Mobile QR Code QR CODE

2024

Acceptance Ratio

21%

REFERENCES

1 
Y. Chen, X. Lu, and S. Wang, ``Deep cross-modal image–voice retrieval in remote sensing,'' IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 10, pp. 7049-7061, 2020.DOI
2 
X. Liu, Y. Cheung, Z. Hu, Y. He, and B. Zhong, ``Adversarial tri-fusion hashing network for imbalanced cross-modal retrieval,'' IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 5, no. 4, pp. 607-619, 2020.DOI
3 
Y. Wang, Z. D. Chen, X. Luo, and X. Xu, ``A high-dimensional sparse hashing framework for cross-modal retrieval,'' IEEE Transactions on Circuits and Systems for Video Technology, vol. 32, no. 12, pp. 8822-8836, 2022.DOI
4 
M. Cheng, L. Jing, and M. K. Ng, ``Robust unsupervised cross-modal hashing for multimedia retrieval,'' ACM Transactions on Information Systems (TOIS), vol. 38, no. 3, pp. 1-25, 2020.DOI
5 
M. Gheisari, H. Hamidpour, Y. Liu, P. Saedi, A. Raza, A. Jalili, H. Rokhsati, and R. Amin, ``Data mining techniques for web mining: A survey,'' Artificial Intelligence and Applications, vol. 1, no. 1, pp. 3-10, 2023.DOI
6 
Z. Li, Y. Zhou, and H. Wang, ``Social media image classification and retrieval method based on deep hash algorithm,'' International Journal of Web Based Communities, vol. 18, no. 3, pp. 276-287, 2022.DOI
7 
C. Liu, J. Ma, X. Tang, F. Liu, X. Zhang, and L. Jiao, ``Deep hash learning for remote sensing image retrieval,'' IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 4, pp. 3420-3443, 2020.DOI
8 
W. Song, S. Li, and J. A. Benediktsson, ``Deep hashing learning for visual and semantic retrieval of remote sensing images,'' IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 11, pp. 9661-9672, 2020.DOI
9 
C. Yan, B. Gong, Y. Wei, and Y. Gao, ``Deep multi-view enhancement hashing for image retrieval,'' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 4, pp. 1445-1451, 2020.DOI
10 
H. Lu, M. Zhang, X. Xu, Y. Li, and H. Shen, ``Deep fuzzy hashing network for efficient image retrieval,'' IEEE Transactions on Fuzzy Systems, vol. 29. no. 1, pp. 166-176, 2020.DOI
11 
L. Zhu, X. Lu, Z. Cheng, J. Li, and H. Zhang, ``Flexible multi-modal hashing for scalable multimedia retrieval,'' ACM Transactions on Intelligent Systems and Technology (TIST), vol. 11, no. 2, pp. 1-20, 2020.DOI
12 
L. Zhen, P. Hu, X. Peng, R. S. M. Goh, and J. T. Zhou, ``Deep multimodal transfer learning for cross-modal retrieval,'' IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 2, pp. 798-810, 2020.DOI
13 
G. Sumbul, A. de Wall, T. Kreuziger, F. Marcelino, H. Costa, P. Benevides, M. Caetano, B. Demir, and V. Markl, ``BigEarthNet-MM: A large-scale, multimodal, multilabel benchmark archive for remote sensing image classification and retrieval [software and data sets],'' IEEE Geoscience and Remote Sensing Magazine, vol. 9, no. 3, pp. 174-180, 2021.DOI
14 
Z. Ji, H. Wang, J. Han, and Y. Pang, ``SMAN: Stacked multimodal attention network for cross-modal image–text retrieval,'' IEEE Transactions on Cybernetics, vol. 52, no. 2, pp. 1086-1097, 2020.DOI
15 
Y. Gu, K. Vyas, M. Shen, Y. Jie, and G. Yang, ``Deep graph-based multimodal feature embedding for endomicroscopy image retrieval,'' IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 2, pp. 481-492, 2020.DOI
16 
Y. Chen, X. Lu, and S. Wang, ``Deep cross-modal image–voice retrieval in remote sensing,'' IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 10, pp. 7049-7061, 2020.DOI
17 
X. Xu, K. Lin, Y. Yang, A. Hanjalic, and H. T. Shen, ``Joint feature synthesis and embedding: Adversarial cross-modal retrieval revisited,'' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 6, pp. 3030-3047, 2020.DOI
18 
Y. Lei, ``Research on microvideo character perception and recognition based on target detection technology,'' Journal of Computational and Cognitive Engineering, vol. 1, no. 2, pp. 83-87, 2022.DOI
19 
S. H. Wang and Y. D. Zhang, ``DenseNet-201-based deep neural network with composite learning factor and precomputation for multiple sclerosis classification,'' ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), vol. 16, no. 2, pp. 1-19, 2020.DOI
20 
V. Bagal, R. Aggarwal, P. K. Vinod, and U. D. Priyakumar, ``MolGPT: Molecular generation using a transformer-decoder model,'' Journal of Chemical Information and Modeling, vol. 62, no. 9, pp. 2064-2076, 2021.DOI
21 
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, ``Generative adversarial networks,'' Communications of the ACM, vol. 63, no. 11, pp. 139-144, 2020.DOI