Mobile QR Code QR CODE

REFERENCES

1 
Bache R., Müllerburg M., 1990, Measures of testability as a basis for quality assurance, Software Engineering Journal, Vol. 5, No. 2, pp. 86-92DOI
2 
Dietterich T., 1995, Overfitting and under computing in machine learning, ACM computing surveys (CSUR), Vol. 27, No. 3, pp. 326-327DOI
3 
Bartlett P. L., et al. , 2020, Benign overfitting in linear regression, Proceedings of the National Academy of Sciences, Vol. 117, No. 48, pp. 30063-30070DOI
4 
Wang C. C., et al. , October 25, 2021, A Safety Warning Algorithm Based on Axis Aligned Bounding Box Method to Prevent Onsite Accidents of Mobile Construction Machineries, Sensors(Basel, Switzerland), Vol. 21, No. 21, pp. 7075DOI
5 
Kaiming H., et al. , 2017, Mask R-CNN, Proceedings of the IEEE international conference on computer vision, pp. 2961-2969DOI
6 
Mohr G., et al. , 2020, In-Situ Defect Detection in Laser Powder Bed Fusion by Using Thermography and Optical Tomography - Comparison to Computed Tomography, Metals, Vol. 10, No. 1, pp. 103DOI
7 
Suh S. W., Ko Y. H., Yoo S. G., Chong K. T., 2019, Development of Checker-Switch Error Detection System using CNN Algorithm, The Korean Society of Manufacturing Process Engineers, Vol. 18, No. 12, pp. 38-44DOI
8 
Carranza-Gracia M., et al. , 2020, On the performance of one-stage and two-stage object detectors in autonomous vehicles using camera data, Remote Sensing, Vol. 13, No. 1, pp. 89DOI
9 
Tianjiao L., Hong B., 2020, A optimized YOLO method for object detection, 2020 16th International Conference on Computational Intelligence and Security (CIS), pp. 30-34DOI
10 
Hongtao W., Xi Y., 2020, Object Detection Method Based On Improved One-Stage Detector, 2020 5th International Conference on Smart Grid and Electrical Automation (ICSGEA), pp. 209-212DOI
11 
Zhai S., Shang D., Wang S., Dong S., 2020, DF-SSD: An Improved SSD Object Detection Algorithm Based on DenseNet and Feature Fusion, in IEEE Access, Vol. 8, pp. 24344-24357DOI
12 
Li Q., Mou L., Jiang K., Liu Q., Wang Y., Zhu X. X., 2018, Hierarchical Region Based Convolution Neural Network for Multiscale Object Detection in Remote Sensing Images, IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, pp. 4355-4358DOI
13 
Hafiz A. M., Bhat G. M., 2020, A Survey on Instance Segmentation: State of the art, International journal of multimedia information retrieval, Vol. 9, No. 3, pp. 171-189DOI
14 
Nguyen G. H., et al. , 2008, A supervised learning approach for imbalanced data sets, 2008 19th international conference on pattern recognition. IEEE, pp. 1-4DOI
15 
Zhu X. J., et al. , 2009, Introduction to semi-supervised learning, Synthesis lectures on artificial intelligence and machine learning, Vol. 3, No. 1, pp. 1-130DOI
16 
Manevitz L. M., Yousef M., Dec 2001, One-class SVMs for document classification, Journal of machine Learning research, Vol. 2, pp. 139-154URL
17 
Bank D., Koenigstein N., Giryes R., 2020, Autoencoders, arXiv preprint arXiv:2003.05991DOI
18 
Marta S. P., Joanna N. G., 2019, Defective Products Management with Reverse Logistics Processes in Micro, Small, and Medium-Sized Production Companies, Polish Journal of Management Studies, Vol. 20, pp. 6780-6795URL
19 
COCO dataset, http://cocodataset.orgURL
20 
Xie X., et al. , 2021, Oriented R-CNN for object detection, Proceedings of the IEEE/CVF International Conference on Computer Vision., pp. 3520-3529DOI
21 
Lin T. Y., et al. , 2017, Feature pyramid networks for object detection, Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2117-2125DOI
22 
Ren S., He K., Girshick R., Sun J., 2015, Faster R-CNN: Towards real-time object detection with region proposal networks, Advances in neural information processing systems, Vol. 28URL
23 
Yu W., Kim S., Chen F., Choi J., 2020, Pedestrian Detection Based on Improved Mask R-CNN Algorithm, International Conference on Intelligent and Fuzzy Systems. Springer, Cham., pp. 1515-1522DOI
24 
Joseph R., Farhadi A., 2017, YOLO9000: better, faster, stronger, Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7263-7271DOI
25 
Redmon J., Farhadi A., 2018, Yolov3: An incremental improvement, arXiv preprint arXiv:1804.02767DOI
26 
Padilla R., Netto S. L., da Silva E. A. B., 2020, A Survey on Performance Metrics for Object-Detection Algorithms, 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 237-242DOI