Mobile QR Code QR CODE
Export citation EndNote

References

1 
Abdallah, S., Rees, D. W. A., Ghaffar, S. H., and Fan, M. (2018) Understanding the Effects of Hooked-End Steel Fibre Geometry on the Uniaxial Tensile Behaviour of Self-Compacting Concrete. Construction and Building Materials 178, 484-494.DOI
2 
ACI Committee 213 (2014) Guide for Structural Lightweight- Aggregate Concrete (ACI 213R-14). Farmington Hills, MI; American Concrete Institute (ACI), 53.URL
3 
ACI Committee 544 (2018) Guide to Design with Fiber-Reinforced Concrete (ACI 544.4R-18). Farmington Hills, MI; American Concrete Institute (ACI), 39.URL
4 
ASTM C1018 (1997) Standard Test Methods for Flexural Toughness and First Crack Strength of Fibre Reinforced Concrete. West Conshohocken, PA; ASTM International.URL
5 
ASTM C1609/C1609M-12 (2012) Standard Test Method for Flexural Performance of Fiber Reinforced Concrete. West Conshohocken, PA; ASTM International.URL
6 
Feng, H., Chen, G., Hadi, N. S., Sheikh, M. N., and Zhou, B. (2018) Mechanical Behaviour of Micro-Fine Steel Fibre Reinforced Sulphoaluminate Cement Composite. Construction and Building Materials 170, 91-100.DOI
7 
fib (2000) Lightweight Aggregate Concrete (fib Bulletin 8). Lausanne, Switzerland; International Federation for Structural Concrete (fib).URL
8 
Guler, S. (2018) The Effect of Polyamude Fibers on the Strength and Toughness Properties of Structural Lightweight Aggregate Concrete. Construction and Building Materials 173, 394-402.DOI
9 
Hassanpour, M., Shafigh, P., and Mahmud, H. B. (2012) Lightweight Aggregate Concrete Fiber Reinforcement: A Review. Construction and Building Materials 37, 452-461.DOI
10 
Jeong, G. Y., Jang, S. J., Kim, Y. C., and Yun, H. D. (2018) Effects of Steel Fiber Strength and Aspect Ratio on Mechanical Properties of High-Strength Concrete. Journal of the Korea Concrete Institute 30(2), 197-205.URL
11 
Kim, H. Y., Yang, K. H., and Lee, H. J. (2021) Stress-Strain Model for Fiber-Reinforced Lightweight Aggregate Concrete. Proceedings of Korean Recycled Construction Resource Institute 259-260. (In Korean).URL
12 
Lapor (2022) https://www.liapor.com/en.html.Accessed 30 May 2022.URL
13 
Larsen, I. L., and Thorstensen, R. T. (2020) The Influence of Steel Fibres on Compressive and Tensile Strength of Ultra High Performance Concrete: A Review. Construction and Building Materials 256, 1-15.DOI
14 
Lee, H. J., Kim, H. Y., and Yang, K. H. (2022) Toughness Evaluation Model of Steel Fiber-Reinforced Lightweight Aggregate Concrete. Proceedings of Korean Recycled Construction Resource Institute, 215-216. (In Korean).URL
15 
Li, J. J., Wan, C. J., Niu, J. G., Wu, L. F., and Wu, Y. C. (2017) Investigation on Flexural Toughness Evaluation Method of Steel Fiber Reinforced Lightweight Aggregate Concrete. Construction and Building Materials 131, 449-458.DOI
16 
Li, J. J., Zhao, E. J., Niu, J. G., and Wan, C. J. (2021) Study on Mixture Design Method and Mechanical Properties of Steel Fiber Reinforced Self-Compacting Lightweight Aggregate Concrete. Construction and Building Materials 267, 1-15.DOI
17 
Li, V. C., Mihashi, H., Wu, H. C., Alwan, J., Brincker, R., Horii, H., Leung, C., Maalej, M., and Stang, H. (1996) Micromechanical Models of Mechanical Response of HPFRCC, In: High Performance Fiber Reinforced Cementitious Composites. RILEM Proceedings, 43-100.URL
18 
Liu, X., Wu, T., and Liu, Y. (2019) Stress-Strain Relationship for Plain and Fibre-Reinforced Lightweight Aggregate Concrete. Construction and Building Materials 225, 256-272.DOI
19 
Mobasher, B., Yao, Y., and Soranakom, C. (2015) Analytical Solutions for Flexural Design of Hybrid Steel Fiber Reinforced. Engineering Structures 100, 164-177.DOI
20 
Shafei, B., Kazemian, M., Dopko, M., and Najimi, M. (2021) State-of-the-Art Review of Capabilities and Limitations of Polymer and Glass Fibers Used for Fiber-Reinforced Concrete. Materials 14(2), 1-44.DOI
21 
Sim, J. I., Yang, K. H., Lee, E. T., and Yi, S. T. (2014) Effect of Aggregate and Specimen Sizes on Lightweight Concrete Fracture Energy. Journal of Materials in Civil Engineering ASCE 26(5), 845-854.DOI
22 
Soranakom, C., and Mobasher, B. (2007) Closed-Form Solutions for Flexural Response of Fiber-Reinforced Concrete Beams. Journal of Engineering Mechanics ASCE 133(8), 933-941.DOI
23 
Vandewalle, L., Nemegeer, D., Balázs, G. L., and Barr, B. (2002) RILEM TC 162 - TDF: Test and Design Methods for Steel Fibre Reinforced Concrete - Design of Steel Fibre Reinforced Concrete Using the Sigma-W Method: Principles and Applications. Materials and Structures 35(249), 262-278.URL
24 
Yang, I. H., Kim, K. C., and Joh, C. B. (2015) Flexural Strength of Hybrid Steel Fiber-Reinforced Ultra-High Strength Concrete Beams. Journal of the Korea Concrete Institute 27(3), 280-287.DOI
25 
Yang, K. H. (2011) Tests on Concrete Reinforced with Hybrid or Monolithic Steel and Polyvinyl Alcohol Fibers. ACI Materials Journal 108(6), 664-672.URL
26 
Yang, K. H., Mun, J. H., and Im, C. R. (2021) Longitudinal Reinforcement Ratios for Lightweight Concrete Beams. ACI Structural Journal 118(6), 33-45.URL
27 
Ye, Y., Liu, J., Zhang, Z., Wang, Z., and Peng, Q. (2020) Experimental Study of High-Strength Steel Fiber Lightweight Aggregate Concrete on Mechanical Properties and Toughness Index. Advances in Materials Science and Engineering 2020, 1-10.DOI