The Journal of
the Korean Society on Water Environment

The Journal of
the Korean Society on Water Environment

Bimonthly
  • ISSN : 2289-0971 (Print)
  • ISSN : 2289-098X (Online)
  • KCI Accredited Journal

Editorial Office

References

1 
Almuhtaram, H., Zamyadi, A., and Hofmann, R. (2021). Machine learning for anomaly detection in cyanobacterial fluorescence signals, Water Research, 197-117073. https://doi.org/10.1016/j.watres.2021.117073DOI
2 
Bennett, N. D., Croke, B. F. W., Guariso, G., Guillaume, J. H. A., Hamilton, S. H., Jakeman, A. J., Marsili-Libelli, S., Newham, L. T. H., Norton, J. P., Perrin, C., Pierce, S. A., Robson, B., Seppelt, R., Voinov, A. A., Fath, B. D., and Andreassian, V. (2013). Characterising performance of environmental models, Environmental Modelling & Software, 40, 1-20. https://doi.org/10.1016/j.envsoft.2012.09.011DOI
3 
Blix, K. and Eltoft, T. (2018). Machine learning automatic model selection algorithm for oceanic chlorophyll-a content retrieval, Remote Sensing, 10(5), 775. https://doi.org/10.3390/rs10050775DOI
4 
Cha, Y., Shin, J., and Kim, Y. (2020). Data-driven modeling of freshwater aquatic systems: Status and prospects, Journal of Korean Society on Water Environment, 36(6), 611-620. https://doi.org/10.15681/KSWE.2020.36.6.611DOI
5 
Chen, C., Chen, Q., Yao, S., He, M., Zhang, J., Li, G., and Lin, Y. (2024). Combining physical-based model and machine learning to forecast chlorophyll-a concentration in freshwater lakes, Science of the Total Environment, 907, 168097. https://doi.org/10.1016/j.scitotenv.2023.168097DOI
6 
Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794. https://doi.org/10.1145/2939672.2939785DOI
7 
Grinsztajn, L., Oyallon, E., and Varoquaux, G. (2022). Why do tree-based models still outperform deep learning on typical tabular data?, Advances in Neural Information Processing Systems, 35, 507-520. https://doi.org/10.48550/arXiv.2207.08815DOI
8 
Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., Fernández del Río, J., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E. (2020). Array programming with NumPy, Nature, 585(7825), 357-362. https://doi.org/10.1038/s41586-020-26 49-2DOI
9 
Hunter, J. D. (2007). Matplotlib: A 2D graphics environment, Computing in Science & Engineering, 9(3), 90-95. https://doi.org/10.1109/MCSE.2007.55DOI
10 
Kim, J. T. (2014). Lowess and outlier analysis of biological oxygen demand on Nakdong main stream river, Journal of the Korean Data and Information Science Society, 25(1), 119-130. [Korean Literature] https://doi.org/10.7465/jkdi.2014.25.1.119DOI
11 
Kim, J., Park, N. S., Yun, S., Chae, S. H., and Yoon, S. (2018). Application of isolation forest technique for outlier detection in water quality data, Journal of Korean Society of Environmental Engineers, 40(12), 473-480. [Korean Literature] https://doi.org/10.4491/KSEE.2018.40.12.473DOI
12 
Kim, S. H., Park, J. H., and Kim, B. (2021). Prediction of cyanobacteria harmful algal blooms in reservoir using machine learning and deep learning, Journal of Korea Water Resources Association, 54(12), 1167-1181. [Korean Literature] https://doi.org/10.3741/JKWRA.2021.54.S-1.1167DOI
13 
Lee, J. H., Moon, B. J., Yoon, H. G., Ha, H. J., Kim, J. A., Yoon, J. S., Kil, H. K., Lee, M. Y., and Jung, K. (2017). A study on outlier detection in automated water quality monitoring data using local regression models, Proceedings of Conference of the Korean Society of Environmental Engineers, 456-457. [Korean Literature]Google Search
14 
Lee, S. M. and Kim, I. K. (2021). A comparative study on the application of boosting algorithm for Chl-a estimation in the downstream of Nakdong River, Journal of Korean Society of Environmental Engineers, 43(1), 66-78. [Korean Literature] https://doi.org/10.4491/KSEE.2021.43.1.66DOI
15 
Liu, F. T., Ting, K. M., and Zhou, Z. H. (2008). Isolation forest, 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 413-422, https://doi.org/10.1109/ICDM.2008.17DOI
16 
Liu, T., Zhou, Z., and Yang, L. (2024). Layered isolation forest: A multi-level subspace algorithm for improving isolation forest, Neurocomputing, 581, 127525. https://doi.org/10.1016/j.neucom.2024.127525DOI
17 
McKinney, W. (2010). Data structures for statistical computing in Python, Proceedings of the 9th Python in Science Conference, Austin, 445(1), 51-56. https://doi.org/10.25080/Majora-92bf1922-00aDOI
18 
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., and Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, Transactions of the ASABE, 50(3), 885-900. https://doi.org/10.13031/2013.23153DOI
19 
Nassif, A. B., Talib, M. A., Nasir, Q., and Dakalbab, F. M. (2021). Machine learning for anomaly detection, A systematic review, Ieee Access, 78658-78700. https://doi.org/10.1109/ACCESS.2021.3083060DOI
20 
National Institute of Environmental Research. (NIER). (2025). Water Environment Information System (WEIS), https://water.nier.go.kr/ (accessed March 16. 2025).Google Search
21 
Park, J., Patel, K., and Lee, W. H. (2024). Recent advances in algal bloom detection and prediction technology using machine learning, The Science of The Total Environment, 173546. https://doi.org/10.1016/j.scitotenv.2024.173546DOI
22 
Park, S., Son, S., Bae, J., Lee, D., Seo, D., and Kim, J. (2023). Estimation of Chlorophyll-a concentration in Nakdong River using machine learning-based satellite data and water quality, hydrological, and meteorological factors, Korean Journal of Remote Sensing, 39(5), 655-667. [Korean Literature] https://doi.org/10.7780/kjrs.2023.39.5.1.15DOI
23 
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., and Dubourg, V. (2011). Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, 12, 2825-2830.Google Search
24 
Uddin, M. G., Rahman, A., Taghikhah, F. R., and Olbert, A. I. (2024). Data-driven evolution of water quality models: an in-depth investigation of innovative outlier detection approaches-A case study of Irish Water Quality Index (IEWQI) model, Water Research, 255, 121499. https://doi.org/10.1016/j.watres.2024.121499DOI
25 
Yepmo, V., Smits, G., Lesot, M. J., and Pivert, O. (2024). Leveraging an isolation forest to anomaly detection and data clustering, Data & Knowledge Engineering, 151(5), 102302. https://doi.org/10.1016/j.datak.2024.102302DOI