Mobile QR Code QR CODE

REFERENCES

1 
Alshamrani A., Chowdhary A., Pisharody S., Lu D., Huang D., 2017, A Defense System for Defeating DDoS Attacks in SDN based Networks, Proceedings of the 15th ACM International Symposium on Mobility Management and Wireless Access. Association for Computing Machinery, Miami, Florida, USA, pp. 83-92DOI
2 
Prakash A., Priyadarshini R., Apr. 2018, An Intelligent Software defined Network Controller for preventing Distributed Denial of Service Attack, in 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, pp. 585-589DOI
3 
Lazaris A., Prasanna V. K., Mar. 2021, An LSTM Framework for Software-Defined Measurement, IEEE Trans. Netw. Serv. Manage., Vol. 18, No. 1, pp. 855-869DOI
4 
Lazaris A., Prasanna V. K., 2017, DeepFlow: a deep learning framework for software-defined measurement, in Proceedings of the 2nd Workshop on Cloud-Assisted Networking - CAN '17, Incheon, Republic of Korea, pp. 43-48DOI
5 
El-Shamy A. M., El-Fishawy N. A., Attiya G., Mohamed M. A. A., Jan. 2021, Anomaly Detection and Bottleneck Identification of The Distributed Application in Cloud Data Center using Software-Defined Networking, Egyptian Informatics JournalDOI
6 
Rego A., Sendra S., Garcia L., Lloret J., Sep. 2019, Adapting reinforcement learning for multimedia transmission on SDN, Trans Emerging Tel Tech, Vol. 30, No. 9DOI
7 
Canovas A., Rego A., Romero O., Lloret J., Jan. 2020, A robust multimedia traffic SDN-Based management system using patterns and models of QoE estimation with BRNN, Journal of Network and Computer Applications, Vol. 150, pp. 102498DOI
8 
Ruelas A. M. R., Rothenberg C. E., Oct. 2018, A Load Balancing Method based on Artificial Neural Networks for Knowledge-defined Data Center Networking, in Proceedings of the 10th Latin America Networking Conference, São Paulo Brazil, pp. 106-109DOI
9 
Pradana A. M., Purboyo T. W., Latuconsina R., 2020, A Simulation Of Load Balancing In Software Defined Network (Sdn) Based On Artificial Neural Networks Method, ARPN Journal of Engineering and Applied Sciences, Vol. 15, No. 6, pp. 748-758URL
10 
Volkov A., Proshutinskiy K., Adam A. B. M., Ateya A. A., Muthanna A., Koucheryavy A., 2019, SDN Load Prediction Algorithm Based on Artificial Intelligence, in Distributed Computer and Communication Networks, Cham, pp. 27-40DOI
11 
Ben Letaifa A., Maher G., Mouna S., Jun. 2017, ML based QoE enhancement in SDN context: Video streaming case, in 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain, pp. 103-108DOI
12 
Abubakar A., Pranggono B., Sep. 2017, Machine learning based intrusion detection system for software defined networks, in 2017 Seventh International Conference on Emerging Security Technologies (EST), Canterbury, pp. 138-143DOI
13 
Kyaw A. T., Zin Oo M., Khin C. S., Jun. 2020, Machine-Learning Based DDOS Attack Classifier in Software Defined Network, in 2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Phuket, Thailand, pp. 431-434DOI
14 
Yu C., Lan J., Guo Z., Hu Y., 2018, DROM: Optimizing the Routing in Software-Defined Networks With Deep Reinforcement Learning, IEEE Access, Vol. 6, pp. 64533-64539DOI
15 
Liu C.-C., Chang Y., Tseng C.-W., Yang Y.-T., Lai M.-S., Chou L.-D., Jul. 2018, SVM-based Classification Mechanism and Its Application in SDN Networks, in 2018 10th International Conference on Communication Software and Networks (ICCSN), Chengdu, pp. 45-49DOI
16 
Zhang C., Wang X., Li F., He Q., Huang M., May 2018, Deep learning-based network application classification for SDN: Deep learning-based network application classification for SDN, Trans Emerging Tel Tech, Vol. 29, No. 5, pp. e3302DOI
17 
Zerbini C. B., Carvalho L. F., Abrão T., Proença M. L., Jul. 2019, Wavelet against random forest for anomaly mitigation in software-defined networking, Applied Soft Computing, Vol. 80, pp. 138-153DOI
18 
Khamaiseh S., Serra E., Li Z., Xu D., Oct. 2019, Detecting Saturation Attacks in SDN via Machine Learning, in 2019 4th International Conference on Computing, Communications and Security (ICCCS), Rome, Italy, pp. 1-8DOI
19 
Castillo E. F., Rendon O. M. C., Ordonez A., Zambenedetti Granville L., Apr. 2020, IPro: An approach for intelligent SDN monitoring, Computer Networks, Vol. 170, pp. 107108DOI
20 
S. E. R., Ravi R., Mar. 2020, A performance analysis of Software Defined Network based prevention on phishing attack in cyberspace using a deep machine learning with CANTINA approach (DMLCA), Computer Communications, Vol. 153, pp. 375-381DOI
21 
Bouzidi E. H., Outtagarts A., Langar R., Dec. 2019, Deep Reinforcement Learning Application for Network Latency Management in Software Defined Networks, in 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, pp. 1-6DOI
22 
Unal E., Sen-Baidya S., Hewett R., Dec. 2018, Towards Prediction of Security Attacks on Software Defined Networks: A Big Data Analytic Approach, in 2018 IEEE International Conference on Big Data (Big Data), pp. 4582-4588DOI
23 
Alhaidari F., et al. , 2021, Intelligent Software-Defined Network for Cognitive Routing Optimization using Deep Extreme Learning Machine Approach, Computers, Materials & Continua, Vol. 67, No. 1, pp. 1269-1285DOI
24 
Benayas F., Carrera A., Iglesias C. A., Apr. 2018, Towards an autonomic Bayesian fault diagnosis service for SDN environments based on a big data infrastructure, in 2018 Fifth International Conference on Software Defined Systems (SDS), pp. 7-13DOI
25 
Kaur G., Gupta P., Aug. 2019, Hybrid Approach for detecting DDOS Attacks in Software Defined Networks, in 2019 Twelfth International Conference on Contemporary Computing (IC3), Noida, India, pp. 1-6DOI
26 
Cusack G., Michel O., Keller E., 2018, Machine Learning-Based Detection of Ransomware Using SDN, Proceedings of the 2018 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization. Association for Computing Machinery, Tempe, AZ, USA, pp. 1-6DOI
27 
Alamri H. A., Thayananthan V., 2020, Bandwidth Control Mechanism and Extreme Gradient Boosting Algorithm for Protecting Software-Defined Networks Against DDoS Attacks, IEEE Access, Vol. 8, pp. 194269-194288DOI
28 
An H., Ji Y., Zhang N., Hu W., Yu P., Wang Y., Jun. 2020, Dynamically Split the Traffic in Software Defined Network Based on Deep Reinforcement Learning, in 2020 International Wireless Communications and Mobile Computing (IWCMC), Limassol, Cyprus, pp. 806-811DOI
29 
Bolodurina I., Parfenov D., Jan. 2018, Comprehensive approach for optimization traffic routing and using network resources in a virtual data center, Procedia Computer Science, Vol. 136, pp. 62-71DOI
30 
Malik J., Akhunzada A., Bibi I., Imran M., Musaddiq A., Kim S. W., 2020, Hybrid Deep Learning: An Efficient Reconnaissance and Surveillance Detection Mechanism in SDN, IEEE Access, Vol. 8, pp. 134695-134706DOI
31 
Perez-Diaz J. A., Valdovinos I. A., Choo K.-K. R., Zhu D., 2020, A Flexible SDN-Based Architecture for Identifying and Mitigating Low-Rate DDoS Attacks Using Machine Learning, IEEE Access, Vol. 8, pp. 155859-155872DOI
32 
Pei J., Hong P., Xue K., Li D., Wei D. S. L., Wu F., Jun. 2020, Two-Phase Virtual Network Function Selection and Chaining Algorithm Based on Deep Learning in SDN/NFV-Enabled Networks, IEEE J. Select. Areas Commun., Vol. 38, No. 6, pp. 1102-1117DOI
33 
Witanto J. N., Lim H., 2019, Software-Defined Networking Application with Deep Deterministic Policy Gradient, Proceedings of the 11th International Conference on Computer Modeling and Simulation. Association for Computing Machinery, North Rockhampton, QLD, Australia, pp. 176-179DOI
34 
Zhang J., Ye M., Guo Z., Yen C.-Y., Chao H. J., Oct. 2020, CFR-RL: Traffic Engineering With Reinforcement Learning in SDN, IEEE J. Select. Areas Commun., Vol. 38, No. 10, pp. 2249-2259DOI
35 
Lou K., Yang Y., Wang C., 2019, An Elephant Flow Detection Method Based on Machine Learning, in Smart Computing and Communication, Cham, Vol. 11910, pp. 212-220DOI
36 
Rusek K., Suarez-Varela J., Almasan P., Barlet-Ros P., Cabellos-Aparicio A., Oct. 2020, RouteNet: Leveraging Graph Neural Networks for Network Modeling and Optimization in SDN, IEEE J. Select. Areas Commun., Vol. 38, No. 10, pp. 2260-2270DOI
37 
Rusek K., Suárez-Varela J., Mestres A., Barlet-Ros P., Cabellos-Aparicio A., 2019, Unveiling the potential of Graph Neural Networks for network modeling and optimization in SDN, Proceedings of the 2019 ACM Symposium on SDN Research. Association for Computing Machinery, San Jose, CA, USA, pp. 140-151DOI
38 
Sahoo K. S., Iqbal A., Maiti P., Sahoo B., Dec. 2018, A Machine Learning Approach for Predicting DDoS Traffic in Software Defined Networks, in 2018 International Conference on Information Technology (ICIT), Bhubaneswar, India, pp. 199-203DOI
39 
Chang L.-H., Lee T.-H., Chu H.-C., Su C.-W., Sep. 2020, Application-Based Online Traffic Classification with Deep Learning Models on SDN Networks, Advances in Technology Innovation, Vol. 5, No. 4DOI
40 
Audah M. Z. F., Chin T. S., Zulfadzli Y., Lee C. K., Rizaluddin K., 2019, Towards Efficient and Scalable Machine Learning-Based QoS Traffic Classification in Software-Defined Network, in Mobile Web and Intelligent Information Systems, Cham, pp. 217-229DOI
41 
Prasath M. K., Perumal B., 2019, A meta-heuristic Bayesian network classification for intrusion detection, International Journal of Network Management, Vol. 29, No. 3, pp. e2047DOI
42 
Latah M., Toker L., Mar. 2018, A novel intelligent approach for detecting DoS flooding attacks in software-defined networks, Int. J. Adv. Intell. Informatics, Vol. 4, No. 1, pp. 11DOI
43 
Latah M., Toker L., Dec. 2020, An efficient flow-based multi-level hybrid intrusion detection system for software-defined networks, CCF Trans. Netw., Vol. 3, No. 3, pp. 261-271DOI
44 
Assis M. V. O., Carvalho L. F., Lloret J., Proen\c{c}a M. L., Mar. 2021, A GRU deep learning system against attacks in software defined networks, Journal of Network and Computer Applications, Vol. 177, pp. 102942DOI
45 
Raikar M. M., S m M., Mulla M. M., Shetti N. S., Karanandi M., Jan. 2020, Data Traffic Classification in Software Defined Networks (SDN) using supervised-learning, Procedia Computer Science, Vol. 171, pp. 2750-2759DOI
46 
Aibin M., Oct. 2020, LSTM for Cloud Data Centers Resource Allocation in Software-Defined Optical Networks, in 2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, NY, USA, pp. 0162-0167DOI
47 
Ibrar M., Wang L., Muntean G.-M., Akbar A., Shah N., Malik K. R., Jan. 2021, PrePass-Flow: A Machine Learning based technique to minimize ACL policy violation due to links failure in hybrid SDN, Computer Networks, Vol. 184, pp. 107706DOI
48 
Satheesh N., et al. , Nov. 2020, Flow-based anomaly intrusion detection using machine learning model with software defined networking for OpenFlow network, Microprocessors and Microsystems, Vol. 79, pp. 103285DOI
49 
Bouacida N., Alghadhban A., Alalmaei S., Mohammed H., Shihada B., May 2017, Failure mitigation in software defined networking employing load type prediction, in 2017 IEEE International Conference on Communications (ICC), Paris, France, pp. 1-7DOI
50 
Tuan N. N., Hung P. H., Nghia N. D., Van Tho N., Van Phan T., Thanh N. H., 2020, A DDoS attack mitigation scheme in ISP networks using machine learning based on SDN, Electronics (Switzerland), Vol. 9, No. 3, pp. 19DOI
51 
Rahman O., Quraishi M. A. G., Lung C.-H., Jul. 2019, DDoS Attacks Detection and Mitigation in SDN Using Machine Learning, in 2019 IEEE World Congress on Services (SERVICES), Milan, Italy, pp. 184-189DOI
52 
Sun P., Li J., Lan J., Hu Y., Lu X., Dec. 2018, RNN Deep Reinforcement Learning for Routing Optimization, in 2018 IEEE 4th International Conference on Computer and Communications (ICCC), Chengdu, China, pp. 285-289DOI
53 
Sun P., Hu Y., Lan J., Tian L., Chen M., Oct. 2019, TIDE: Time-relevant deep reinforcement learning for routing optimization, Future Generation Computer Systems, Vol. 99, pp. 401-409DOI
54 
Sun P., Guo Z., Lan J., Li J., Hu Y., Baker T., May 2021, ScaleDRL: A Scalable Deep Reinforcement Learning Approach for Traffic Engineering in SDN with Pinning Control, Computer Networks, Vol. 190, pp. 107891DOI
55 
Sun P., Guo Z., Liu S., Lan J., Wang J., Hu Y., Oct. 2020, SmartFCT: Improving power-efficiency for data center networks with deep reinforcement learning, Computer Networks, Vol. 179, pp. 107255DOI
56 
Wang P., Lin S.-C., Luo M., Jun. 2016, A Framework for QoS-aware Traffic Classification Using Semi-supervised Machine Learning in SDNs, in 2016 IEEE International Conference on Services Computing (SCC), San Francisco, CA, USA, pp. 760-765DOI
57 
Hadem P., Saikia D. K., Moulik S., May 2021, An SDN-based Intrusion Detection System using SVM with Selective Logging for IP Traceback, Computer Networks, Vol. 191, pp. 108015DOI
58 
Zhang Q., Wang X., Lv J., Huang M., May 2020, Intelligent Content-Aware Traffic Engineering for SDN: An AI-Driven Approach, IEEE Network, Vol. 34, No. 3, pp. 186-193DOI
59 
ur Rasool R., Ahmed K., Anwar Z., Wang H., Ashraf U., Rafique W., 2021, CyberPulse++: A machine learning-based security framework for detecting link flooding attacks in software defined networks, International Journal of Intelligent SystemsDOI
60 
Durner R., Kellerer W., Jun. 2020, Network Function Offloading Through Classification of Elephant Flows, IEEE Trans. Netw. Serv. Manage., Vol. 17, No. 2, pp. 807-820DOI
61 
Swami R., Dave M., Ranga V., 2020, Voting-based intrusion detection framework for securing software-defined networks, Concurrency and Computation: Practice and Experience, Vol. 32, No. 24, pp. e5927DOI
62 
Volkov S. S., Kurochkin I. I., Jan. 2020, Network attacks classification using Long Short-term memory based neural networks in Software-Defined Networks, Procedia Computer Science, Vol. 178, pp. 394-403DOI
63 
Garg S., Kaur K., Kumar N., Rodrigues J. J. P. C., Mar. 2019, Hybrid Deep-Learning-Based Anomaly Detection Scheme for Suspicious Flow Detection in SDN: A Social Multimedia Perspective, IEEE Trans. Multimedia, Vol. 21, No. 3, pp. 566-578DOI
64 
Mohammed S. S., et al. , Oct. 2018, A New Machine Learning-based Collaborative DDoS Mitigation Mechanism in Software-Defined Network, in 2018 14th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Limassol, pp. 1-8DOI
65 
Khamaiseh S., Serra E., Xu D., Jul. 2020, vSwitchGuard: Defending OpenFlow Switches Against Saturation Attacks, in 2020 IEEE 44th Annual Computers, Software, Applications Conference (COMPSAC), Madrid, Spain, pp. 851-860DOI
66 
Gangadhar S., Sterbenz J. P. G., Sep. 2017, Machine learning aided traffic tolerance to improve resilience for software defined networks, in 2017 9th International Workshop on Resilient Networks Design and Modeling (RNDM), Alghero, pp. 1-7DOI
67 
Petrangeli S., Wu T., Wauters T., Huysegems R., Bostoen T., De Turck F., Sep. 2017, A machine learning-based framework for preventing video freezes in HTTP adaptive streaming, Journal of Network and Computer Applications, Vol. 94, pp. 78-92DOI
68 
Kumar S., Bansal G., Shekhawat V. S., Jan. 2020, A Machine Learning Approach for Traffic Flow Provisioning in Software Defined Networks, in 2020 International Conference on Information Networking (ICOIN), Barcelona, Spain, pp. 602-607DOI
69 
Abhiroop T., Babu S., Manoj B. S., Feb. 2018, A Machine Learning Approach for Detecting DoS Attacks in SDN Switches, in 2018 Twenty Fourth National Conference on Communications (NCC), Hyderabad, pp. 1-6DOI
70 
Bakhshi T., Ghita B., Oct. 2016, OpenFlow-enabled user traffic profiling in campus software defined networks, in 2016 IEEE 12th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), New York, NY, pp. 1-8DOI
71 
Mu T.-Y., Al-Fuqaha A., Shuaib K., Sallabi F. M., Qadir J., 2018, SDN Flow Entry Management Using Reinforcement Learning, ACM Trans. Auton. Adapt. Syst. Association for Computing Machinery, Vol. 13, No. 2, pp. Article 11DOI
72 
Chin T., Xiong K., Hu C., 2018, Phishlimiter: A Phishing Detection and Mitigation Approach Using Software-Defined Networking, IEEE Access, Vol. 6, pp. 42516-42531DOI
73 
Truong-Huu T., Prathap P., Mohan P. M., Gurusamy M., May 2019, Fast and Adaptive Failure Recovery using Machine Learning in Software Defined Networks, in 2019 IEEE International Conference on Communications Workshops (ICC Workshops), Shanghai, China, pp. 1-6DOI
74 
Huong T. T., Khoa N. D. D., Dung N. X., Thanh N. H., Oct. 2019, A global multipath load-balanced routing algorithm based on Reinforcement Learning in SDN, in 2019 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea (South), pp. 1336-1341DOI
75 
Lee T.-H., Chang L.-H., Syu C.-W., Jun. 2020, Deep Learning Enabled Intrusion Detection and Prevention System over SDN Networks, in 2020 IEEE International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, pp. 1-6DOI
76 
Liu W.-X., Zhang J., Liang Z.-W., Peng L.-X., Cai J., 2018, Content Popularity Prediction and Caching for ICN: A Deep Learning Approach With SDN, IEEE Access, Vol. 6, pp. 5075-5089DOI
77 
Liu W., Cai J., Chen Q. C., Wang Y., Mar. 2021, DRL-R: Deep reinforcement learning approach for intelligent routing in software-defined data-center networks, Journal of Network and Computer Applications, Vol. 177, pp. 102865DOI
78 
Sun W., Wang Z., Zhang G., Feb. 2021, A QoS-guaranteed intelligent routing mechanism in software-defined networks, Computer Networks, Vol. 185, pp. 107709DOI
79 
Qin Y., Wei J., Yang W., Sep. 2019, Deep Learning Based Anomaly Detection Scheme in Software-Defined Networking, in 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS), Matsue, Japan, pp. 1-4DOI
80 
Park Y., Kengalahalli N. V., Chang S.-Y., Nov. 2018, Distributed Security Network Functions against Botnet Attacks in Software-defined Networks, in 2018 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), Verona, Italy, pp. 1-7DOI
81 
Ma Z., Huang J., 2020, Research on DDoS Abnormal Traffic Detection Under SDN Network, in Parallel Architectures, Algorithms and Programming, Singapore, pp. 368-379DOI
82 
Kitchenham B., Jul. 2007, Guidelines for performing Systematic Literature Reviews in Software Engineering, Keele University, UK, EBSE Technical ReportGoogle Search
83 
Nassif A. B., Talib M. A., Nasir Q., Albadani H., Dakalbab F. M., 2021, Machine Learning for Cloud Security: A Systematic Review, IEEE Access, Vol. 9, pp. 20717-20735DOI
84 
Nassif A. B., Talib M. A., Nasir Q., Dakalbab F. M., 2021, Machine Learning for Anomaly Detection: A Systematic Review, IEEE Access, Vol. 9, pp. 78658-78700DOI
85 
Amarudin , Ferdiana R., Widyawan , 2020, A Systematic Literature Review of Intrusion Detection System for Network Security: Research Trends, Datasets and Methods, presented at the ICICoS 2020 - Proceeding: 4th International Conference on Informatics and Computational SciencesDOI
86 
Öney M. U., Peker S., 2019, The Use of Artificial Neural Networks in Network Intrusion Detection: A Systematic Review, presented at the 2018 International Conference on Artificial Intelligence and Data Processing, IDAP 2018DOI
87 
Xie J., et al. , 2019, A Survey of Machine Learning Techniques Applied to Software Defined Networking (SDN): Research Issues and Challenges, IEEE Commun. Surv. Tutorials, Vol. 21, No. 1, pp. 393-430DOI
88 
Liu Y., Yu F. R., Li X., Ji H., Leung V. C. M., Secondquarter 2020, Blockchain and Machine Learning for Communications and Networking Systems, IEEE Communications Surveys Tutorials, Vol. 22, No. 2, pp. 1392-1431DOI
89 
Liu J., Xu Q., Mar. 2019, Machine Learning in Software Defined Network, in 2019 IEEE 3rd Information Technology, Electronic and Automation Control Conference (ITNEC), Chengdu, China, Vol. networking, pp. 1114-1120DOI
90 
TextBlob , 2021, API Reference - TextBlob 0.16.0 documentationURL