JKSWE
toggle navigation
JKSWE
About JKSWE
Aims and Scope
Editorial Board
Best Practices
Latest articles
All issues
For Authors & Reviewers
Instruction for Authors
Instruction for Reviewers
Guidelines for Publication
Ethics
Contact us
KSWE
Contact
JKSWE
The Journal of
the Korean Society on Water Environment
About JKSWE
Aims and Scope
Editorial Board
Best Practices
Latest articles
All issues
For Authors &
Reviewers
Instruction for Authors
Instruction for Reviewers
Guidelines for Publication
Ethics
Contact us
The Journal of
the Korean Society on Water Environment
The Journal of
the Korean Society on Water Environment
Open Access Journal
Bimonthly
ISSN : 2289-0971 (Print)
ISSN : 2289-098X (Online)
KCI Accredited Journal
All issues
Submit Your Article
Editorial Office
Tel.
+82-2-389-0650
Fax.
+82-2-385-3702
E-mail.
kswe@kswe.org
Home
All Issues
2023-01
(Vol. 39, No. 1)
10.15681/KSWE.2023.39.1.1
Journal XML
XML
PDF
INFO
REF
References
1
Breiman L., 2001, Random forests, Machine learning, Vol. 45, No. 1, pp. 5-32
2
Chawla N. V., Bowyer K. W., Hall L. O., Kegelmeyer W. P., 2002, SMOTE: Synthetic minority over-sampling technique, Journal of Artificial Intelligence Research, Vol. 16, pp. 321-357
3
Chen T., Guestrin C., 2016, Xgboost: A scalable tree boosting system, In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785-794
4
Dorogush A. V., Ershov V., Gulin A., 2018, CatBoost: Gradient boosting with categorical features support, 1810.11363, arXiv preprint arXiv
5
Hollister J. W., Milstead W. B., Kreakie B. J., 2016, Modeling lake trophic state: A random forest approach, Ecosphere, Vol. 7, No. 3, pp. e01321
6
Jung H. S., Choi Y., Oh J. H., Lim G. H., 2002, Recent trends in temperature and precipitation over South Korea, International Journal of Climatology, Vol. 22, pp. 1327-1337
7
Ke G., Meng Q., Finley T., Wang T., Chen W., Ma W., Ye Q., Liu T. Y., 2017, Lightgbm: A highly efficient gradient boosting decision tree, Advances in Neural Information Processing Systems, pp. 30
8
Kim Y., Choi H., Kim S., 2020, A study on risk parity asset allocation model with XGBoo, Journal of Intelligence and Information Systems, Vol. 26, No. 1, pp. 135-149
9
Kwak J., 2021, A study on the 3-month prior prediction of Chl-a concentraion in the Daechong lake using hydrometeorological forecasting data, [Korean Literature], Journal of Wetlands Research, Vol. 23, No. 2, pp. 144-153
10
K-water, 2022, Mywater, http://www.water.or.kr/ (Aug 4, 2022)
11
Lee K. M., Baek H. J., Park S. H., Kang H. S., Cho C. H., 2012, Future projection of changes in extreme temperatures using high resolution regional climate change scenario in the Republic of Korea, [Korean Literature], Journal of the Korean Geographical Society, Vol. 47, No. 2, pp. 208-225
12
Lee S. M., Park K. D., Kim I. K., 2020, Comparison of machine learning algorithms for Chl-a prediction in the middle of Nakdong river (focusing on water quality and quantity factors), [Korean Literature], Journal of Korean Socitey of Water and Wastewater, Vol. 34, No. 4, pp. 277-288
13
Lim H. S., An H. U., 2018, Prediction of pollution loads in Geum river using machine learning, Proceedings of the Korea Water Resources Association Conference, [Korean Literature], Korea Water Resources Association, pp. 445
14
Ma X., Sha J., Wang D., Yu Y., Yang Q., Niu X., 2018, Study on a prediction of P2P network loan default based on the machine learning LightGBM and XGboost algorithms according to different high dimensional data cleaning, Electronic Commerce Research and Applications, Vol. 31, pp. 24-39
15
Nasir N., Kansal A., Alshaltone O., Barneih F., Sameer M., Shanableh A., Al-Shamma’a A., 2022, Water quality classification using machine learning algorithms, Journal of Water Process Engineering, Vol. 48, pp. 102920
16
National Institute of Environmental Research (NIER), 2022, Water environmental information system, https://water.nier.go.kr/web (Aug 4, 2022)
17
National Institute of Meteorological Research (NIMR), 2009, Climate change in the Korean peninsula, present and future, [Korean Literature], National Institute of Meteorological Research
18
Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., 2011, Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, Vol. 12, pp. 2825-2830
19
Prokhorenkova L., Gusev G., Vorobev A., Dorogush A. V., Gulin A., 2018, CatBoost: Unbiased boosting with categorical features, Advances in Neural Information Processing Systems, pp. 31
20
Shin J. I., Park J. S., Shon J. G., 2021, Prediction of semiconductor exposure process measurement results using XGBoost, [Korean Literature], In Proceedings of the Korea Information Processing Society Conference, Korea Information Processing Society, pp. 505-508
21
Solomon S., 2007, The physical science basis: Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, Intergovernmental Panel on Climate Change (IPCC), Climate change 2007, pp. 996
22
Stehman S. V., 1997, Selecting and interpreting measures of thematic classification accuracy, Remote Sensing of Environment, Vol. 62, No. 1, pp. 77-89
23
Sutton C. D., 2005, Classification and regression trees, bagging, and boosting, Handbook of statistics, Vol. 24, pp. 303-329
24
Uddameri V., Silva A. L. B., Singaraju S., Mohammadi G., Hernandez E. A., 2020, Tree-based modeling methods to predict nitrate exceedances in the Ogallala aquifer in Texas, Water, Vol. 12, pp. 1023
25
Xin L., Mou T., 2022, Research on the application of multimodal-based machine learning algorithms to water quality classification, Wireless Communications and Mobile Computing, Vol. 2022, pp. 1-13
26
Zhang D., Qian L., Mao B., Huang C., Huang B., Si Y., 2018, A data-driven design for fault detection of wind turbines using random forests and XGboost, IEEE Access, Vol. 6, pp. 21020-21031
27
Zhao X., Li Y., Chen Y., Qiao X., 2022, A method of cyanobacterial concentrations prediction using multispectral images, Sustainability, Vol. 14, No. 19, pp. 12784
뒤로가기