The Journal of
the Korean Society on Water Environment

The Journal of
the Korean Society on Water Environment

Bimonthly
  • ISSN : 2289-0971 (Print)
  • ISSN : 2289-098X (Online)
  • KCI Accredited Journal

Editorial Office

References

1 
Baker, A. (2001). Fluorescence excitation− emission matrix characterization of some sewage-impacted rivers, Environmental Science & Technology, 35(5), 948-953. https://doi.org/10.1021/es000177tDOI
2 
Begum, M. S., Lee, M. H., Park, T. J., Lee, S. Y., Shin, K. H., Shin, H. S., amd Hur, J. (2022). Source tracking of dissolved organic nitrogen at the molecular level during storm events in an agricultural watershed, Science of the Total Environment, 810, 152183. https://doi.org/10.1016/j.scitotenv.2021.152183DOI
3 
Begum, M. S., Park, H. Y., Shin, H. S., Lee, B. J., and Hur, J. (2023). Separately tracking the sources of hydrophobic and hydrophilic dissolved organic matter during a storm event in an agricultural watershed, Science of the Total Environment, 873, 162347. https://doi.org/10.1016/j.scitotenv.2023.162347DOI
4 
Bi, H., Tang, L., Gao, X., Jia, J., and Lv, H. (2016). Spectroscopic analysis on the binding interaction between tetracycline hydrochloride and bovine proteins β-casein, α-lactalbumin, Journal of Luminescence, 178, 72-83. https://doi.org/10.1016/j.jlumin.2016.05.048DOI
5 
Buffam, I., Galloway, J. N., Blum, L. K., and McGlathery, K. J. (2001). A stormflow/baseflow comparison of dissolved organic matter concentrations and bioavailability in an Appalachian stream, Biogeochemistry, 53, 269-306. https://doi.org/10.1023/A:1010643432253DOI
6 
Cai, N., Peak, D., and Larese-Casanova, P. (2015). Factors influencing natural organic matter sorption onto commercial graphene oxides, Chemical Engineering Journal, 273, 568-579. https://doi.org/10.1016/j.cej.2015.03.108DOI
7 
Carlson, C. A. and Hansell, D. A. (2015). DOM sources, sinks, reactivity, and budgets, Biogeochemistry of Marine Ddissolved Organic Matter, 65-126. https://doi.org/10.1016/B978-0-12-405940-5.00003-0DOI
8 
Chen, M. and Jaffé, R. (2014). Photo-and bio-reactivity patterns of dissolved organic matter from biomass and soil leachates and surface waters in a subtropical wetland, Water Research, 61, 181-190. https://doi.org/10.1016/j.watres.2014.03.075DOI
9 
Chen, M., He, W., Choi, I., and Hur, J. (2016). Tracking the monthly changes of dissolved organic matter composition in a newly constructed reservoir and its tributaries during the initial impounding period, Environmental Science and Pollution Research, 23, 1274-1283. https://doi.org/10.1007/s11356-015-5350-5DOI
10 
Chen, W., Westerhoff, P., Leenheer, J. A., and Booksh, K. (2003). Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter, Environmental Science & Technology, 37(24), 5701–5710. https://doi.org/10.1021/es034354cDOI
11 
Coble, P. G. (1996). Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy, Marine Chemistry, 51(4), 325-346. https://doi.org/10.1016/0304-4203(95)00062-3DOI
12 
Cuss, C. and Guéguen, C. (2013). Distinguishing dissolved organic matter at its origin: size and optical properties of leaf-litter leachates, Chemosphere, 92(11), 1483-1489. https://doi.org/10.1016/j.chemosphere.2013.03.062DOI
13 
Derrien, M., Kim, M. S., Ock, G., Hong, S., Cho, J., Shin, K. H., and Hur, J. (2018). Estimation of different source contributions to sediment organic matter in an agricultural-forested watershed using end member mixing analyses based on stable isotope ratios and fluorescence spectroscopy, The Science of the Total Environment, 618, 569-578. https://doi.org/10.1016/j.scitotenv.2017.11.067DOI
14 
Dineesha, K. B. N., Hur, J., and Lee, B. J. (2023). Application of fluorescence excitation emission matrices for diagnosis and source identification of watershed pollution: A review, Journal of Korean Society on Water Environment, 39(1), 87-101. https://doi.org/10.15681/KSWE.2023.39.1.87DOI
15 
Graeber, D., Goyenola, G., Meerhoff, M., Zwirnmann, E., Ovesen, N. B., Glendell, M.Gelbrecht, J., Teixeira de Mello, F., González-Bergonzoni, I., Jeppesen, E., and Kronvang, B. 2015). Interacting effects of climate and agriculture on fluvial DOM in temperate and subtropical catchments, Hydrology and Earth System Sciences, 19(5), 2377-2394. https://doi.org/10.5194/hess-19-2377-2015DOI
16 
Hudson, N., Baker, A., and Reynolds, D. (2007). Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters-A review, River Research and Applications, 23(6), 631–649. https://doi.org/10.1002/rra.1005DOI
17 
Huguet, A., Vacher, L., Relexans, S., Saubusse, S., Froidefond, J. M., and Parlanti, E. (2009). Properties of fluorescent dissolved organic matter in the Gironde Estuary, Organic Geochemistry, 40(6), 706-719. https://doi.org/10.1016/j.orggeochem.2009.03.002DOI
18 
Hur, J., Jung, K. Y., and Schlautman, M. A. (2011). Altering the characteristics of a leaf litter-derived humic substance by adsorptive fractionation versus simulated solar irradiation, Water Research, 45(18), 6217-6226. https://doi.org/10.1016/j.watres.2011.09.023DOI
19 
Jan, S. S. S., Hong, T. S., Hong, E. M., and Kim, G. B. (2025). Optimizing outflow simulations using the SWAT model in a small watershed with scarce discharge observations: A methodological approach, The Journal of Engineering Geology, 35(1), 63-80. https://doi.org/10.9720/kseg.2025.1.063DOI
20 
Jeong, Y. J., Park, H. J., Baek, N., Seo, B. S., Lee, K. S., Kwak, J. H., Choi, S. K., Lee, S. M., Yoon, K. S., Lim, S. S., and Choi, W. J. (2023). Assessment of sources variability of riverine particulate organic matter with land use and rainfall changes using a three-indicator (δ13C, δ15N, and C/N) Bayesian mixing model, Environmental Research, 216, 114653. https://doi.org/10.1016/j.envres.2022.114653DOI
21 
Kang, H., Hyun, Y. J., and Jun, S. M. (2019). Regional estimation of baseflow index in Korea and analysis of baseflow effects according to urbanization, Journal of Korea Water Resources Association, 52(2), 97–105. https://doi.org/10.3741/JKWRA.2019.52.2.97DOI
22 
Kosmulski, M. (2009). Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature, Advances in Colloid and Interface Science, 152(1-2), 14-25. https://doi.org/10.1016/j.cis.2009.08.003DOI
23 
Kothawala, D., Roehm, C., Blodau, C., and Moore, T. R. (2012). Selective adsorption of dissolved organic matter to mineral soils, Geoderma, 189, 334-342. https://doi.org/10.1016/j.geoderma.2012.07.001DOI
24 
Lambert, T., Pierson-Wickmann, A. C., Gruau, G., Jaffrézic, A., Petitjean, P., Thibault, J. N., and Jeanneau, L. (2014). DOC sources and DOC transport pathways in a small headwater catchment as revealed by carbon isotope fluctuation during storm events, Biogeosciences, 11(11), 3043-3056. https://doi.org/10.5194/bg-11-3043-2014DOI
25 
Larsen, S., Andersen, T., and Hessen, D. O. (2011). Climate change predicted to cause severe increase of organic carbon in lakes, Global Change Biology, 17(2), 1186-1192. https://doi.org/10.1111/j.1365-2486.2010.02257.xDOI
26 
Lawaetz, A. J. and Stedmon, C. A. (2009). Fluorescence intensity calibration using the Raman scatter peak of water, Applied Spectroscopy, 63(8), 936–940. https://doi.org/10.1366/000370209788964548DOI
27 
Lee, M. H,, Lee S., and Hur, J. (2024). Estimating the relative contricution of organic phosphorus to organic matters with various sources flowing into a reservoir via fluorescence spectroscopy, Journal of Korean Society on Water Environment, 40(2), 67-78. [Korean Lietrature] https://doi.org/10.15681/KSWE.2024.40.2.67DOI
28 
Lee, M. H., Lee, S. Y., Yoo, H. Y., Shin, K. H., and Hur, J. (2020). Comparing optical versus chromatographic descriptors of dissolved organic matter (DOM) for tracking the non-point sources in rural watersheds, Ecological Indicators, 117, 106682. https://doi.org/10.1016/j.ecolind.2020.106682DOI
29 
Lee, M. H., Lee, Y. K., Derrien, M., Choi, K., Shin, K. H., Jang, K. S., and Hur, J. (2019). Evaluating the contributions of different organic matter sources to urban river water during a storm event via optical indices and molecular composition, Water Research, 165, 115006. https://doi.org/10.1016/j.watres.2019.115006DOI
30 
Lee, M. H., Osburn, C. L., Shin, K. H., and Hur, J. (2018). New insight into the applicability of spectroscopic indices for dissolved organic matter (DOM) source discrimination in aquatic systems affected by biogeochemical processes, Water Research, 147, 164-176. https://doi.org/10.1016/j.watres.2018.09.048DOI
31 
Ma, Y. and Li, S. (2020). Spatial and temporal comparisons of dissolved organic matter in river systems of the Three Gorges Reservoir region using fluorescence and UV–Visible spectroscopy, Environmental Research, 189, 109925. https://doi.org/10.1016/j.envres.2020.109925DOI
32 
McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T., and Andersen, D. T. (2001). Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity, Limnology and Oceanography, 46(1), 38-48. https://doi.org/10.4319/lo.2001.46.1.0038DOI
33 
Nguyen, H. V. M. and Hur, J. (2011). Tracing the sources of refractory dissolved organic matter in a large artificial lake using multiple analytical tools, Chemosphere, 85(5), 782-789. https://doi.org/10.1016/j.chemosphere.2011.06.068DOI
34 
Oh, H., Jung, K. Y., Kim, B. Y., Lee, B. J., Shin, H. S., and Hur, J. (2023). Optimal tracer identification for dissolved organic matter (DOM) source tracking in watersheds using point source effluent load data, Environmental Technology & Innovation, 32, 103423. https://doi.org/10.1016/j.eti.2023.103423DOI
35 
Ohno, T. (2002). Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter, Environmental Science & Technology, 36(4), 742-746. https://doi.org/10.1021/es0155276DOI
36 
Quang, V. L., Choi, I., and Hur, J. (2015). Tracking the behavior of different size fractions of dissolved organic matter in a full-scale advanced drinking water treatment plant, Environmental Science and Pollution Research, 22, 18176-18184. https://doi.org/10.1007/s11356-015-5040-3DOI
37 
Spohn, M., Diáková, K., Aburto, F., Doetterl, S., and Borovec, J. (2022). Sorption and desorption of organic matter in soils as affected by phosphate, Geoderma, 405, 115377. https://doi.org/10.1016/j.geoderma.2021.115377DOI
38 
Tak, S., Han, S. J., Lee, Y. K., Cho, J., and Hur, J. (2021). Exploring applicability of end member mixing approach for predicting environmental reactivity of dissolved organic matter, Environmental Pollution, 290, 118044. https://doi.org/10.1016/j.envpol.2021.118044DOI
39 
Tamm, T., Nõges, T., Järvet, A., and Bouraoui, F. (2008). Contributions of DOC from surface and groundflow into Lake Võrtsjärv (Estonia), European Large Lakes Ecosystem changes and their Ecological and Socioeconomic Impacts, 213-220. https://doi.org/10.1007/978-1-4020-8379-2_25DOI
40 
Tank, J. L., Rosi-Marshall, E. J., Griffiths, N. A., Entrekin, S. A., and Stephen, M. L. (2010). A review of allochthonous organic matter dynamics and metabolism in streams, Journal of the North American Benthological Society, 29(1), 118-146. https://doi.org/10.1899/08-170.1DOI
41 
Tian, Y. Q., Yu, Q., Carrick, H. J., Becker, B. L., Confesor, R., Francek, M., and Anderson, O. C. (2023). Analysis of spatiotemporal variation in dissolved organic carbon concentrations for streams with cropland-dominated watersheds, The Science of the Total Environment, 861, 160744. https://doi.org/10.1016/j.scitotenv.2022.160744DOI
42 
Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R., and Mopper, K. (2003). Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon, Environmental Science & Technology, 37(20), 4702-4708. https://doi.org/10.1021/es030360xDOI
43 
Yang, L. and Hur, J. (2014). Critical evaluation of spectroscopic indices for organic matter source tracing via end member mixing analysis based on two contrasting sources, Water Research, 59, 80-89.DOI
44 
Yu, X., Zhang, J., Kong, F., Li, Y., Li, M., Dong, Y., and Xi, M. (2019). Identification of source apportionment and its spatial variability of dissolved organic matter in Dagu River-Jiaozhou Bay estuary based on the isotope and fluorescence spectroscopy analysis, Ecological Indicators, 102, 528-537. https://doi.org/10.1016/j.ecolind.2019.03.004DOI
45 
Zafar, R., Lee, Y. K., Oh, H., and Hur, J. (2025). Tracking microplastic-derived dissolved organic matter in the adsorption of its mixtures with natural organic matter via end-member mixing analysis, Environmental Research, 283, 122144. https://doi.org/10.1016/j.envres.2025.122144DOI
46 
Zhang, Y. and Liang, X. (2019). Understanding organic nonpoint‐source pollution in watersheds via pollutant indicators, Disinfection by‐product precursor predictors, and composition of dissolved organic matter, Journal of Environmental Quality, 48(1), 102–116. https://doi.org/10.2134/jeq2018.06.0228DOI
47 
Zhao, L., Du, C., Zhang, Q., Sun, C., Wang, S., and Luo, S. (2020). The ultraviolet–visible absorbance and fluorescence characterization of dissolved organic matter derived from the leaf litter of Populus simonii, Artemisia desertorum, Salix cheilophila, and Populus tomentosa, Environmental Science and Pollution Research, 27, 36439–36449. https://doi.org/10.1007/s11356-020-09600-8DOI
48 
Zsolnay, A., Baigar, E., Jimenez, M., Steinweg, B., and Saccomandi, F. (1999). Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying, Chemosphere, 38(1), 45–50. https://doi.org/10.1016/s0045-6535(98)00166-0DOI