Mobile QR Code QR CODE
Export citation EndNote

References

1 
AASHTO (2014) AASHTO LRFD Bridge Design Specifications. Washington, DC: American Association of State Highway and Transportation Officials (AASHTO).URL
2 
ACI Committee 318 (2019) Building Code Requirements for Structural Concrete (ACI 318R-19). Farmington Hills, MI: American Concrete Institute (ACI). 519.URL
3 
AIJ (1990) Design Guidelines for Earthquake-Resistant Reinforced Concrete Buildings Based on Ultimate Strength Concept. Tokyo, Japan: Architectural Institute of Japan (AIJ), 201.URL
4 
Angelakos, D., Bentz, E. C., and Collins, M. P. (2001) Effect of Concrete Strength and Minimum Stirrups on Shear Strength of Large Members. ACI Structural Journal 98(3), 290-300.URL
5 
Bresler, B., and Scordelis, A. C. (1963) Shear Strength of Reinforced Concrete Beams. ACI Journal Proceedings 60(1), 51-74.URL
6 
CEN (2004) Eurocode 2: Design of Concrete Structures - Part 1-1: General Rules and Rules for Buildings (EN. 1992-1-1: 2004). London, UK: European Committee for Standardization (CEN), British Standards Institute (BSI).URL
7 
Cladera, A. (2002) Shear Design of Reinforced High-Strength Concrete Beams. Doctoral Dissertation, University of the Balearic Islands.URL
8 
CSA Committee A23.3-14 (2004) Design of Concrete Structures for Buildings (CAV3-A23.3-14). Toronto, ON, Canada: Canadian Standards Association (CSA). 29.URL
9 
DIN 1045-1 (2001) Deutsche Norm: Tragwerke aus Beton, Stahlbeton und Spannbeton - Teil 1: Bemessung und Konstruktion. S. (Concrete, Reinforced and Prestressed Concrete Structures - Part 1: Design). Normenausschuss Bauwesen (NABau) im DIN Deutsches Institut für Normung e.V. Beuth Verl. Berlin, 148.URL
10 
Frosch, R. J. (2000) Behavior of Large-Scale Reinforced Concrete Beams with Minimum Shear Reinforcement. ACI Structural Journal 97(6), 814-820.URL
11 
Gunawan, D., Okubo, K., Nakamura, T., and Niwa, J. (2020) Shear Capacity of RC Beams Based on Beam and Arch Actions. Journal of Advanced Concrete Technology 18, 241-255.DOI
12 
Hsu, T. T. C. (1988) Softening Truss Model for Shear and Torsion. ACI Structural Journal 85(6), 624-635.URL
13 
Johnson, M. K., and Ramirez, J. A. (1989) Minimum Shear Reinforcement in Beams with Higher Strength Concrete. ACI Structural Journal 86(4), 376-382.URL
14 
Kaufmann, W., and Marti, P. (1998) Structural Concrete: Cracked Membrane Model. Journal of Structural Engineering ASCE 124(12), 1467-1475.DOI
15 
Kawamura, K., Takemura, M., Nakamura, H., and Miura, T. (2021) Experimental Study on the Effect of Different Shear Reinforcement Shapes on Shear Failure Behavior and Internal Crack Pattern of RC Beams. Journal of Advanced Concrete Technology 19, 82-94.DOI
16 
KCI (2017) Concrete Design Code and Commentary 2017. Seoul, Korea: Kimoondang Publishing Company. Korea Concrete Institute (KCI). 637. (In Korean)URL
17 
KCI (2021) Design of Concrete Structures (KDS 14 20 00: 2021) and Commentary. Seoul, Korea: Kimoondang Publishing Company. Korea Concrete Institute (KCI). (In Korean)URL
18 
KIBSE (2016) Korea Highway Bridge Design Code-Limit State Design Method (KBDC-LSD) and Commentary. Seoul, Korea: Gunsulbook Publishing Company. Korea Institute of Bridge and Structural Engineers (KIBSE), Korea Bridge Design and Engineering Research Center (KBDERC). (In Korean)URL
19 
Lee, D., Han, S.-J., Joo, H.-E., Kim, K. S., Zhang, D., and Kim, J. (2020) Shear Crack Concentration in Reinforced Concrete Beams Subjected to Shear and Flexure. Advances in Structural Engineering 23(11), 2305-2317.DOI
20 
Lee, J.-Y. (2022) Shear and Torsion for Reinforced Concrete Structures. DongHwa Publishing Co., Korea, 575.URL
21 
Lee, J.-Y., and Hwang, H.-B. (2010) Maximum Shear Reinforcement of Reinforced Concrete Beams. ACI Structural Journal 107(5), 580-588.URL
22 
Lee, J.-Y., Choi, S.-H., and Lee, D. H. (2016) Structural Behaviour of Reinforced Concrete Beams with High Yield Strength Stirrups. Magazine of Concrete Research 68(23), 1187-1199.DOI
23 
Lee, J.-Y., Kim, S.-W., and Mansour, M. Y. (2011) Nonlinear Analysis of Shear-Critical Reinforced Concrete Beams Using Fixed Angle Theory. Journal of Structural Engineering ASCE 137(10), 1017-1029.DOI
24 
Lee, J.-Y., Lee, D. H., Lee, J.-E., and Choi, S.-H. (2015) Shear Behavior and Diagonal Crack Width for Reinforced Concrete Beams with High-Strength Shear Reinforcement. ACI Structural Journal 112(3), 323-334.URL
25 
Lee, J.-Y., Lee, J.-H., Lee, D. H., Hong, S.-J., and Kim, H.-Y. (2018) Practicability of Large-Scale Reinforced Concrete Beams Using Grade 80 Stirrups. ACI Structural Journal 115 (1), 269-280.URL
26 
Lee, J.-Y., Shin, D. I., Kim, K. S., Kim, S.-W., Lee, D., and Hwang, H.-J. (2023) Shear Strength Evaluation by Variable Crack Angle (II) Design Strength of Shear Reinforcement. Journal of the Korea Concrete Institute 35(4), Submitted Paper. (In Korean)URL
27 
Morsch, E. (1902) Der Eisenbetonbau, Seine Anwendung und Theorie. 1th Edition. Im Selbstverlag der Firma. Neustadt. 118.URL
28 
Nielsen, M. P. (1967) Om Forskydningsarmering i Jernbetonbjaelker (On Shear Reinforcement in Reinforced Concrete Beams). Bygningsstatiske Meddelelser 38(2), 33-58.URL
29 
Nielsen, M. P., Braestrup, M. W., Jensen, B. C., and Bach, F. (1978) Concrete Plasticity. Special Publication, Danish Society for Structural and Engineering.URL
30 
Ozcebe, G., Ersoy, U., and Tankut, T. (1999) Evaluation of Minimum Shear Reinforcement Requirements for Higher Strength Concrete. ACI Structural Journal 96(3), 361-369.URL
31 
Piyamahant, S. (2002) Shear Behavior of Reinforced Concrete Beams with a Small Amount of Web Reinforcement Control of Crack Widths. Master Degree Dissertation, Department of Infrastructure System Engineering, Kochi University of Technology.URL
32 
Rahal, K. N. (2006) Shear Behavior of Reinforced Concrete Beams with Variable Thickness of Concrete Side Cover. ACI Structural Journal 103(2), 171-177.URL
33 
Ritter, W. (1899) Die Bauweise Hennebique. Schweizerische Bauzeitung 33(7), 59-61.URL
34 
SA Committee BD-002 (2009) Concrete Structures (AS 3600). Sydney, Australia. Standards Australia (SA).URL
35 
Shin, D., Haroon, M., Kim, C., Lee, B.-S., and Lee, J.-Y. (2019) Shear Strength Reduction of Large-Scale Reinforced Concrete Beams with High-Strength Stirrups. ACI Structural Journal 116(5), 161-172.URL
36 
Tompos, E. J., and Frosch, R. J. (2002) Influence of Beam Size, Longitudinal Reinforcement, and Stirrup Effectiveness on Concrete Shear Strength. ACI Structural Journal 99(5), 559- 567.URL
37 
Vecchio, F. J. (2000) Disturbed Stress Field Model for Reinforced Concrete: Formulation. Journal of Structural Engineering 126(9), 1070-1077.DOI
38 
Vecchio, F., and Collins, M. P. (1986) The Modified Compression- Field Theory for Reinforced Concrete Elements Subjected to Shear. ACI Structural Journal 83(2), 219-231.URL
39 
Witchukreangkrai, E., Mutsuyoshi, H., Kuraoka, M., and Oshiro, T. (2005) Control of Diagonal Cracking In Partially Prestressed Concrete Beams. JCI Proceedings 26(2), 727-732.URL
40 
Yu, I. G., Noh, H. J., Lee, H. K., Baek, S. M., Kim, W. S., and Kwak, Y. K. (2020) A Characteristic Study on Shear Strength of Reinforced Concrete Beams according to Longitudinal Reinforcement Ratio and Size Effect. Journal of the Architectural Institute of Korea 36(2), 117-126. (In Korean)URL
41 
Yu, I. G., Park, N.-J., Baek, S. M., Kim. W., and Kwak, Y. (2021) A Study on the Shear Strength Characteristics of High Strength Reinforced Concrete Beams According to Beam Size and Shear Reinforcement Spacing. Journal of the Architectural Institute of Korea 37(9), 167-178. (In Korean)URL
42 
Zakaria, M., Ueda, T., Wu, Z., and Meng, L. (2009) Experimental Investigation on Shear Cracking Behavior in Reinforced Concrete Beams with Shear Reinforcement. Journal of Advanced Concrete Technology 7(1), 79-96.DOI