Mobile QR Code QR CODE
Export citation EndNote

References

1 
Berke, N. S., Inceefe, A. N., Kramer, A., and Antommattei, O. R. (2022) Durability of Portland Limestone Cement Concrete. Concrete International 44(1), 34-39.URL
2 
Bonavetti, V. L., Rahhal, V. F., and Irassar, E. F. (2001) Studies on the Carboaluminate Formation in Limestone Filler-Blended Cements. Cement and Concrete Research 31, 853-859.DOI
3 
Caré, S. (2008) Effect of Temperature on Porosity and on Chloride Diffusion in Cement Pastes. Construction and Building Materials 22(7), 1560-1573.DOI
4 
Cheon, Y. (2022) Review of Global Carbon Neutral Strategies and Technologies. Journal of the Korean Society of Mineral and Energy Resources Engineers 59(1), 99-112.DOI
5 
Cole, W. F., and Lancucki, C. J. (1974) A Refinement of the Crystal Structure of Gypsum CaSO4∙2H2O. Information about Acta Crystallographica Section B 30, 921-929.DOI
6 
Damidot, D., B. Lothenbach, D. Herfort and F. P. Glasser (2011) Thermodynamics and Cement Science. Cement and Concrete Research 41(7), 679-695.DOI
7 
De Weerdt, K., Ben Haha, M., Le Saout, G., Kjellsen, K. O., Justnes, H., and Lothenbach, B. (2011) Hydration Mechanisms of Ternary Portland Cements Containing Limestone Powder and Fly Ash. Cement and Concrete Research 41(3), 279-291.DOI
8 
Fiquet, G., Richet P., and Montagnac, G. (1999) High-Temperature Thermal Expansion of Lime, Periclase, Corundum and Spinel. Physics and Chemistry of Minerals 27, 103-111.DOI
9 
Gartner, E. (2004) Industrially Interesting Approaches to “Low- CO2” Cements. Cement and Concrete Research 34(9), 1489- 1498.DOI
10 
Helgeson, H. C., Kirkham, D. H., and Flowers, G. C. (1981). Theoretical Prediction of the Thermodynamic Behavior of Aqueous Electrolytes by High Pressures and Temperatures; IV, Calculation of Activity Coefficients, Osmotic Coefficients, and Apparent Molal and Standard and Relative Partial Molal Properties to 600 Degrees C and 5kb. American Journal of Science 281(10), 1249-1516.URL
11 
Idiart, A. E., López. C. M., and Carol, I. (2011) Chemo-Mechanical Analysis of Concrete Cracking and Degradation due to External Sulfate Attack: A Meso-Scale Model. Cement and Concrete Composites 33(3), 411-423.DOI
12 
Jost, K. H., Ziemer, B., and Seydel, R. (1977) Redetermination of the Structure of $\beta$-Dicalcium Silicate. Information about Acta Crystallographica Section B 33, 1696-1700.DOI
13 
Kang, H., and Moon, J. (2021) Secondary Curing Effect on the Hydration of Ultra-High Performance Concrete. Construction and Building Materials 298. 123874.DOI
14 
Kang, S.-H., Kwon, Y.-H., Hong, S.-G., Chun, S., and Moon, J. (2019) Hydrated Lime Activation on Byproducts for Eco- Friendly Production of Structural Mortars. Journal of Cleaner Production 231, 1389-1398.DOI
15 
KATS (2016) Portland Cement (KS L 5201). Seoul, Korea: Korea Agency for Technology and Standards (KATS), Korea Standard Association (KSA). (In Korean)Google Search
16 
Kim, D.-Y., Cho, H.-K., and Lee, H.-S. (2014) Effects of the Reaction Degree of Ground Granulated Blast Furnace Slag on the Properties of Cement Paste. Journal of the Korea Concrete Institute 26(6), 723-730. (In Korean)DOI
17 
Kulik, D. A., Wagner, T., Dmytrieva, S. V., Kosakowski, G., Hingerl, F. F., Chudnenko, K. V., and Berner, U. R. (2012) GEM-Selektor Geochemical Modeling Package: Revised Algorithm and GEMS3K Numerical Kernel for Coupled Simulation Codes. Computational Geosciences 17, 1-24.DOI
18 
Lian, C., Zhuge, Y., and Beecham, S. (2011) The Relationship between Porosity and Strength for Porous Concrete. Construction and Building Materials 25(11), 4294-4298.DOI
19 
Lothenbach, B., and Winnefeld, F. (2006) Thermodynamic Modelling of the Hydration of Portland Cement. Cement and Concrete Research 36(2), 209-226.DOI
20 
Lothenbach, B., Kulik, D. A., Matschei, T., Balonis, M., Baquerizo, L., Dilnesa, B., Miron, G. D., and Myers, R. J. (2019) Cemdata18: A Chemical Thermodynamic Database for Hydrated Portland Cements and Alkali-Activated Materials. Cement and Concrete Research 115, 472-506.DOI
21 
Lothenbach, B., Le Saout, G., Gallucci, E., and Scrivener, K. (2008) Influence of Limestone on the Hydration of Portland Cements. Cement and Concrete Research 38(6), 848-860.DOI
22 
Lothenbach, B., Winnefeld, F., Alder, C., Wieland, E., and Lunk, P. (2007) Effect of Temperature on the Pore Solution, Microstructure and Hydration Products of Portland Cement Pastes. Cement and Concrete Research 37(4), 483-491.DOI
23 
Matschei, T., Lothenbach, B., and Glasser, F. P. (2007) The Role of Calcium Carbonate in Cement Hydration. Cement and Concrete Research 37(4), 551-558.DOI
24 
Mehrotra, B. N., Hahn, T., Eysel, W., Roepke, H., and Illguth, A. (1978) Crystal Chemistry of Compounds with Thenardite (Na2SO4V) Structure. Neues Jahrbuch fuer Mineralogie 9, 408-421.URL
25 
Menéndez, G., Bonavetti, V., and Irassar, E. F. (2003) Strength Development of Ternary Blended Cement with Limestone Filler and Blast-Furnace Slag. Cement and Concrete Composites 25, 61-67.DOI
26 
Mondal, P., and Jeffery, J. W. (1975) The Crystal Structure of Tricalcium Aluminate, Ca3Al2O6. Information about Acta Crystallographica Section B 31, 689-697.DOI
27 
Monkman, S., Sargam, Y., and Raki, L. (2022) Comparing the Effects of In-Situ Nano-Calcite Development and Ex-Situ Nano-Calcite Addition on Cement Hydration. Construction and Building Materials 321.DOI
28 
Monteiro, J., and Roussanaly, S. (2022) CCUS Scenarios for the Cement Industry: Is CO2 Utilization Feasible? Journal of CO2 Utilization 61.DOI
29 
Moon, G. D., Oh, S., Jung, S. H., and Choi, Y. C. (2017) Effects of the Fineness of Limestone Powder and Cement on the Hydration and Strength Development of PLC Concrete. Construction and Building Materials 135, 129-136.DOI
30 
Mumme, W. G. (1995) Crystal Structure of Tricalcium Silicate from a Portland Cement Clinker and Its Application to Quantitative XRD Analysis. Neues Jahrbuch Für Mineralogie - Monatshefte 1995(4), 146-160.URL
31 
Nishi, F., and Takéuchi, Y. (1975) The A16O18 Rings of Tetrahedra in the Structure of Ca8.5NaAl6O18. Information about Acta Crystallographica Section B 31, 1169-1173.DOI
32 
Oey, T., Kumar, A., Bullard, J. W., Neithalath, N., Sant, G., and Scherer, G. (2013) The Filler Effect: The Influence of Filler Content and Surface Area on Cementitious Reaction Rates. Journal of the American Ceramic Society 96(6), 1978-1990.DOI
33 
Oh, S.-H., and Shin, D.-C. (2017) Mechanical Properies and Durability of Concrete in Relation to the Amount of Limestone Use. Journal of the Korea Institute for Structural Maintenance and Inspection 21, 138-144. (In Korean)DOI
34 
Parrot, L. J., and Killoh, D. C. (1984) Prediction of Cement Hydration. Proceedings of the British Ceramic Society 35, 41-53.Google Search
35 
Rietveld, H. (1969) A Profile Refinement Method for Nuclear and Magnetic Structures. Journal of Applied Crystallography 2(2), 65-71.DOI
36 
Sasaki, S., Fujino, K., and Takeuchi, Y. (1979) X-Ray Determination of Electron-Density Distributions in Oxides, MgO, MnO, CoO, and NiO, and Atomic Scattering Factors of Their Constituent Atoms. Proceedings of the Japan Academy, Series B 55(2), 43-48.URL
37 
Schmidt, T., Lothenbach, B., Romer, M., Neuenschwander, J., and Scrivener, K. (2009) Physical and Microstructural Aspects of Sulfate Attack on Ordinary and Limestone Blended Portland Cements. Cement and Concrete Research 39(12), 1111-1121.DOI
38 
Van den Berg, A. J., and Tuinstra, F. (1978) The Space Group and Structure of $\alpha$-K2SO4. Information about Acta Crystallographica Section B 34, 3177-3181.DOI
39 
Vanpeteghem, C. B., Angel, R. J., Zhao, J., Ross, N. L., Redhammer, G. J., and Seifert, F. (2008) The Effect of Oxygen Vacancies and Aluminium Substitution on the High-Pressure Properties of Brownmillerite-Structured Ca2Fe2−xAlxO5. Physics and Chemistry of Minerals 35(9), 493-504.DOI
40 
Wagner, T., Kulik, D. A., Hingerl, F. F., and Dmytrieva, S. V. (2012) GEM-SELEKTOR Geochemical Modeling Package: TSolMod Library and Data Interface for Multicomponent Phase Models. The Canadian Mineralogist 50(5) 1173-1195.DOI
41 
Zajac, M., Irbe, L., Bullerjahn, F., Hilbig, H., and Ben Haha, M. (2022) Mechanisms of Carbonation Hydration Hardening in Portland Cements. Cement and Concrete Research 152, 106687.DOI