The Journal of
the Korean Society on Water Environment

The Journal of
the Korean Society on Water Environment

Bimonthly
  • ISSN : 2289-0971 (Print)
  • ISSN : 2289-098X (Online)
  • KCI Accredited Journal

Editorial Office

References

1 
Breiman L., 2001, Random forests, Machine learning, Vol. 45, No. 1, pp. 5-32Google Search
2 
Chawla N. V., Bowyer K. W., Hall L. O., Kegelmeyer W. P., 2002, SMOTE: Synthetic minority over-sampling technique, Journal of Artificial Intelligence Research, Vol. 16, pp. 321-357DOI
3 
Chen T., Guestrin C., 2016, Xgboost: A scalable tree boosting system, In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785-794Google Search
4 
Dorogush A. V., Ershov V., Gulin A., 2018, CatBoost: Gradient boosting with categorical features support, 1810.11363, arXiv preprint arXivGoogle Search
5 
Hollister J. W., Milstead W. B., Kreakie B. J., 2016, Modeling lake trophic state: A random forest approach, Ecosphere, Vol. 7, No. 3, pp. e01321DOI
6 
Jung H. S., Choi Y., Oh J. H., Lim G. H., 2002, Recent trends in temperature and precipitation over South Korea, International Journal of Climatology, Vol. 22, pp. 1327-1337DOI
7 
Ke G., Meng Q., Finley T., Wang T., Chen W., Ma W., Ye Q., Liu T. Y., 2017, Lightgbm: A highly efficient gradient boosting decision tree, Advances in Neural Information Processing Systems, pp. 30Google Search
8 
Kim Y., Choi H., Kim S., 2020, A study on risk parity asset allocation model with XGBoo, Journal of Intelligence and Information Systems, Vol. 26, No. 1, pp. 135-149Google Search
9 
Kwak J., 2021, A study on the 3-month prior prediction of Chl-a concentraion in the Daechong lake using hydrometeorological forecasting data, [Korean Literature], Journal of Wetlands Research, Vol. 23, No. 2, pp. 144-153Google Search
10 
K-water, 2022, Mywater, http://www.water.or.kr/ (Aug 4, 2022)Google Search
11 
Lee K. M., Baek H. J., Park S. H., Kang H. S., Cho C. H., 2012, Future projection of changes in extreme temperatures using high resolution regional climate change scenario in the Republic of Korea, [Korean Literature], Journal of the Korean Geographical Society, Vol. 47, No. 2, pp. 208-225Google Search
12 
Lee S. M., Park K. D., Kim I. K., 2020, Comparison of machine learning algorithms for Chl-a prediction in the middle of Nakdong river (focusing on water quality and quantity factors), [Korean Literature], Journal of Korean Socitey of Water and Wastewater, Vol. 34, No. 4, pp. 277-288DOI
13 
Lim H. S., An H. U., 2018, Prediction of pollution loads in Geum river using machine learning, Proceedings of the Korea Water Resources Association Conference, [Korean Literature], Korea Water Resources Association, pp. 445Google Search
14 
Ma X., Sha J., Wang D., Yu Y., Yang Q., Niu X., 2018, Study on a prediction of P2P network loan default based on the machine learning LightGBM and XGboost algorithms according to different high dimensional data cleaning, Electronic Commerce Research and Applications, Vol. 31, pp. 24-39DOI
15 
Nasir N., Kansal A., Alshaltone O., Barneih F., Sameer M., Shanableh A., Al-Shamma’a A., 2022, Water quality classification using machine learning algorithms, Journal of Water Process Engineering, Vol. 48, pp. 102920DOI
16 
National Institute of Environmental Research (NIER), 2022, Water environmental information system, https://water.nier.go.kr/web (Aug 4, 2022)Google Search
17 
National Institute of Meteorological Research (NIMR), 2009, Climate change in the Korean peninsula, present and future, [Korean Literature], National Institute of Meteorological ResearchGoogle Search
18 
Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., 2011, Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, Vol. 12, pp. 2825-2830Google Search
19 
Prokhorenkova L., Gusev G., Vorobev A., Dorogush A. V., Gulin A., 2018, CatBoost: Unbiased boosting with categorical features, Advances in Neural Information Processing Systems, pp. 31Google Search
20 
Shin J. I., Park J. S., Shon J. G., 2021, Prediction of semiconductor exposure process measurement results using XGBoost, [Korean Literature], In Proceedings of the Korea Information Processing Society Conference, Korea Information Processing Society, pp. 505-508Google Search
21 
Solomon S., 2007, The physical science basis: Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, Intergovernmental Panel on Climate Change (IPCC), Climate change 2007, pp. 996Google Search
22 
Stehman S. V., 1997, Selecting and interpreting measures of thematic classification accuracy, Remote Sensing of Environment, Vol. 62, No. 1, pp. 77-89DOI
23 
Sutton C. D., 2005, Classification and regression trees, bagging, and boosting, Handbook of statistics, Vol. 24, pp. 303-329Google Search
24 
Uddameri V., Silva A. L. B., Singaraju S., Mohammadi G., Hernandez E. A., 2020, Tree-based modeling methods to predict nitrate exceedances in the Ogallala aquifer in Texas, Water, Vol. 12, pp. 1023DOI
25 
Xin L., Mou T., 2022, Research on the application of multimodal-based machine learning algorithms to water quality classification, Wireless Communications and Mobile Computing, Vol. 2022, pp. 1-13DOI
26 
Zhang D., Qian L., Mao B., Huang C., Huang B., Si Y., 2018, A data-driven design for fault detection of wind turbines using random forests and XGboost, IEEE Access, Vol. 6, pp. 21020-21031Google Search
27 
Zhao X., Li Y., Chen Y., Qiao X., 2022, A method of cyanobacterial concentrations prediction using multispectral images, Sustainability, Vol. 14, No. 19, pp. 12784DOI