ •ํ•œ ๋ฐ” ์žˆ๋‹ค.

์ด์ธ ๋†๋„์— ๋Œ€ํ•œ ๋น„์ ๋ฐฐ์ถœ์˜ ์˜ํ–ฅ์€ BOD5์™€ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ 6โˆผ9์›”์˜ ๋ชฌ์ˆœ๊ธฐ์— ์ง‘์ค‘๋˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์˜€๋‹ค(Fig. 11). ์ด๋Ÿฌํ•œ ์ด์œ ๋กœ ๋ฐฐ์ถœ๋ถ€ํ•˜์˜ 3โˆผ4% ์ˆ˜์ค€์ธ ํ™˜๊ฒฝ๊ธฐ์ดˆ์‹œ์„ค ๋ฐฉ๋ฅ˜๋ถ€ํ•˜๋Š” ์œ ๋‹ฌ๋†๋„์— 23โˆผ25%, ๋ฐฐ์ถœ๋ถ€ํ•˜์˜ 29โˆผ34%๋ฅผ ์ฐจ์ง€ํ•˜๋Š” ๊ฐœ๋ณ„์ ๋ฐฐ์ถœ๋ถ€ํ•˜๋Š” ์œ ๋‹ฌ๋†๋„์— 51โˆผ57%, ๋ฐฐ์ถœ๋ถ€ํ•˜์˜ 61โˆผ68%๋ฅผ ์ฐจ์ง€ํ•˜๋Š” ๋น„์ ๋ฐฐ์ถœ๋ถ€ํ•˜๋Š” ์œ ๋‹ฌ๋†๋„์— 18โˆผ26% ๊ธฐ์—ฌํ•˜๋Š” ๊ฒƒ์œผ๋กœ ํ‰๊ฐ€๋˜์—ˆ๋‹ค. Kim et al. (2009)์€ 2006๋…„๋„์— ๊ฒฝ์•ˆB ์ง€์ ์˜ T-P ์œ ๋‹ฌ๋ถ€ํ•˜๋Ÿ‰์—์„œ ํ•˜์ˆ˜์ฒ˜๋ฆฌ์žฅ์˜ ๋ฐฉ๋ฅ˜๋ถ€ํ•˜๊ฐ€ ์ฐจ์ง€ํ•˜๋Š” ๋น„์œจ์ด 69.4%๋กœ ์—ฌ๋Ÿฌ ํ•ญ๋ชฉ ์ค‘ ๊ฐ€์žฅ ๋†’์•˜๋‹ค๊ณ  ๋ณด๊ณ ํ•œ ๋ฐ” ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ•˜์ˆ˜์ฒ˜๋ฆฌ์žฅ์˜ ์˜ํ–ฅ์ด ๊ทธ ์ ˆ๋ฐ˜ ์ˆ˜์ค€์œผ๋กœ ํ‰๊ฐ€๋˜๋Š”๋ฐ ์ด๋Š” 2012๋…„ ์ดํ›„ ํ•˜์ˆ˜์ฒ˜๋ฆฌ์žฅ์˜ ์ด์ธ ๋ฐฉ๋ฅ˜์ˆ˜ ์ˆ˜์งˆ๊ธฐ์ค€ ๊ฐ•ํ™”์™€ ์ด์— ๋”ฐ๋ฅธ ํ™”ํ•™์  ์‘์ง‘์ฒ˜๋ฆฌ์˜ ํšจ๊ณผ์— ๋”ฐ๋ฅธ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.

์ด์ƒ์—์„œ ์‚ดํŽด๋ณธ ๋ฐ”์™€ ๊ฐ™์ด ๊ทนํ•œ ๊ฐ•์šฐ ์‹œ๊ธฐ๋ฅผ ํฌํ•จํ•˜์ง€ ์•Š์€ ๊ฒฝ์•ˆ์ฒœ์˜ ์—ฐํ‰๊ท  ์ˆ˜์งˆ์— ๋ฏธ์น˜๋Š” ๋น„์ ๋ฐฐ์ถœ๋ถ€ํ•˜์˜ ์˜ํ–ฅ์€ ์ƒ๋Œ€์ ์œผ๋กœ ์ ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ•˜๋ฅ˜์— ๋Œ€๊ทœ๋ชจ ์ €๋ฅ˜์‹œ์„ค์— ์žˆ์„ ๊ฒฝ์šฐ ํ•ด๋‹น ์ €๋ฅ˜์‹œ์„ค์˜ ์ˆ˜์งˆ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์€ ์œ ์ž…๋†๋„์™€ ๋”๋ถˆ์–ด ๋ถ€ํ•˜๋Ÿ‰์ด ์ค‘์š”ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ฆ‰ ๊ฒฝ์•ˆ์ฒœ ํ•˜๋ฅ˜์— ์œ„์น˜ํ•œ ํŒ”๋‹นํ˜ธ๋กœ ์œ ์ž…๋œ ์˜ค์—ผ๋ฌผ์งˆ์€ ์ผ์‹œ์— ์œ ์ถœ๋˜์ง€ ์•Š๊ณ  ์žฅ๊ธฐ์ ์œผ๋กœ ์ˆ˜์งˆ์— ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ ํŒ”๋‹นํ˜ธ์˜ ์ˆ˜์งˆ์— ๋ฏธ์น˜๋Š” ๊ฒฝ์•ˆ์ฒœ ์œ ์—ญ์˜ ๋น„์ ๋ฐฐ์ถœ๋ถ€ํ•˜์˜ ์˜ํ–ฅ์€ ๊ณ ์œ ๋Ÿ‰์˜ ์‹œ๊ธฐ์— ์ธก์ •๋œ ์ž๋ฃŒ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋ณ„๋„๋กœ ๊ฒ€ํ† ๋˜์–ด์•ผ ํ•  ๊ฒƒ์ด๋‹ค.

Fig. 10. LQLS-simulated partial T-N concentrations by pollution sources (a1, b1) and annual average relative contribution on the concentration (a2, b2).

../../Resources/kswe/KSWE.2025.41.5.321/fig10.png

Fig. 11. LQLS-simulated partial T-P concentrations by pollution sources (a1, b1) and annual average relative contribution on the concentration (a2, b2).

../../Resources/kswe/KSWE.2025.41.5.321/fig11.png

3.5.3 ์ˆ˜์งˆ์˜ˆ์ธก ๋ฐ ์ €๊ฐํšจ๊ณผ ํ‰๊ฐ€

L-Q ๋˜๋Š” L-C ๊ด€๊ณ„์‹๊ณผ ๋‹ฌ๋ฆฌ ๋ฐฐ์ถœ๋ถ€ํ•˜๋Ÿ‰์„ ํฌํ•จํ•˜๊ณ  ์žˆ๋Š” LQLS ๋ชจํ˜•์€ ๋ฐฐ์ถœ๋ถ€ํ•˜๋Ÿ‰์˜ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์ˆ˜์งˆ๋ชจ์˜๊ฐ€ ๊ฐ€๋Šฅํ•˜๋‹ค. Table 7์€ ์˜ค์—ผ์›๋ณ„๋กœ ๊ฐ๊ฐ ํ˜„์žฌ์˜ ๋ฐฐ์ถœ๋ถ€ํ•˜๋ฅผ 50% ์ €๊ฐํ•˜์˜€์„ ๋•Œ ์œ ๋‹ฌ๋ชจํ˜•์œผ๋กœ๋ถ€ํ„ฐ ๋ชจ์˜๋œ ์ˆ˜์งˆ์˜ˆ์ธก ๊ฐ’๊ณผ ์ €๊ฐ๋ถ€ํ•˜๋Ÿ‰ ๋‹น ์ˆ˜์งˆ๊ฐœ์„  ํšจ๊ณผ๋ฅผ ๋น„๊ตํ•œ ๊ฒƒ์ด๋‹ค. ๊ฐ ์˜ค์—ผ์›๋ณ„๋กœ ์œ ๋‹ฌ์ง€์ ์˜ ๋†๋„์— ๋Œ€ํ•œ ๊ธฐ์—ฌ๋„๊ฐ€ ๋‹ค๋ฅด๊ธฐ ๋•Œ๋ฌธ์— ์ €๊ฐ๋ถ€ํ•˜๋Ÿ‰ ๋‹น ๊ฐœ์„ ํšจ๊ณผ๋„ ์ฐจ์ด๊ฐ€ ์žˆ๋Š”๋ฐ ํ™˜๊ฒฝ๊ธฐ์ดˆ์‹œ์„ค ๋ฐฉ๋ฅ˜๋ถ€ํ•˜์˜ ๊ฐœ์„ ์ด ๊ฐ€์žฅ ํšจ๊ณผ๊ฐ€ ํฌ๊ณ  ๋น„์ ๋ฐฐ์ถœ๋ถ€ํ•˜์˜ ์ €๊ฐํšจ๊ณผ๋Š” ์ƒ๋Œ€์ ์œผ๋กœ ๋‚ฎ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์œ„์—์„œ ์–ธ๊ธ‰๋œ ๋ฐ”์™€ ๊ฐ™์ด ๋ณธ ์—ฐ๊ตฌ์˜ ๊ด€์ธก์ž๋ฃŒ๋Š” ๋น„์ ๋ฐฐ์ถœ์˜ ์˜ํ–ฅ์ด ์ ์€ ์ €์œ ๋Ÿ‰์˜ ์‹œ๊ธฐ์— ์ฃผ๋กœ ์ธก์ •๋œ ๊ฒƒ์ด๊ธฐ ๋•Œ๋ฌธ์— ํ‰๊ฐ€๊ฒฐ๊ณผ๊ฐ€ ์™œ๊ณก๋˜์—ˆ์„ ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๊ณ ์œ ๋Ÿ‰์˜ ์‹œ๊ธฐ์˜ ๋ชจ๋‹ˆํ„ฐ๋ง ํ™•๋Œ€๋ฅผ ํ†ตํ•˜์—ฌ ๋ณด๋‹ค ์ •๋ฐ€ํ•œ ํ•ด์„์ด ํ›„์†๋˜์–ด์•ผ ํ•  ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.

Table 7 Assessment of concentration change effect due to load reduction at domestic sewage treatment plant ($L_{t}$), individual point source ($L_{p}$), and non-point source ($L_{nm}$)

Pollution

sources

Kyeongan A

Kyeongan B

BOD5

T-N

T-P

BOD5

T-N

T-P

50% Reduction of discharge load (kg/d)

$L_{t}$

40

189

2.4

75

420

3.8

$L_{p}$

243

193

19.4

353

323

34.0

$L_{nm}$

488

416

34.6

1,219

990

81.0

Change of concentration

(mg/L)

Present

2.44

3.61

0.078

1.92

3.65

0.068

$L_{t}$

2.27

2.99

0.068

1.76

3.08

0.061

$L_{p}$

1.54

3.03

0.056

1.32

3.13

0.050

$L_{nm}$

2.28

3.00

0.071

1.73

2.90

0.059

Effect of load reduction

(mg/L)/(100 kg/d)

$L_{t}$

0.42

0.33

0.41

0.22

0.14

0.19

$L_{p}$

0.37

0.30

0.11

0.17

0.16

0.05

$L_{nm}$

0.03

0.15

0.02

0.02

0.08

0.01

4. Conclusion

์ˆ˜๋„๊ถŒ ์ƒ์ˆ˜์›์ธ ํŒ”๋‹นํ˜ธ๋กœ ์œ ์ž…๋˜๋Š” ๊ฒฝ์•ˆ์ฒœ์— ์œ„์น˜ํ•œ ์˜ค์—ผ์ด๋Ÿ‰๊ด€๋ฆฌ ๋‹จ์œ„์œ ์—ญ์˜ 2021โˆผ2023๋…„ ์ž๋ฃŒ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋ชฉํ‘œ์ง€์ (๊ฒฝ์•ˆA, ๊ฒฝ์•ˆB ๋ง๋‹จ์ง€์ )์˜ ์œ ๋‹ฌ๋ชจํ˜•(LQLS)์„ ๊ฐœ๋ฐœํ•˜์—ฌ ์ ์šฉํ•œ ๊ฒฐ๊ณผ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ฒฐ๋ก ์„ ์–ป์—ˆ๋‹ค.

๋ฐฐ์ถœ๋ถ€ํ•˜๋Ÿ‰์„ ํ™˜๊ฒฝ๊ธฐ์ดˆ์‹œ์„ค ๋ฐฉ๋ฅ˜๋ถ€ํ•˜, ๊ฐœ๋ณ„์ ๋ฐฐ์ถœ๋ถ€ํ•˜, ๋น„์ ๋ฐฐ์ถœ๋ถ€ํ•˜๋กœ ์„ธ๋ถ„ํ•˜๊ณ  ์œ ๋Ÿ‰ํ•จ์ˆ˜์™€ ๊ณ„์ ˆํ•จ์ˆ˜๋ฅผ ๊ณ ๋ คํ•œ LQLS ๋ชจํ˜•์˜ ์ถ”์ •์น˜๋Š” ๊ธฐ์กด์˜ L-Q ๋ชจํ˜• ๋˜๋Š” ๊ณ„์ ˆํ•จ์ˆ˜๋ฅผ ๊ณ ๋ คํ•˜์ง€ ์•Š์€ LQL๋ชจํ˜•์— ๋น„ํ•˜์—ฌ ๊ด€์ธก์น˜๋ฅผ ๋”์šฑ ์ ํ•ฉํ•˜๊ฒŒ ์žฌํ˜„ํ•˜์˜€๋‹ค.

๊ณ„์ ˆํ•จ์ˆ˜ ๊ฐ’์˜ ์—ฐ๊ฐ„ ๋ณ€๋™์œผ๋กœ ๋ณผ ๋•Œ BOD5์™€ ์ด์ธ์€ ๋ชฌ์ˆœ๊ธฐ ์ด์ „์— ์œ ์—ญ์— ์ถ•์ ๋˜๊ณ  ๋ชฌ์ˆœ๊ธฐ ๋™์•ˆ ์žฅ๊ธฐ๊ฐ„์— ๊ฑธ์ณ ๊ฐ•์šฐ๋กœ ํฌ์„๋˜๋Š” ๋ฐ˜๋ฉด ์งˆ์†Œ๋Š” ๋ชฌ์ˆœ๊ธฐ ์ดˆ๊ธฐ์— ๊ฐ•์šฐ์— ์˜ํ•œ ์”ป๊น€ํšจ๊ณผ๊ฐ€ ๋”์šฑ ๋šœ๋ ทํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚˜๋Š” ๊ฒƒ์œผ๋กœ ํ‰๊ฐ€๋œ๋‹ค.

LQLS ๋ชจํ˜•์—์„œ ๋ชจ์˜๋œ ๋น„์ ๋ฐฐ์ถœ๋†๋„์˜ ์ตœ๊ณ ๊ฐ’์— ์ด๋ฅด๋Š” ๋น„์ ์œ ์ถœ๊ณ ๋Š” ํ•ญ๋ชฉ์— ๋”ฐ๋ผ ๋‹ฌ๋ฆฌ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ(BOD5 ์•ฝ 10 mm/d, ์ด์งˆ์†Œ ์•ฝ 9 mm/d, ์ด์ธ ์•ฝ 15 mm/d) ์ตœ๊ณ ๊ฐ’์„ ์ „ํ›„ํ•œ ๋ณ€ํ™” ๊ฒฝํ–ฅ๋„ ๋‹ฌ๋ž๋‹ค. ํ† ์–‘ ๊ณต๊ทน์ˆ˜๋‚˜ ๋น—๋ฌผ์— ์งˆ์‚ฐ์—ผ ํ˜•ํƒœ๋กœ ๋…น์•„ ์žˆ๋Š” ์งˆ์†Œ๋Š” ์ž‘์€ ๋น„์ ์œ ์ถœ๊ณ ์—์„œ๋„ ๋†’์€ ๋†๋„๋ฅผ ๋ณด์ด๋Š” ๋ฐ˜๋ฉด ์ฃผ๋กœ ํ† ์–‘์ž…์ž์— ํก์ฐฉ๋˜์–ด ์žˆ๋Š” ์ธ์€ ๋น„์ ์œ ์ถœ๊ณ ๊ฐ€ ์ฆ๊ฐ€ํ•  ๋•Œ ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์ถ”์ •๋œ๋‹ค. ์ด์ฒ˜๋Ÿผ ๊ฐ•์šฐ ์‹œ ๋น„์ ์˜ค์—ผ์›์—์„œ์˜ ๋ฐฐ์ถœํŠน์„ฑ์ด ์ˆ˜์งˆํ•ญ๋ชฉ์— ๋”ฐ๋ผ ๋‹ฌ๋ฆฌ ๋‚˜ํƒ€๋‚˜๊ณ  ์žˆ๋Š” ๊ฒƒ์€ ์ˆ˜์งˆ ํ•ด์„์ด๋‚˜ ์ˆ˜์งˆ์ •์ฑ…์˜ ์ˆ˜๋ฆฝ๊ณผ ์ถ”์ง„ ์‹œ ์ค‘์š”ํ•˜๊ฒŒ ๊ฒ€ํ† ๋˜์–ด์•ผ ํ•  ์‚ฌํ•ญ์ด๋ผ ํ•  ์ˆ˜ ์žˆ๋‹ค.

์ „์ฒด ๋ฐฐ์ถœ๋ถ€ํ•˜๋Ÿ‰์—์„œ ๋น„์ ๋ฐฐ์ถœ๋ถ€ํ•˜๋Ÿ‰์€ ๊ฐ€์žฅ ๋งŽ์€ ๋ถ€๋ถ„์„ ์ฐจ์ง€ํ•˜์ง€๋งŒ(BOD5 63โˆผ74%, ์ด์งˆ์†Œ 52โˆผ57%, ์ด์ธ 61โˆผ68%) ์—ฐํ‰๊ท  ์œ ๋‹ฌ๋†๋„์— ๋Œ€ํ•œ ๊ธฐ์—ฌ๋„๋Š” ์ƒ๋Œ€์ ์œผ๋กœ ๋‚ฎ์€ ๊ฒƒ์œผ๋กœ ํ‰๊ฐ€๋˜์—ˆ๋Š”๋ฐ(BOD5 13โˆผ20%, ์ด์งˆ์†Œ 34โˆผ38%, ์ด์ธ 18โˆผ26%), ์ด๋Š” ๋น„์ ์˜ค์—ผ์›์˜ ๋ฐฐ์ถœ์ด ํŠน์ • ๊ฐ•์šฐ๊ธฐ์— ์ง‘์ค‘๋˜๊ธฐ ๋•Œ๋ฌธ์— ์—ฐ๊ฐ„์˜ ์‚ฐ์ˆ ํ‰๊ท ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ •๋„๊ฐ€ ์ ๊ณ  ๋ณธ ์—ฐ๊ตฌ์—์„œ ์‚ฌ์šฉ๋œ ๊ด€์ธก์น˜๊ฐ€ ๋น„์ ๋ฐฐ์ถœ์˜ ์˜ํ–ฅ์ด ์ ์€ ์ €์œ ๋Ÿ‰์˜ ์‹œ๊ธฐ์—์„œ ์–ป์–ด์ง„ ๊ฒƒ์ด๊ธฐ ๋•Œ๋ฌธ์— ๋น„๋กฏ๋œ ๊ฒฐ๊ณผ๋กœ ๋ณด์ธ๋‹ค. ์ด๋Ÿฌํ•œ ์ด์œ ๋กœ ๋ฐฐ์ถœ๋ถ€ํ•˜๋Ÿ‰ ์ €๊ฐ์— ๋”ฐ๋ฅธ ์œ ๋‹ฌ๋†๋„์˜ ๊ฐœ์„ ํšจ๊ณผ๋Š” ํ™˜๊ฒฝ๊ธฐ์ดˆ์‹œ์„ค์—์„œ ๊ฐ€์žฅ ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚˜๊ณ  ๋น„์ ๋ฐฐ์ถœ์›์—์„œ ๊ฐ€์žฅ ๋‚ฎ์€ ๊ฒƒ์œผ๋กœ ํ‰๊ฐ€๋œ๋‹ค.

๊ทธ๋Ÿฌ๋‚˜ ๊ทนํ•œ ๊ฐ•์šฐ์— ์˜ํ•œ ๊ณ ์œ ๋Ÿ‰์˜ ์‹œ๊ธฐ์— ๊ฒฝ์•ˆ์ฒœ ์œ ์—ญ์˜ ๋น„์ ์˜ค์—ผ์›์—์„œ ์œ ์ถœ๋˜๋Š” ์˜ค์—ผ๋ถ€ํ•˜๋Ÿ‰์€ ํ•˜๋ฅ˜์˜ ํŒ”๋‹นํ˜ธ์— ์ €๋ฅ˜ํ•˜์—ฌ ํŒ”๋‹นํ˜ธ์˜ ์ˆ˜์งˆ์— ์žฅ๊ธฐ๊ฐ„ ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ํŒ”๋‹นํ˜ธ์˜ ์ˆ˜์งˆ์— ๋ฏธ์น˜๋Š” ๊ฒฝ์•ˆ์ฒœ ์œ ์—ญ์˜ ์ˆ˜์งˆ ์˜ํ–ฅ์€ ๊ณ ์œ ๋Ÿ‰์˜ ์‹œ๊ธฐ์— ์ธก์ •๋œ ์ž๋ฃŒ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋ณ„๋„๋กœ ๊ฒ€ํ† ๋˜์–ด์•ผ ํ•  ๊ฒƒ์ด๋‹ค.

References

1 
Bellini, G., Sumner, M. E., Radcliffe, D. E., and Qafoku, N. P. (1996). Anion transport through columns of highly weathered acid soil: Adsorption and retardation, Soil Science Society of America Journal, 60(1), 132-137. https://doi.org/10.2136/sssaj1996.03615995006000010021xDOI
2 
Cohn, T. A., Caulder, D. L., Gilroy, E. J., Zynjuk, L. D., and Summers, R. M. (1992). The validity of a simple statistical model for estimating fluvial constituent loads: An Empirical study involving nutrient loads entering Chesapeake Bay, Water Resources Research, 28(9), 2353-2363. https://doi.org/10.1029/92WR01008DOI
3 
Eom, M. C. (2004). Analysis of pollutant discharge based on temporal and spatial characteristics for a drainage basin in tidal reclaimed areas, Ph. D. dissertation, Seoul National University, 1-8. [Korean Literature]Google Search
4 
Ha, S. R. and Bae, M. S. (2003). Nonlinear regression approach to evaluate nutrient delivery coefficient in trans-boundary watershed with observation data limited, Journal of Environmental Science and Engineering, 5, 65-71. [Korean Literature]Google Search
5 
Ha, S. R., Park, J. H., and Bae, M. S. (2007). Nonlinear regression approach to evaluate nutrient delivery coefficient, Journal of Environmental Impact Assessment, 16(1), 79-87. [Korean Literature]Google Search
6 
Kim, G. and Lee, H. S. (2009). Impacts of nitrate in base flow discharge on surface water quality, Journal of the Korean Society of Civil Engineers, 29(1B), 105-109. [Korean Literature] https://doi.org/10.12652/Ksce.2009.29.1B.105DOI
7 
Kim, H. S., Lee, S. W., Rhew, D. H., and Kong, D. (2009). The effect of discharge loading at sewage treatment plants on water quality in Kyeongan Stream, Journal of Korean Society on Water Environment, 25(3), 452-458. [Korean Literature]Google Search
8 
Kim, K., Kang, M. S., Song, J. H., and Park, J. (2018). Estimation of LOADEST coefficients according to watershed characteristics, Journal of Korea Water Resources Association, 28, 151-163. [Korean Literature] https://doi.org/10.3741/JKWRA.2018.51.2.151DOI
9 
Kim, M. S., Park, C. H., Lee C. H., Yun, S. G., Ko, B. G., and Yang, J. E. (2019). Characteristics of phosphorus adsorption of acidic, calcareous, and plastic film house doils, Korean Journal of Soil Science and Fertilizer, 49(6), 789-794. [Korean Literature] https://doi.org/10.7745/KJSSF.2016.49.6.789DOI
10 
Kong, D. and Jung K. W. (2015). Establishment of a quantitative assessment model for water quality improvement in the Saemangeum Watershed, NIER, 211. [Korean Literature]Google Search
11 
Kong, D., Park, J. S., and Kim, Y. S. (2015). A study on the improvement scheme of water quality monitoring and assessment indicators in the Han River Basin (โ… ), Han River Basin Management Committee, 233. [Korean Literature]Google Search
12 
Lee, J. H. and Bang, K. W. (2000). Characterization of urban stormwater runoff, Water Research, 34(6), 1773โˆผ1780. https://doi.org/10.1016/S0043-1354(99)00325-5DOI
13 
Moriasi, D. N., Arnold J. G., Van Liew, M. W., Binger, R. L., Harmel, R. D., and Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, Transactions of the ASABE (American Society of Agricultural and Biological Engineers), 50(3), 885-900. https://doi.org/10.13031/2013.23153DOI
14 
Moriasi, D. N., Gitau, M. W., Pai, N., and Daggupati, P. (2015). Hydrologic and water quality models: Performance measures and evaluation criteria, American Society of Agricultural and Biological Engineers, 58(6), 1763-1785. https://doi.org/10.13031/trans.58.10715DOI
15 
Na, E. H. and Park, S. S. (2003). Continuity simulation and trend analysis of water qualities in incoming flows to Lake Paldang by log linear models, Korean Journal of Limnology, 36 (3), 336โˆผ343. [Korean Literature]Google Search
16 
Nash, J. E. and Sutcliffe, J. V. (1970). River flow forecasting through conceptual model part I โ€“ A discussion of principles, Journal of Hydrology, 10(3), 282-290. https://doi.org/10.1016/0022-1694(70)90255-6DOI
17 
Park, J. H., Kong, D., and Min, K. S. (2007). Development of the empirical model for estimating the delivered pollutant loads considering geomorphic and hydraulic characteristics, Journal of Korean Society on Water Environment, 23(6), 913-919. [Korean Literature]Google Search
18 
Park, J. H., Kong, D., and Min, K. S. (2008). Delivered pollutant loads of point and nonpoint source on the upper watershed of Lake Paldang - Case study of the watershed of Namhan River and Gyeongan Stream, Journal of Korean Society on Water Environment, 24(6), 750-757. [Korean Literature]Google Search
19 
Pรฉrez-Sรกnchez, M., Sanchez-Romero, F. J., Ramos, H. M., and Lรณpez-Jimรฉnez, P. A. (2017). Calibrating a flow model in an irrigation network: Case study in Alicante, Spain, Spanish Journal of Agricultural Research, 15(1), 1-13. https://doi.org/10.5424/sjar/2017151-10144DOI
20 
Runkel, R. L., Crawford, C. G., and Cohn, T. A. (2004). Load Estimator (LOADEST): A fortran program for estimating constituent loads in streams and rivers, Techniques and Methods Report No. 4-A5, U.S. Geological Survey, Reston, Virginia. https://doi.org/10.3133/tm4A5DOI
21 
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D. and Saisana, M., and Tarantola. S. (2008). Global sensitivity analysis: The primer, John Wiley & Sons, Ltd.Google Search
22 
Shin, K. H., Kim, C., Nam, S. H., Park, S. J., and Yoo, S. S. (2018). Estimation method of predicted time series data based on absolute maximum value, Journal of Energy Engineering, 27(4), 103-110. [Korean Literature] https://doi.org/10.5855/ENERGY.2018.27.4.103DOI
23 
Tabuchi, T. and Kuroda, H. (1993). Influence of the number of data on the calculation of outflow load by the LQ equation, The Japanese Socciety of Irrigation, Drainage and Rural Enginering, 164, 1-9. https://doi.org/10.11408/jsidre1965.1993.164_1DOI
24 
United States Environmental Protection Agency (U. S. EPA). (2002). Guidance for quality assurance project plans for modeling, EPA QA/G-5M Report EPA/240/R-02/007, Washington, D.C.: U.S. Environmental Protection Agency.Google Search
25 
Westfall, T. G., Peterson1, T. J., Lintern1, A., and Western, A. W. (2025). Slow and quick flow models explain the temporal dynamics of daily salinity in streams, Water Resources Research, 61(6), 1-24. https://doi.org/10.1029/2024WR039103DOI
26 
Willmott, C. J. (1981). On the Validation of Models, Physical Geography, 2(2), 184-194.DOI
27 
Yoon, Y. S., Kim, M. S., Yu, J. J., Lee, H, J., Lee, J. B., and Yang. S. Y. (2007). Daily pollutant loads for the watersheds in the Nakdong River Basin 1. Correction and verification for the model, Journal of the Environmental Sciences, 16(2), 203-210. [Korean Literature] https://doi.org/10.5322/JES. 2007.16.2.203DOI