JKSWE
toggle navigation
JKSWE
About JKSWE
Aims and Scope
Editorial Board
Best Practices
Latest articles
All issues
For Authors & Reviewers
Instruction for Authors
Instruction for Reviewers
Guidelines for Publication
Ethics
Contact us
KSWE
Contact
JKSWE
The Journal of
the Korean Society on Water Environment
About JKSWE
Aims and Scope
Editorial Board
Best Practices
Latest articles
All issues
For Authors &
Reviewers
Instruction for Authors
Instruction for Reviewers
Guidelines for Publication
Ethics
Contact us
The Journal of
the Korean Society on Water Environment
The Journal of
the Korean Society on Water Environment
Open Access Journal
Bimonthly
ISSN : 2289-0971 (Print)
ISSN : 2289-098X (Online)
KCI Accredited Journal
All issues
Submit Your Article
Editorial Office
Tel.
+82-2-389-0650
Fax.
+82-2-385-3702
E-mail.
kswe@kswe.org
Home
All Issues
2021-09
(Vol. 37, No. 5)
10.15681/KSWE.2021.37.5.335
Journal XML
XML
PDF
INFO
REF
References
1
Ahmad A., Dey L., 2007, A k-mean clustering algorithm for mixed numeric and categorical data, Data & Knowledge Engineering, Vol. 63, pp. 503-527
2
Ayub J., Ahmad J., Muhammad J., Aziz L., Ayub S., Akram U., Basit I., 2016, Glaucoma detection through optic disc and cup segmentation using k-mean clustering, 2016 International Conference on Computing, Electronic and Electrical Engineering (ICE Cube), pp. 143-147
3
Bennett N. D., Croke B. F., Guariso G., Guillaume J. H., Hamilton S. H., Jakeman A. J., Marsili-Libelli S., Newham L. T., Norton J. P., Perrin C., 2013, Characterising performance of environmental models, Environmental Modelling & Software, Vol. 40, pp. 1-20
4
Chen T., Guestrin C., 2016, Xgboost: A scalable tree boosting system, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '16), Association for Computing Machinery, pp. 785-794
5
Friedman J. H., 2001, Greedy function approximation: A gradient boosting machine, Annals of statistics, Vol. 29, No. 5, pp. 1189-1232
6
Gray A. B., Pasternack G. B., Watson E. B., Goni M. A., Hatten J. A., Warrick J. A., 2016, Conversion to drip irrigated agriculture may offset historic anthropogenic and wildfire contributions to sediment production, Science of the Total Environment, Vol. 556, pp. 219-230
7
Gray A. B., Pasternack G. B., Watson E. B., Warrick J. A., Goñi M. A., 2015, The effect of El Niño Southern Oscillation cycles on the decadal scale suspended sediment behavior of a coastal dry‐summer subtropical catchment, Earth Surface Processes and Landforms, Vol. 40, pp. 272-284
8
Haghiabi A. H., Nasrolahi A. H., Parsaie A., 2018, Water quality prediction using machine learning methods, Water Quality Research Journal, Vol. 53, pp. 3-13
9
Hicks D. M., Gomez B., Trustrum N. A., 2000, Erosion thresholds and suspended sediment yields, Waipaoa river basin, New Zealand, Water Resources Research, Vol. 36, pp. 1129-1142
10
Hollister J. W., Milstead W. B., Kreakie B. J., 2016, Modeling lake trophic state: A random forest approach, Ecosphere, Vol. 7, pp. e01321
11
Li L., Rong S., Wang R., Yu S., 2021, Recent advances in artificial intelligence and machine learning for nonlinear relationship analysis and process control in drinking water treatment: A review, Chemical Engineering Journal, Vol. 405, pp. 126673
12
Lin W., Sung S., Chen L., Chung H., Wang C., Wu R., Lee D., Huang C., Juang R., Peng X., 2004, Treating high-turbidity water using full-scale floc blanket clarifiers, Journal of Environmental Engineering, Vol. 130, No. 12, pp. 1481-1487
13
Moriasi D. N., Arnold J. G., Van Liew M. W., Bingner R. L., Harmel R. D., Veith T. L., 2007, Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, Transactions of the American Society of Agricultural and Biological Engineers, Vol. 50, No. 3, pp. 885-900
14
Muhammad S. Y., Makhtar M., Rozaimee A., Aziz A. A., Jamal A. A., 2015, Classification model for water quality using machine learning techniques, International Journal of software engineering and its applications, Vol. 9, pp. 45-52
15
Packman A. I., MacKay J. S., 2003, Interplay of stream‐subsurface exchange, clay particle deposition, and streambed evolution, Water Resources Research, Vol. 39, No. 4, pp. 1097
16
Park J., 2021, Comparative characteristic of ensemble machine learning and deep learning models for turbidity prediction in a river, [Korean Literature], Journal of Korean Society of Water and Wastewater, Vol. 35, pp. 83-91
17
Park J., Hunt J. R., 2017, Coupling fine particle and bedload transport in gravel-bedded streams, Journal of Hydrology, Vol. 552, pp. 532-543
18
Park J., Lee H., 2020, Prediction of high turbidity in rivers using LSTM algorithm, [Korean Literature], Journal of Korean Society of Water and Wastewater, Vol. 34, pp. 35-43
19
Park R. K., 2018, An empirical comparison and verification study on the containerports clustering measurement using k-means and hierarchical clustering (average linkage method Using Cross-Efficiency Metrics, and Ward Method) and Mixed Models, [Korean Literature], Journal of Korea Port Economic Association, Vol. 34, pp. 17-52
20
Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., 2011, Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, Vol. 12, pp. 2825-2830
21
Shin Y., Kim T., Hong S., Lee S., Lee E., Hong S., Lee C., Kim T., Park M. S., Park J., 2020, Prediction of chlorophyll-a concentrations in the Nakdong river using machine learning methods, Water, Vol. 12, pp. 1822
22
Singer M. B., Aalto R., James L. A., Kilham N. E., Higson J. L., Ghoshal S., 2013, Enduring legacy of a toxic fan via episodic redistribution of California gold mining debris, Proceedings of the National Academy of Sciences, Vol. 110, pp. 18436-18441
23
Song J., 2017, K-means cluster analysis for missing data, [Korean Literature], Journal of Korean Data Analysis Society, Vol. 19, pp. 689-697
24
Stevenson M., Bravo C., 2019, Advanced turbidity prediction for operational water supply planning, Decision Support Systems, Vol. 119, pp. 72-84
25
Sutton C. D., 2005, Classification and regression trees, bagging, and boosting, Handbook of statistics, Vol. 24, pp. 303-329
26
Uddameri V., Silva A. L. B., Singaraju S., Mohammadi G., Hernandez E. A., 2020, Tree-based modeling methods to predict nitrate exceedances in the Ogallala aquifer in Texas, Water, Vol. 12, pp. 1023
27
United States Geological Survey (USGS), 2009, USGS(United States Geological Survey) Water-Data Report 2009, 11482500 Redwood Creek at Orick, CA
28
United States Geological Survey (USGS), 2014, https://waterdata.usgs.gov/nwis (accessed Jun. 2014), National Water Information System (NWIS)
29
Walling D., 1977, Assessing the accuracy of suspended sediment rating curves for a small basin, Water Resources Research, Vol. 13, No. 3, pp. 531-538
30
Wang Y., Chen J., Cai H., Yu Q., Zhou Z., 2021, Predicting water turbidity in a macro-tidal coastal bay using machine learning approaches, Estuarine, Coastal and Shelf Science, Vol. 252, pp. 107276
31
Warrick J. A., 2015, Trend analyses with river sediment rating curves, Hydrological processes, Vol. 29, No. 6, pp. 936-949
32
Warrick J. A., Madej M. A., Goñi M., Wheatcroft R., 2013, Trends in the suspended-sediment yields of coastal rivers of northern California, 1955–2010, Journal of Hydrology, Vol. 489, pp. 108-123
33
Zhang D., Qian L., Mao B., Huang C., Huang B., Si Y., 2018, A data-driven design for fault detection of wind turbines using random forests and XGboost, IEEE Access, Vol. 6, pp. 21020-21031
34
Zhang Y., Bouadi T., Martin A., 2018, An empirical study to determine the optimal k in Ek-NNclus method, 5th International Conference on Belief Functions (BELIEF2018), pp. 260-268
뒤로가기