The Journal of
the Korean Society on Water Environment

The Journal of
the Korean Society on Water Environment

Bimonthly
  • ISSN : 2289-0971 (Print)
  • ISSN : 2289-098X (Online)
  • KCI Accredited Journal

Editorial Office

References

1 
Alizamir M., Heddam S., Kim S., Mehr A. D., 2021, On the implementation of a novel data-intelligence model based on extreme learning machine optimized by bat algorithm for estimating daily chlorophyll-a concentration: Case studies of river and lake in USA, Journal of Cleaner Production, Vol. 285, pp. 124868DOI
2 
An Y. J., Kampbell D. H., 2003, Monitoring chlorophyll a as a measure of algae in lake Texoma marinas, Bulletin of Environmental Contamination and Toxicology, Vol. 70, No. 3, pp. 606-611DOI
3 
Bae S. W., Yu J. S., 2018, Predicting the real estate price index using machine learning methods and time series analysis model, [Korean Literature], Housing Studies Review, Vol. 26, No. 1, pp. 107-133DOI
4 
Breiman L., 2001, Random forests, Machine Learning, Vol. 45, No. 1, pp. 5-32Google Search
5 
Cha Y., Shin J., Kim Y., 2020, Data-driven modeling of freshwater aquatic systems: Status and prospects, [Korean Literature], Journal of Korean Society on Water Environment, Vol. 36, No. 6, pp. 611-620Google Search
6 
Chen T., Guestrin C., 2016, Xgboost: A scalable tree boosting system, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785-794Google Search
7 
Choi M. S., Kim C. H., Park H. M., Cheon M. A., Yoon H., Namgoong Y., Kim J. H., 2020, Detecting errors in POS-Tagged corpus on XGBoost and cross validation, [Korean Literature], KIPS Transactions on Software and Data Engineering, Vol. 9, No. 7, pp. 221-228Google Search
8 
Chun B., Lee T., Kim S., Kim J., Jang K., Chun J., Shin Y., 2020, Estimation of DNN-based Soil moisture at mountainous regions, [Korean Literature], Journal of The Korean Society of Agricultural Engineers, Vol. 62, No. 5, pp. 93-103Google Search
9 
Chung D. H., Yun J. S., Yang S. M., 2021, Machine learning for predicting entrepreneurial innovativeness, [Korean Literature], Asia-Pacific Journal of Business Venturing and Entrepreneurship, Vol. 16, No. 3, pp. 73-86Google Search
10 
Cui Y., Meng F., Fu P., Yang X., Zhang Y., Liu P., 2021, Application of hyperspectral analysis of chlorophyll a concentration inversion in Nansi lake, Ecological Informatics, Vol. 64, pp. 101360DOI
11 
Dittman D. J., Khoshgoftaar T. M., Napolitano A., 2015, 2015 IEEE International Conference on Information Reuse and Integration, IEEE, pp. 457-463DOI
12 
Friedman J. H., Popescu B. E., 2003, Importance sampled learning ensembles, Journal of Machine Learning Research, Vol. 94305, pp. 1-32Google Search
13 
Gnauck A., 2004, Interpolation and approximation of water quality time series and process identification, Analytical and Bioanalytical Chemistry, Vol. 380, No. 3, pp. 484-492DOI
14 
Ha J. E., Shin H. C., Lee Z. K., 2017, Korean text classification using randomforest and XGBoost focusing on Seoul metropolitan civil complaint data, [Korean Literature], The Journal of Bigdata, Vol. 2, No. 2, pp. 95-104DOI
15 
Han J. H., Ko D. K., Choe H., 2019, Predicting and analyzing factors affecting financial stress of household using machine learning: Application of Xgboost, [Korean Literature], Journal of Consumer Studies, Vol. 30, No. 2, pp. 21-43DOI
16 
Han S. H., Kim Y. Y., Sung Y. G., Park I. B., Cho D. H., Nam W. K., Oh J. K., 2015, Characteristics of organics and ammonia nitrogen discharged by pollution source from human living, [Korean Literature], Journal of Korean Society on Water Environment, Vol. 31, No. 4, pp. 377-386DOI
17 
He Y., Wang X., Xu F., 2022, How reliable is chlorophyll-a as algae proxy in lake environments? New insights from the perspective of n-alkanes, Science of The Total Environment, Vol. 836, pp. 155700DOI
18 
Jeong J. H., Jeong Y. C., Chae T. Y., 2021, Feature importance of electricity consumption for highly energy demand commercial buildings in cooling season, [Korean Literature], Journal of The Korean Society of Living Environmental System, Vol. 28, No. 1, pp. 29-38DOI
19 
Jung S. Y., Kim I. K., 2017a, Analysis of water quality factor and correlation between water quality and Chl-a in middle and downstream weir section of Nakdong river, [Korean Literature], Journal of Korean Society of Environmental Engineers, Vol. 39, No. 2, pp. 89-96DOI
20 
Jung S. Y., Kim I. K., 2017b, Analysis of the water quality and correlation of impact factors during summer season in changnyeong-haman weir section, [Korean Literature], Journal of Korean Society of Water and Wastewater, Vol. 31, No. 1, pp. 83-91DOI
21 
Junninen H., Niska H., Tuppurainen K., Ruuskanen J., Kolehmainen M., 2004, Methods for imputation of missing values in air quality data sets, Atmospheric Environment, Vol. 38, No. 18, pp. 2895-2907DOI
22 
Kang B. K., Park J., 2021, Effect of input variable characteristics on the performance of an ensemble machine learning model for algal bloom prediction, [Korean Literature], Journal of Korean Society of Water and Wastewater, Vol. 35, No. 6, pp. 417-424DOI
23 
Kang K. H., Park H. J., 2019, Study on the effect of training data sampling strategy on the accuracy of the landslide susceptibility analysis using random forest method, [Korean Literature], Economic and Environmental Geology, Vol. 52, No. 2, pp. 199-212Google Search
24 
Karaca Y., Baleanu D., 2020, A novel R/S fractal analysis and wavelet entropy characterization approach for robust forecasting based on self-similar time series modeling, Fractals, Vol. 28, No. 08, pp. 2040032DOI
25 
Kim C. W., Seo Y. G., 2020, Design and performance prediction of ultra-low flow hydrocyclone using the random forest method, [Korean Literature], Journal of the Korean Society of Manufacturing Technology Engineers, Vol. 29, No. 2, pp. 83-88DOI
26 
Kim G. H., Jung K. Y., Yoon J. S., Cheon S. U., 2013, Temporal and spatial analysis of water quality data observed in lower watershed of Nam river dam, [Korean Literature], Journal of the Korean Society of Hazard Mitigation, Vol. 13, No. 6, pp. 429-438DOI
27 
Kim H. I., Lee Y. S., Kim B., 2021, Real-time flood prediction applying random forest regression model in urban areas, [Korean Literature], Journal of Korea Water Resources Association, Vol. 54, No. spc1, pp. 1119-1130Google Search
28 
Kim J., Kim J., Seo D., 2020, Effect of major pollution sources on algal blooms in the Seungchon weir and Juksan weir in the Yeongsan river using EFDC, [Korean Literature], Journal of Korea Water Resources Association, Vol. 53, No. 5, pp. 369-381Google Search
29 
Kim K. M., Ahn J. H., 2022, Machine learning predictions of chlorophyll-a in the Han river basin, Korea, Journal of Environmental Management, Vol. 318, pp. 115636DOI
30 
Kim S. H., Park J. H., Kim B., 2021, Prediction of cyanobacteria harmful algal blooms in reservoir using machine learning and deep learning, [Korean Literature], Journal of Korea Water Resources Association, Vol. 54, No. spc1, pp. 1167-1181Google Search
31 
Kim S. W., Jun S. H., 2019, AI technology analysis using variable importance of deep learning, [Korean Literature], Journal of the Korean Institute of Intelligent Systems, Vol. 29, pp. 70-75DOI
32 
Kim Y., Kwak G. H., Lee K. D., Na S. I., Park C. W., Park N. W., 2018, Performance evaluation of machine learning and deep learning algorithms in crop classification: Impact of hyper-parameters and training sample size, [Korean Literature], Korean Journal of Remote Sensing, Vol. 34, No. 5, pp. 811-827Google Search
33 
Korea Environment Institute (KEI), 2020, Development and application of algal bloom using artificial intelligence deep learning, https://www.kei.re.kr/elibList.es?mid=a10101000000&elibName=researchreport&act=view&c_id=732914 (accessed Dec. 2020)Google Search
34 
Korea Meteorological Administration (KMA), 2022, Open MET Data Portal (OMDP), https://data.kma.go.kr/ (accessed Jun. 2022)Google Search
35 
Kriegeskorte N., Golan T., 2019, Neural network models and deep learning, Current Biology, Vol. 29, No. 7, pp. R231-R236DOI
36 
Kwak J., 2021, A study on the 3-month prior prediction of Chl-a concentraion in the Daechong lake using hydrometeorological forecasting data, [Korean Literature], Journal of Wetlands Research, Vol. 23, No. 2, pp. 144-153Google Search
37 
K-water, 2022, My Water, https:/www.water.or.kr/ (accessed Jun. 2022)Google Search
38 
Lee K. T., Kim M. S., Kim H. J., Kim J. H., 2021, A model to predict occupational safety and health management expenses in construction applying multi-variate regression analysis and deep neural network, [Korean Literature], Journal of the Architectural Institute of Korea, Vol. 37, No. 9, pp. 217-226Google Search
39 
Lee S. M., Kim I. K., 2021, A study on applying random forest and gradient boosting algorithm for Chl-a prediction of Daecheong lake, [Korean Literature], Journal of Korean Society of Water and Wastewater, Vol. 35, No. 6, pp. 507-516DOI
40 
Lee S. M., Park K. D., Kim I. K., 2020, Comparison of machine learning algorithms for Chl-a prediction in the middle of Nakdong river (focusing on water quality and quantity factors), [Korean Literature], Journal of Korean Society of Water and Wastewater, Vol. 34, No. 4, pp. 277-288DOI
41 
Lee Y., Sun J., 2020, Predicting highway concrete pavement damage using XGBoost, [Korean Literature], Korean Journal of Construction Engineering and Management, Vol. 21, No. 6, pp. 46-55Google Search
42 
Lee Y. G., Oh J. Y., Kim G., 2020, Interpretation of load forecasting using explainable artificial intelligence techniques, [Korean Literature], The Transactions of the Korean Institute of Electrical Engineers, Vol. 69, No. 3, pp. 480-485DOI
43 
Lee Y. J., Jeong B. K., Shin Y. S., Kim S. H., Shin K. H., 2013, Determination of the origin of particulate organic matter at the estuary of Youngsan river using stable isotope ratios (δ13C, δ15N), [Korean Literature], Korean Journal of Ecology and Environment, Vol. 46, No. 2, pp. 175-184DOI
44 
Lepot M., Aubin J. B., Clemens F. H., 2017, Interpolation in time series: An introductive overview of existing methods, their performance criteria and uncertainty assessment, Water, Vol. 9, No. 10, pp. 796DOI
45 
Lim J. S., Kim Y. W., Lee J. H., Park T. J., Byun I. G., 2015, Evaluation of correlation between chlorophyll-a and multiple parameters by multiple linear regression analysis, [Korean Literature], Journal of Korean Society of Environmental Engineers, Vol. 37, No. 5, pp. 253-261DOI
46 
Liu X., Feng J., Wang Y., 2019, Chlorophyll a predictability and relative importance of factors governing lake phytoplankton at different timescales, Science of the Total Environment, Vol. 648, pp. 472-480DOI
47 
Ma J., Qin B., Paerl H. W., Brookes J. D., Hall N. S., Shi K., Long S., 2016, The persistence of cyanobacterial (M icrocystis spp.) blooms throughout winter in lake Taihu, China, Limnology and Oceanography, Vol. 61, No. 2, pp. 711-722DOI
48 
Ministry of Environment (ME), 2022, Water Environment Information System (WEIS), https://water.nier.go.kr/ (accessed Jun. 2022)Google Search
49 
Müller A. C., Guido S., 2016, Introduction to machine learning with Python: A guide for data scientists, O’Reilly Media, Inc, pp. 386
50 
Noh S., Park H., Choi H., Lee J., 2014, Effect of climate change for cyanobacteria growth pattern in Chudong station of Lake Daechung, [Korean Literature], Journal of Korean Society on Water Environment, Vol. 30, No. 4, pp. 377-385DOI
51 
Oh J. Y., Ham D. H., Lee Y. G., Kim G., 2019, Short-term load forecasting using XGBoost and the analysis of hyperparameters, [Korean Literature], The Transactions of the Korean Institute of Electrical Engineers, Vol. 68, pp. 1073-1078DOI
52 
Park H. K., Byeon M. S., Choi M. J., Kim Y. J., 2008, The effect factors on the growth of phytoplankton and the sources of organic matters in downstream of South-Han river, [Korean Literature], Journal of Korean Society on Water Environment, Vol. 24, No. 5, pp. 556-562Google Search
53 
Park J., 2022, Development of ensemble machine learning model considering the characteristics of input variables and the interpretation of model performance using explainable artificial intelligence, [Korean Literature], Journal of Korean Society of Water and Wastewater, Vol. 36, No. 4, pp. 239-248DOI
54 
Park Y., Cho K. H., Park J., Cha S. M., Kim J. H., 2015, Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea, [Korean Literature], Science of the Total Environment, Vol. 502, pp. 31-41DOI
55 
Savitzky A., Golay M. J., 1964, Smoothing and differentiation of data by simplified least squares procedures, Analytical chemistry, Vol. 36, No. 8, pp. 1627-1639DOI
56 
Schuwirth N., Borgwardt F., Domisch S., Friedrichs M., Kattwinkel M., Kneis D., Vermeiren P., 2019, How to make ecological models useful for environmental management, Ecological Modelling, Vol. 411, pp. 108784DOI
57 
Seo K., Na J. E., Ryu H. S., Kim K., 2018, Characteristics of nitro-nutrients and phytoplankton dynamics in the Yeongsan river after weir construction, [Korean Literature], Journal of Korean Society on Water Environment, Vol. 34, No. 4, pp. 423-430Google Search
58 
Shin J. K., Kang B. G., Hwang S. J., 2016, Limnological study on spring-bloom of a green algae, eudorina elegans and weirwater pulsed-flows in the midstream (Seungchon weir pool) of the Yeongsan river, Korea, [Korean Literature], Korean Journal of Ecology and Environment, Vol. 49, No. 4, pp. 320-333DOI
59 
Shin Y., Lee H., Lee Y. J., Seo D. K., Jeong B., Hong S., Heo T. Y., 2019, The prediction of diatom abundance by comparison of various machine learning methods, Mathematical Problems in Engineering, Vol. 2019, pp. 1-13DOI
60 
Shin Y., Yu H., Lee H., Lee D., Park G., 2015, The change in patterns and conditions of algal blooms resulting from construction of weirs in the Youngsan river: Long-term data analysis, [Korean Literature], Korean Journal of Ecology and Environment, Vol. 48, No. 4, pp. 238-252DOI
61 
Sim D., Lee J. Y., Jang J., Lee M., 2022, Prediction of chloride concentration in groundwater on Jeju Island using XGBoost regression machine learning, [Korean Literature], Journal of the Geological Society of Korea, Vol. 55, No. 2, pp. 243-256DOI
62 
Singha S., Pasupuleti S., Singha S. S., Singh R., Kumar S., 2021, Prediction of groundwater quality using efficient machine learning technique, Chemosphere, Vol. 276, pp. 130265DOI
63 
Song J. J., Kim B. B., Hong S. G., 2015, Study on water quality change of Yeongsan river's upstream, [Korean Literature], Journal of Korean Society of Environmental Technology, Vol. 16, No. 2, pp. 154-159Google Search
64 
Tekile A., Kim I., Kim J., 2015, Mini-review on river eutrophication and bottom improvement techniques, with special emphasis on the Nakdong river, Journal of Environmental Sciences, Vol. 30, pp. 113-121DOI
65 
Tyralis H., Papacharalampous G., Langousis A., 2019, A brief review of random forests for water scientists and practitioners and their recent history in water resources, Water, Vol. 11, No. 5, pp. 910DOI
66 
Wetzel R. G., Likens G. E., 2013, Limnological Analyses, third ed, Springer Science & Business Media