Mobile QR Code QR CODE : The Transactions P of the Korean Institute of Electrical Engineers
The Transactions P of the Korean Institute of Electrical Engineers

Korean Journal of Air-Conditioning and Refrigeration Engineering

ISO Journal TitleTrans. P of KIEE
  • Indexed by
    Korea Citation Index(KCI)
Title The Study of Car Detection on the Highway using YOLOv2 and UAVs
Authors 서창진(Chang-Jin Seo)
DOI http://doi.org/10.5370/KIEEP.2018.67.1.042
Page pp.42-46
ISSN 1229-800X
Keywords YOLOv2 ; UAV ; Deep learning ; Object detection ; OpenCV
Abstract In this paper, we propose fast object detection method of the cars by applying YOLOv2(You Only Look Once version 2) and UAVs (Unmanned Aerial Vehicles) while on the highway. We operated Darknet, OpenCV, CUDA and Deep Learning Server(SDX-4185) for our simulation environment. YOLOv2 is recently developed fast object detection algorithm that can detect various scale objects as fast speed. YOLOv2 convolution network algorithm allows to calculate probability by one pass evaluation and predicts location of each cars, because object detection process has simple single network. In our result, we could find cars on the highway area as fast speed and we could apply to the real time.