Mobile QR Code QR CODE
Export citation EndNote

References

1 
ASTM C42 / C42M , 2002, Standard Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete, West Conshohocken. PA; ASTM International.Google Search
2 
Comby-Peyrot I., Bernard F., Bouchard P. O., Bay F., Garcia-Diaz E., 2009, Development and Validation of a 3D Computational Tool to Describe Concrete Behaviour at Mesoscale, Application to the Alkali-Silica Reaction. Computational Materials Science, Vol. 46, No. 4, pp. 1163-1177DOI
3 
Cusatis G., Bažant Z. P., 2006, Size Effect on Compression Fracture of Concrete with or without V-Notches a Numerical Meso-Mechanical Study, Computational Moedelling of Concrete Structures-Meschke, de Borst, Mang & Bicanic (eds.), Taylor & Francis Group, London, UK, pp. 71-76Google Search
4 
Gonnerman H. F., 1925, Effect of Size and Shape of Test Specimen on Compressive Stress of Concrete, ASTM Proceeding, Vol. 25, pp. 237-255Google Search
5 
Grassl P., Rempling R., 2008, A Damage-Plasticity Interface Approach to the Meso-Scale Modelling of Concrete Subjected to Cyclic Compressive Loading, Engineering Fracture Mechanics, Vol. 75, No. 16, pp. 4804-4818DOI
6 
Guo Z. H., 2004, Concrete Strength and Constitutive Relation: Principle and Application, China Architecture and Building Press.Google Search
7 
Guo Z. H., 2004, Concrete Strength and Constitutive Relation: Principle and Application, hina Building Industry Press, Beijing, China.Google Search
8 
Hashin Z., Shtrikman S., 1963, A Variational Approach to the Theory of the Elastic Behavior of Multiphase Material, Journal of the Mechanics and Physics of Solids, Vol. 11, No. 2, pp. 127-140DOI
9 
Hordijk D. A., 1992, Tensile and Tensile Fatigue Behaviour of Concrete; Experiments, Modelling and Analyses. Heron, Vol. 37, No. 1, pp. 1-79Google Search
10 
Huang Y., Yang Z., Ren W., Liu G., Zhang C., 2015, 3D Meso-Scale Fracture Modelling and Validation of Concrete Based on In-Situ X-Ray Computed Tomography Images Using Damage Plasticity Model, International Journal of Solids and Structures 67-68, pp. 340-352DOI
11 
KCI , 2009, Standard Concrete Specification and Commentary, Kimoondang, Seoul, Korea.Google Search
12 
Kesler C. E., 1959, Effect of Length to Diameter Ratio on Compressive Strength—An ASTM Cooperative Investigation, ASTM Proceeding, Vol. 59, pp. 1216-1229Google Search
13 
Kim H. S., Jin C. S., Eo S. H., 1999, Size Effect of Compressive Strength of Concrete for the Cylindrical Specimens Considering Strength Level, Journal of the Korea Concrete Institute, Vol. 11, No. 2, pp. 95-103DOI
14 
Kim J. K., Yi S. T., Yang E. I., 1999, Size Effect for Flexural Compressive Strength of Concrete, Journal of the Korea Concrete Institute, Vol. 11, No. 2, pp. 157-165DOI
15 
Kim S. M., Abu Al-Rub R. K., 2011, Meso-Scale Computational Modeling of the Plastic-Damage Response of Cementitious Composites, Cement and Concrete Research, Vol. 41, No. 3, pp. 339-358DOI
16 
Kwak H. G., Gang H. G., 2017, A Tensile Criterion to Minimize FE Mesh-Dependency in Concrete Beam under Blast Loading, Journal of the Computational Structural Engineering Institute of Korea, Vol. 30, No. 2, pp. 137-143DOI
17 
Lee J., Fenves G. L., 1998, Plastic-Damage Model for Cyclic Loading of Concrete, Journal of Engineering Mechanics, Vol. 124, No. 8, pp. 892-900DOI
18 
Lim J. S., Jeong Y. D., Yi S. T., 2018, Size Effect on Compressive Strength of Concrete Using Meso-Scale Finite Element Method, Journal of the Korea Concrete Institute, Vol. 30, No. 1, pp. 67-73Google Search
19 
López C. M., Carol I., Aguado A., 2008, Meso-Structural Study of Concrete Fracture Using Interface Elements. II: Compression, Biaxial and Brazilian Test, Materials and Structures, Vol. 41, No. 3, pp. 601-620DOI
20 
Lubliner J., Oliver J., Oller S., Oñate E., 1989, A Plastic- damage Model for Concrete, International Journal of Solids and Structures, Vol. 25, No. 3, pp. 299-326DOI
21 
Murdock J. W., Kesler C. E., 1957, Effect of Length to Diameter Ratio of Specimen on the Apparent Compressive Strength of Concrete, National Ready Mixed Concrete Association (NRMCA), Vol. 74Google Search
22 
Nagai K., Sato Y., Ueda T., 2004, Mesoscopic Simulation of Failure of Mortar and Concrete by 2D RBSM, Journal of Advanced Concrete Technology, Vol. 2, No. 3, pp. 359-374DOI
23 
Nagai K., Sato Y., Ueda T., 2005, Mesoscopic Simulation of Failure of Mortar and Concrete by 3D RBSM, Journal of Advanced Concrete Technology, Vol. 3, No. 3, pp. 385-402DOI
24 
Rhee I. K., Kim W., 2006, Effects of Numerical Modeling on Concrete Heterogeneity, Journal of the Korea Concrete Institute, Vol. 18, No. 2, pp. 189-198DOI
25 
Shahbeyk S., Hosseini M., Yaghoobi M., 2011, Mesoscale Finite Element Prediction of Concrete Failure, Computational Materials Science, Vol. 50, No. 7, pp. 1973-1990DOI
26 
Sim J. I., Yang K. H., Yi S. T., 2015, Size Effect of Concrete Compressive Strength Considering Dried Unit Weight of Concrete, Journal of the Korea Concrete Institute, Vol. 27, No. 2, pp. 169-176DOI
27 
Yi S. T., 2000, Size Effect for Compressive Strength of Concrete, PhD Dissertation, Vol. korea advanced institute of science and technology, No. daejeonGoogle Search
28 
Yi S. T., Yang E. I., Choi J. C., 2006, Effect of Specimen Sizes, Specimen Shapes, and Placement Directions on Compressive Strength of Concrete, Nuclear Engineering and Design, Vol. 236, No. 2, pp. 115-127DOI