The Journal of
the Korean Society on Water Environment

The Journal of
the Korean Society on Water Environment

Bimonthly
  • ISSN : 2289-0971 (Print)
  • ISSN : 2289-098X (Online)
  • KCI Accredited Journal

Editorial Office

References

1 
Allan, J. D., Castillo, M. M., and Capps, K. A. (2021). Stream Ecology: Structure and Function of Running Waters (3rd ed.), Springer Nature. https://doi.org/10.1007/978-3-030-61286-3DOI
2 
Asakawa, D., Mochizuki, H., Yanagi, Y., and Fujitake, N. (2007). Characterization of hydrophobic acid fractions in water-soluble organic matter in Dystric Cambisol and in a stream in a small forested watershed: Seasonal and vertical variations in chemical properties, Soil Science and Plant Nutrition, 53(5), 551-561. https://doi.org/10.1111/j.1747-0765.2007.00183.xDOI
3 
Begum, M. S., Lee, M. H., Park, T. J., Lee, S. Y., Shin, K. H., Shin, H. S., Chen, M., and Hur, J. (2022). Source tracking of dissolved organic nitrogen at the molecular level during storm events in an agricultural watershed, Science of The Total Environment, 810, 152183. https://doi.org/10.1016/j.scitotenv.2021.152183DOI
4 
Brailsford, F. L., Glanville, H. C., Golyshin, P. N., Marshall, M. R., Lloyd, C. E., Johnes, P. J., and Jones, D. L. (2019). Nutrient enrichment induces a shift in dissolved organic carbon (DOC) metabolism in oligotrophic freshwater sediments, Science of The Total Environment, 690, 1131-1139. https://doi.org/10.1016/j.scitotenv.2019.07.054DOI
5 
Burns, A. J., Spencer, R. G. M., Kellerman, A. M., Yan, G., Leonard, L., Kaiser, K., Mannino, A., Tzortziou, M., and Hernes, P. J. (2024). The distinct composition and transformation of terrestrial organic carbon in the Yukon river delta and plume during the mighty spring freshet, Journal of Geophysical Research: Biogeosciences, 129(6), e2023JG007812. https://doi.org/10.1029/2023JG007812DOI
6 
Butler, T. J., Likens, G. E., and Stunder, B. J. B. (2001). Regional-scale impacts of Phase I of the clean air act amendments in the USA: The relation between emissions and concentrations, both wet and dry, Atmospheric Environment, 35(6), 1015–1028. https://doi.org/10.1016/S1352-2310(00)00386-1DOI
7 
Chen, H., Cheng, M., Wen, Y., and Xiang, Y. (2024). Leaf carbon chemistry effectively manipulated soil microbial profiles and induced metabolic adjustments under different revegetation types in the loess Plateau, China, Journal of Environmental Management, 359, 120880. https://doi.org/10.1016/j.jenvman.2024.120880DOI
8 
Chen, M., Kim, S., Park, J. E., Kim, H. S., and Hur, J. (2016). Effects of dissolved organic matter (DOM) sources and nature of solid extraction sorbent on recoverable DOM composition: Implication into potential lability of different compound groups, Analytical and Bioanalytical Chemistry, 408(17), 4809-4819. https://doi.org/10.1007/s00216-016-9569-xDOI
9 
Choi, G., Kwon, W. T., and Robinson, D. A. (2006). Seasonal onset and duration in South Korea, Journal of the Korean Geographical Society, 41(4), 435-456. [Korean Literature]URL
10 
Eckard, R. S., Bergamaschi, B. A., Pellerin, B., Spencer, R. G., Dyda, R., and Hernes, P. J. (2020). Organic matter integration, overprinting, and the relative fraction of optically active organic carbon in a human-impacted watershed, Frontiers in Earth Science, 8, 67. https://doi.org/10.3389/feart.2020.00067DOI
11 
Estévez, E., Álvarez-Martínez, J. M., Dittmar, T., Barquín, J., and Singer, G. (2021). When forests take over after land abandonment: Dissolved organic matter response in headwater mountain streams, Frontiers in Water, 3. https://doi.org/10.3389/frwa.2021.682608DOI
12 
Farquhar, G. D., O’Leary, M. H., and Berry, J. A. (1982). On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves, Functional Plant Biology, 9(2), 121-137. https://doi.org/10.1071/PP9820121DOI
13 
Flerus, R., Lechtenfeld, O. J., Koch, B. P., McCallister, S. L., Schmitt-Kopplin, P., Benner, R., Kaiser, K., and Kattner, G. (2012). A molecular perspective on the ageing of marine dissolved organic matter, Biogeosciences, 9(6), 1935-1955. https://doi.org/10.5194/bg-9-1935-2012DOI
14 
Hedges, J. I. and Mann, D. C. (1979). The characterization of plant tissues by their lignin oxidation products, Geochimica et Cosmochimica Acta, 43(11), 1803-1807. https://doi.org/10.1016/0016-7037(79)90028-0DOI
15 
Hedges, J. I., Blanchette, R. A., Weliky, K., and Devol, A. H. (1988). Effects of fungal degradation on the CuO oxidation products of lignin: A controlled laboratory study, Geochimica et Cosmochimica Acta, 52(11), 2717–2726. https://doi.org/10.1016/0016-7037(88)90040-3DOI
16 
Hernes, P. J. and Benner, R. (2002). Transport and diagenesis of dissolved and particulate terrigenous organic matter in the North Pacific Ocean, Deep Sea Research Part I: Oceanographic Research Papers, 49(12), 2119-2132. https://doi.org/10.1016/S0967-0637(02)00128-0DOI
17 
Hernes, P. J. and Benner, R. (2003). Photochemical and microbial degradation of dissolved lignin phenols: Implications for the fate of terrigenous dissolved organic matter in marine environments, Journal of Geophysical Research: Oceans, 108(C9), 3291. https://doi.org/10.1029/2002JC001421DOI
18 
Hernes, P. J., Dyda, R. Y., and McDowell, W. H. (2017). Connecting tropical river DOM and POM to the landscape with lignin, Geochimica et Cosmochimica Acta, 219, 143–159. https://doi.org/10.1016/j.gca.2017.09.028DOI
19 
Hernes, P. J., Robinson, A. C., and Aufdenkampe, A. K. (2007). Fractionation of lignin during leaching and sorption and implications for organic matter “freshness,” Geophysical Research Letters, 34(17). https://doi.org/10.1029/2007GL031017DOI
20 
Hernes, P. J., Spencer, R. G. M., Dyda, R. Y., O’Geen, A. T., and Dahlgren, R. A. (2017). The genesis and exodus of vascular plant DOM from an oak woodland landscape, Frontiers in Earth Science, 5, 9. https://doi.org/10.3389/feart.2017.00009DOI
21 
Hertkorn, N., Harir, M., Cawley, K. M., Schmitt-Kopplin, P., and Jaffé, R. (2016). Molecular characterization of dissolved organic matter from subtropical wetlands: A comparative study through the analysis of optical properties, NMR and FTICR/MS, Biogeosciences, 13(8), 2257-2277. https://doi.org/10.5194/bg-13-2257-2016DOI
22 
Jeong, H. M., Jang, I., and Hong, S. (2016). Relationship between aboveground biomass and measures of structure and species diversity in quercus mongolica-dominated forest, Mt. Jeombong, Korean Journal of Environment and Ecology, 30, 1022-1031. [Korean Literature] https://doi.org/10.13047/KJEE.2016.30.6.1022DOI
23 
Jeong, J. J., Bartsch, S., Fleckenstein, J. H., Matzner, E., Tenhunen, J. D., Lee, S. D., Park, S. K., and Park, J. H. (2012). Differential storm responses of dissolved and particulate organic carbon in a mountainous headwater stream, investigated by high-frequency, in situ optical measurements, Journal of Geophysical Research: Biogeosciences, 117(G3), G03013 https://doi.org/10.1029/2012JG001999DOI
24 
Jin, H., Yoon, T. K., Begum, M. S., Lee, E. J., Oh, N. H., Kang, N., and Park, J. H. (2018). Longitudinal discontinuities in riverine greenhouse gas dynamics generated by dams and urban wastewater, Biogeosciences, 15, 6349-6369. https://doi.org/10.5194/bg-15-6349-2018DOI
25 
Jung, B. J., Lee, H. J., Jeong, J. J., Owen, J., Kim, B., Meusburger, K., Alewell, C., Gebauer, G., Shope, C., and Park, J. H. (2012). Storm pulses and varying sources of hydrologic carbon export from a mountainous watershed, Journal of Hydrology, 440–441, 90-101. https://doi.org/10.1016/j.jhydrol.2012.03.030DOI
26 
Kalbitz, K., Schwesig, D., Schmerwitz, J., Kaiser, K., Haumaier, L., Glaser, B., Ellerbrock, R., and Leinweber, P. (2003). Changes in properties of soil-derived dissolved organic matter induced by biodegradation, Soil Biology and Biochemistry, 35(8), 1129-1142. https://doi.org/10.1016/S0038-0717(03)00165-2DOI
27 
Kellerman, A. M., Vonk, J., McColaugh, S., Podgorski, D. C., van Winden, E., Hawkings, J. R., Johnston, S. E., Humayun, M., and Spencer, R. G. M. (2021). Molecular signatures of glacial dissolved organic matter from Svalbard and Greenland, Global Biogeochemical Cycles, 35(3), e2020GB006709. https://doi.org/10.1029/2020GB006709DOI
28 
Kim, J. K., Kim, B. C., Jung, S. M., Jang, C. W., Shin, M., and Lee, Y. (2007). The distribution of DOM and POM and the composition of stable carbon isotopes in streams of agricultural and forest watershed located in the Han River system, Korea, Korean Society of Limnology, 40(1), 93–102. [Korean Literature]URL
29 
Kim, S., Kramer, R. W., and Hatcher, P. G. (2003). Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the Van Krevelen Diagram, Analytical Chemistry Journal, 75(20), 5336-5344. https://doi.org/10.1021/ac034415pDOI
30 
Kirkels, F. M. S. A., de Boer, H. J., Concha Hernández, P., Martes, C. R. T., van der Meer, M. T. J., Basu, S., Usman, M. O., and Peterse, F. (2022). Carbon isotopic ratios of modern C3 and C4 vegetation on the Indian peninsula and changes along the plant–soil–river continuum – implications for vegetation reconstructions, Biogeosciences, 19(17), 4107-4127. https://doi.org/10.5194/bg-19-4107-2022DOI
31 
Koch, B. P. and Dittmar, T. (2006). From mass to structure: An aromaticity index for high-resolution mass data of natural organic matter, Communications in Mass Spectrometry, 20(5), 926-932. https://doi.org/10.1002/rcm.2386DOI
32 
Kwon, Y. A., Kwon, W. T., and Boo, K. O. (2008). Future projections on the spatial distribution of onset date and duration of natural seasons using SRES A1B data in South Korea, Journal of the Korean Geographical Society, 43(1), 36-51. [Korean Literature]URL
33 
Lee, B. S. (1979). A Study of Natural Seasons in Korea, Korean Geographical Society, 14(2), 1-11. [Korean literature]URL
34 
Lee, E. J., Lee, S. C., Lee, K., Cha, J. Y., Han, Y. N., Kim, S. G., and Oh, N. H. (2023). Properties of river organic carbon affected by wastewater treatment plants, Science of The Total Environment, 858(Pt1), 159761. https://doi.org/10.1016/j.scitotenv.2022.159761DOI
35 
Lee, E. J., Shin, Y., Lee, K., Lee, S. C., Cha, J. Y., and Oh, N. H. (2023). Comparison of organic carbon properties in extracted soil solutions obtained underneath Cryptomeria japonica and Quercus acutissima and its implication on stream dissolved organic carbon, Forest Science and Technology, 19(4), 296-308. https://doi.org/10.1080/21580103.2023.2265966DOI
36 
Lee, E. J., Shin, Y., Yoo, G. Y., Ko, E. B., Butman, D., Raymond, P. A., and Oh, N. H. (2021). Loads and ages of carbon from the five largest rivers in South Korea under Asian monsoon climates, Journal of Hydrology, 599, 126363. https://doi.org/10.1016/j.jhydrol.2021.126363DOI
37 
Lee, H. J., Chun, K. W., Shope, C. L., and Park, J. H. (2015). Multiple time-scale monitoring to address dynamic seasonality and storm pulses of stream water quality in mountainous watersheds, Water, 7(11), 6117-6138. https://doi.org/10.3390/w7116117DOI
38 
Lee, M. H., Lee, Y. K., Derrien, M., Choi, K., Shin, K. H., Jang, K. S., and Hur, J. (2019). Evaluating the contributions of different organic matter sources to urban river water during a storm event via optical indices and molecular composition, Water Research, 165, 115006. https://doi.org/10.1016/j.watres.2019.115006DOI
39 
Lee, S. C., Shin, Y., Jeon, Y. J., Lee, E. J., Eom, J. S., Kim, B., and Oh, N. H. (2021). Optical properties and 14C ages of stream DOM from agricultural and forest watersheds during storms, Environmental Pollution, 272, 116412. https://doi.org/10.1016/j.envpol.2020.116412DOI
40 
LeRoy, C. J., Hipp, A. L., Lueders, K., Follstad Shah, J. J., Kominoski, J. S., Ardón, M., Dodds, W. K., Gessner, M. O., Griffiths, N. A., Lecerf, A., Manning, D. W. P., Sinsabaugh, R. L., and Webster, J. R. (2020). Plant phylogenetic history explains in-stream decomposition at a global scale, Journal of Ecology, 108, 17-35. https://doi.org/10.1111/1365-2745.13262DOI
41 
Likens, G. E. (2013). Biogeochemistry of a forested ecosystem, New York, NY: Springer. https://doi.org/10.1007/978-1-4614-7810-2DOI
42 
Lu, C. J., Benner, R., Fichot, C. G., Fukuda, H., Yamashita, Y., and Ogawa, H. (2016). Sources and transformations of dissolved lignin phenols and chromophoric dissolved organic matter in Otsuchi Bay, Japan, Frontiers in Marine Science, 3, 85. https://doi.org/10.3389/fmars.2016.00085DOI
43 
Marwick, T. R., Tamooh, F., Teodoru, C. R., Borges, A. V., Darchambeau, F., and Bouillon, S. (2015). The age of river-transported carbon: A global perspective, Global Biogeochemical Cycles, 29(2), 122-137. https://doi.org/10.1002/2014GB004911DOI
44 
Meingast, K. M., Kane, E. S., Marcarelli, A. M., Wagenbrenner, J. W., and Beltrone, V. G. (2023). Seasonal trends of DOM character in soils and stream change with snowmelt timing, Water Resources Research, 59(3), e2022WR032014. https://doi.org/10.1029/2022WR032014DOI
45 
Merder, J., Freund, J. A., Feudel, U., Hansen, C. T., Hawkes, J. A., Jacob, B., Klaproth, K., Niggemann, J., Noriega-Ortega, B. E., Osterholz, H., Rossel, P. E., Seidel, M., Singer, G., Stubbins, A., Waska, H., and Dittmar, T. (2020). ICBM-OCEAN: Processing ultrahigh-resolution mass spectrometry data of complex molecular mixtures, Analytical Chemistry Journal, 92(10), 6832-6838. https://doi.org/10.1021/acs.analchem.9b05659DOI
46 
Moore, S., Evans, C. D., Page, S. E., Garnett, M. H., Jones, T. G., Freeman, C., Hooijer, A., Wiltshire, A. J., Limin, S. H., and Gauci, V. (2013). Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes, Nature, 493(7434), 660-663. https://doi.org/10.1038/nature11818DOI
47 
Mosher, J. J., Kaplan, L. A., Podgorski, D. C., Mckenna, A. M., and Marshall, A. G. (2015). Longitudinal shifts in dissolved organic matter chemogeography and chemodiversity within headwater streams: A river continuum reprise, Biogeochemistry, 124(1/3), 371–385. http://www.jstor.org/stable/24712033DOI
48 
National Institute of Ecology. (2017). Project of long term ecological research (II), National Institute of Ecology, 1-1266. [Korean Literature]URL
49 
National Institute of Ecology. (2023). 2023 long term ecological research in Korea, National Institute of Ecology, 1-456. [Korean Literature]URL
50 
National Institute of Environmental Research. (2013). The first 10 years of KNLTER (2004-2013) final report, National Institute of Environmental Research, 1-388. [Korean Literature]URL
51 
Oh, N. H. and Cha, J. Y. (2023). Applications of radiocarbon isotope ratios in environmental sciences in South Korea, Korean Journal of Ecology and Environment, 56, 281-302. [Korean Literature] https://doi.org/10.11614/KSL.2023.56.4.281DOI
52 
Opsahl, S. and Benner, R. (1995). Early diagenesis of vascular plant tissues: Lignin and cutin decomposition and biogeochemical implications, Geochimica et Cosmochimica Acta, 59(23), 4889-4904. https://doi.org/10.1016/0016-7037(95)00348-7DOI
53 
Opsahl, S. and Benner, R. (1998). Photochemical reactivity of dissolved lignin in river and ocean waters, Limnology and Oceanography, 43(6), 1297-1304. https://doi.org/10.4319/lo.1998.43.6.1297DOI
54 
Raymond, P. A., Saiers, J. E., and Sobczak, W. V. (2016). Hydrological and biogeochemical controls on watershed dissolved organic matter transport: Pulse-shunt concept, Ecology, 97(1), 5-16. https://doi.org/10.1890/14-1684.1DOI
55 
Rhyner, T. M. Y., Bröder, L., White, M. E., Mittelbach, B. V. A., Brunmayr, A., Hagedorn, F., Storck, F. R., Passera, L., Haghipour, N., Zobrist, J., and Eglinton, T. I. (2023). Radiocarbon signatures of carbon phases exported by Swiss rivers in the Anthropocene, Philosophical Transactions of the Royal Society A, 381(2261), 20220326. https://doi.org/10.1098/rsta.2022.0326DOI
56 
Riedel, T., Zark, M., Vähätalo, A. V., Niggemann, J., Spencer, R. G. M., Hernes, P. J., and Dittmar, T. (2016). Molecular signatures of biogeochemical transformations in dissolved organic matter from ten world rivers, Frontiers in Earth Science, 4, 85. https://doi.org/10.3389/feart.2016.00085DOI
57 
Ryan, K. A., Adler, T., Chalmers, A., Perdrial, J., Shanley, J. B., and Stubbins, A. (2021). Event scale relationships of DOC and TDN fluxes in throughfall and stemflow diverge from stream exports in a forested catchment, Journal of Geophysical Research: Biogeosciences, 126(7), e2021JG006281. https://doi.org/10.1029/2021JG006281DOI
58 
Sage, R. F. and Monson, R. K. (1999). C4 Plant Biology (1st ed.), Academic Press.URL
59 
Schlesinger, W. H. and Bernhardt, E. S. (2020). Biogeochemistry: An Analysis of Global Change (4th ed.), Academic Press. https://doi.org/10.1016/B978-0-12-814608-8.09992-8DOI
60 
Sheng, M., Chen, S., Liu, C.-Q., Fu, Q., Zhang, D., Hu, W., Deng, J., Wu, L., Li, P., Yan, Z., Zhu, Y. G., and Fu, P. (2023). Spatial and molecular variations in forest topsoil dissolved organic matter as revealed by FT-ICR mass spectrometry, Science of The Total Environment, 895, 165099. https://doi.org/10.1016/j.scitotenv.2023.165099DOI
61 
Shin, W. J., Ryu, J. S., Park, Y., and Lee, G. S. (2011). Chemical weathering and associated CO2 consumption in six major river basins, South Korea, Geomorphology, 129(3-4), 334-341. https://doi.org/10.1016/j.geomorph.2011.02.028DOI
62 
Sickman, J. O., DiGiorgio, C. L., Lee Davisson, M., Lucero, D. M., and Bergamaschi, B. (2010). Identifying sources of dissolved organic carbon in agriculturally dominated rivers using radiocarbon age dating: Sacramento–San Joaquin River Basin, California, Biogeochemistry, 99, 79-96. https://doi.org/10.1007/s10533-009-9391-zDOI
63 
Sjöström, E. (2013). Wood Chemistry: Fundamentals and Applications (2nd ed.). Academic Press.URL
64 
Spencer, R. G. M., Kellerman, A. M., Podgorski, D. C., Macedo, M. N., Jankowski, K., Nunes, D., and Neill, C. (2019). Identifying the molecular signatures of agricultural expansion in Amazonian headwater streams, Journal of Geophysical Research: Biogeosciences, 124(6), 1637–1650. https://doi.org/10.1029/2018JG004910DOI
65 
Swan, C. M. and Sparkman, A. (2023). The role of functional and phylogenetic diversity in riparian tree vegetation on leaf litter breakdown in rivers, Oikos, 2023(4), e09361. https://doi.org/10.1111/oik.09361DOI
66 
Vaughn, D. R., Kellerman, A. M., Wickland, K. P., Striegl, R. G., Podgorski, D. C., Hawkings, J. R., Nienhuis, J. H., Dornblaser, M. M., Stets, E. G., and Spencer, R. G. M. (2021). Anthropogenic landcover impacts fluvial dissolved organic matter composition in the Upper Mississippi River Basin, Biogeochemistry, 164, 117-141. https://doi.org/10.1007/s10533-021-00852-1DOI
67 
Weishaar, J. L.,, Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R., and Mopper, K. (2003). Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon, Environmental Science & Technology, 37(20), 4702–4708. https://doi.org/10.1021/es030360xDOI
68 
Xu, Y., Peng, Z., Tu, Y., and Huang, J. (2023). Combining organic and inorganic fertilization increases rice yield and soil nitrogen and carbon: Dissolved organic matter chemodiversity and soil microbial communities, Plant and Soil, 492, 557-571. https://doi.org/10.1007/s11104-023-06203-3DOI
69 
Yang, G., Gong, Z., Luo, X., and Shuai, L. (2022). Revisiting alkaline cupric oxide oxidation method for lignin structural analysis, Frontiers in Bioengineering and Biotechnology, 10, 1002145. https://doi.org/10.3389/fbioe.2022.1002145DOI
70 
Yates, C. A., Johnes, P. J., Owen, A. T., Brailsford, F. L., Glanville, H. C., Evans, C. D., Marshall, M. R., Jones, D. L., Lloyd, C. E. M., Jickells, T., and Evershed, R. P. (2019). Variation in dissolved organic matter (DOM) stoichiometry in U.K. freshwaters: Assessing the influence of land cover and soil C:N ratio on DOM composition, Limnology and Oceanography, 64(6), 2328-2340. https://doi.org/10.1002/lno.11186DOI
71 
Zark, M. and Dittmar, T. (2018). Universal molecular structures in natural dissolved organic matter, Nature Communications, 9(1), 3178. https://doi.org/10.1038/s41467-018-05665-9DOI
72 
Zherebker, A., Rukhovich, G. D., Sarycheva, A., Lechtenfeld, O. J., and Nikolaev, E. N. (2022). Aromaticity index with improved estimation of carboxyl group contribution for biogeochemical studies, Environmental Science & Technology, 56(4), 2729–2737. https://doi.org/10.1021/acs.est.1c04575DOI